

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 7

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 19

Li R

Truth-values

- In intensional semantics, the central notion is that of 'truth valuation'.
- Definition. A <u>truth valuation</u> on a propositional language L is a mapping V assigning to each formula P of L a truth value V(P), i.e., a member of the set {True, False} (in short {T, F}), defined as follows.

[see the next slide]

L.R.	Truth Relation and				
Reasoning Services					
•	Validity : Is a proposition P true under every <i>possible</i> truth-valuation V?				
•	• Example : P = 'Being∨¬Being'.				
	P is valid, since for every truth-valuation v , either v('Being') = T, so $v(P) = T$;				
	or $v('Being') = F$, so $v(\neg 'Being') = T$, i.e. $v(P) = T$.				
	Copyright © 2009-1 I Alessandro Agostini and Fausto Giunchiglia 31				

 By the definition of the semantics of → in terms of = we have the following truth-table for the logical implication P→O: 						
	P	0	$P \models Q$	$P \rightarrow Q$		
	False	False	True	True		
	False	True	True	True		
	True	False	False	False		
	True	True	True	True		
Copyright © 2009-1 I Alessandro Agostini and Fausto Giunchiglia 39						

Premise

R

- The Davis–Putnam algorithm was developed by Martin Davis and Hilary Putnam in 1960 for checking the validity of a FOL-formula.
- The Davis–Putnam algorithm is not a decision procedure in the strict sense, as it does *not* terminate on some inputs.
- We are interested in the PL part of the DP algorithm well-known as DPLL procedure.

Conjunctive Normal Form (CNF)	Con
 A proposition is in <u>conjunctive normal form</u> (CNF) if it is a (finite) conjunction of clauses. 	• <u>Theorem</u> i.e., P can
• Examples: $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$,	into a pro
$\neg A \land B, A \land (B \lor C \lor \neg D),$	• Q is in
• <u>Counter-examples</u> : $\neg(A \land B) : \neg$ is the outmost operator	• P and C (i.e., hav
$A \land (B \lor C \land \neg D) : \land$ is nested within \lor	Proof: See e
Copyright ${\ensuremath{\mathbb O}}$ 2009-1 I Alessandra Agostini and Fausto Giunchiglia	Copyrigh

→-elimination

↔-elimination

CNFSAT-Problem Definition. CNFSAT = {P in CNF | exists V s.t. V |= P}. Informally, CNFSAT is a set of propositions P in CNF such that there is some truth-valuation (also called truth-or propositional assignment) of the truth-values to the propositional variables in P that will make P true. CNFSAT-Problem: Is CNFSAT decidable?

• Like PSAT, CNFSAT is NP-complete.

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 61

DPLL Procedure

LFR.

- DPLL employs a backtracking search to explore the space of propositional variables truth-valuations of an proposition P in CNF, looking for a satisfying truth-valuation of P.
- DPLL solves the CNFSAT-Problem by searching a truth-assignment that satisfies all clauses in the input proposition.

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 62

Steps 3 and 4 : see the next slide.

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 64

