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Introduction

• Despite all the several representation 
languages, all knowledge representation 
languages deal with sentences. 

• Sentences are propositions (by definition).

• Propositional logic deals with propositions.

• As propositional logic is the simplest logic 
that does this, it is the right place to start.

3
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Language
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Language (Syntax)

• The first step in setting up a formal language 
(viz. a propositional language, PL) is to list 
the symbols, that is, the alphabet of symbols. 

• We denote the alphabet of a propositional 
language by #0. So, PL is a symbolic language.

• Symbols in #0 are divided in ‘descriptive’ 
(nonlogical) and ‘non-descriptive’ (logical).

5
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• 1. Propositional constants: A, B, ... 

• 2. Logical constants (“Boolean operators”):  
∧, ∨, ¬

• 3. Parentheses (auxiliary symbols): (, )

• 4. Propositional variables: P, Q, ..., !,"... 

• Remark: not only characters but also words 
like e.g. “monkey”, “LDKR,” etc. are in 4.

Logical Symbols
(non-descriptive)

6
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Defined Symbols

• Logical defined constants are, for all P:

• ⊥ (falsehood symbol): ⊥ =df P∧¬P

• !(truth symbol): !=df ¬⊥
• Remark: 

Defined symbols are not strictly necessary.

• They increase the usability by reducing the 
syntactic complexity of propositions.

7

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 

Formation Rules (FR)

• Atomic Formulas (atomic propositions):
1. A, B,..., P, Q,...; ⊥, !. 

• Propositional Formulas (propositions), also 
called well-formed formulas, in short wff’s): 
2. All the atomic formulas.
3.¬P, P∧Q, P∨Q for all wff ’s P, Q. 

• #0 + FR define a propositional language.

8
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Remark

• Propositions (wff’s in PL) are the “correct” 
formal expression to be built from #0.

• Example: 
- ‘inLab(Monkey)’ or also ‘inLab-Monkey’, 
‘inlab-monkey’, ‘in-lab-monkey’ are  correct 
(with meaning T in our example);
- ‘inLab(high)’,  ‘inLab(Monkey)∧’,  ‘P ¬∧Q’ 

are not correct (i.e. with no meaning).
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Important Remark!

• Observe the two equivalent propositions:
- ‘inLab(Monkey)’ (*) and  ‘inLab-Monkey’.

• ‘Monkey’ does not represent an individual 
of some domain; we have not such an 
expressiveness in PL! (We need class-PL.)

• Parentheses in ‘inLab(Monkey)’ are not the 
auxiliary symbols like in e.g. (P∧¬Q) ∨ Q

• The semantics of (*) in PL and FOL differ!
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Example (MB)
“There is a monkey in a 

laboratory with some bananas 
hanging out of reach from the 
ceiling. A box is available that 

will enable the monkey to 
reach the bananas if he climbs 
on it. Initially, the monkey is at 
A, the bananas at B, and the 

box at C. The monkey and box 
have height Low, but if the 

monkey climbs onto the box he 
will have height High, the same 

as the bananas.  [...]’’

• Take the Monkey-Bananas 
problem.

• Some significant data are: 
the monkey, the bananas, 
the box, positions A, B...

• Significant knowledge is: 
Low, High, Go, ClimbOn...

• All other data and 
knowledge are irrelevant!

11
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Example (MB, cont’)

• Language: ‘Monkey’, ‘Bananas’, ‘Box’, ‘Ceiling’,  
‘A’, ‘B’, ‘C’; ‘inLab-Monkey’, ‘inLab-Bananas’, 
‘inLab-Box’, ‘high-Bananas’, ‘low-Monkey’, ...

• blue wff’s: data, red wff’s: knowledge.

• Important Remark:
In PL we cannot reason by using ‘Monkey’ 
and ‘inLab-Monkey’ to conclude something 
on the monkey as an individual in the world.
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Example (MB, cont’)

• Intended interpretation (informal semantics): 
- ‘Monkey’ is intended to be a monkey, 
- ‘Bananas’ is intended to be some bananas 
- ...
- ‘inLab-Monkey’ is intended to say that a 
monkey is in a laboratory...
- ...
- ‘high-Bananas’ is intended to say that some 
bananas are high to be reached, ... etc.

data

knowledge
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Propositional Theory

• Definition. A set of propositions is a 
propositional (or sentential) theory.

• NB: a propositional theory is a 
(propositional) knowledge base. 

• Recall that: 

• knowledge is a “statement” 

• we assumed statements are propositions.

14
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Propositional Theories
and Databases

• A propositional theory is not a data base! 

• Propositions don’t show data explicitely

• Example: In ‘inLab(Monkey)’, ‘Monkey’ 
does not refer to an individual from  
some data domain.

• In PL the form P(a) must be interpreted as 
P-a (so the use of form P(a) is ambiguous).

15
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Example + Remark

• Example: A propositional theory, i.e., a 
knowledge base (KB) for the MB problem is 
a set like this:

{inLab-Monkey, inLab-Bananas, inLab-Box, high-Bananas, 
low-Monkey, isAtMonkey-A, isAtBananas-B, isAtBox-C,

ClimbMonkeyBox∧isAtBox-B)$reachMonkey-Bananas,...}.

• Remark: The notion of theory / KB is a 
syntactic notion (i.e. no meaning in symbols).

16
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Semantics
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Semantics

• So far the elements of our propositional 
language are simply strings of symbols 

       without formal meaning

• The meanings which are intended to be 
attached to the symbols and propositions 
form the intended interpretation of the 
language (viz. its symbols, formulas, etc.). 

18
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• We must make sure to assign the formal 
meanings out of our intended interpretation 
to the language, so that formulas 
(propositions) express what we intended. 

• This is done by defining a formal model M. 

• Technically: we have to define a pair ( M, |= ) 
for our propositional language (see below).

19

             Semantics
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Intensional Semantics
Intensions (Definition)

20

• Definition. The intension of a proposition is 
the sum of all the properties that must be 
possessed by every particular to which the 
proposition can be applied. 

The intension consists of all the properties 
the proposition implies (Rescher, 1964).
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Example

• Take the proposition ‘airplane’:

• Airplanes may differ in many ways, but 
anything to which one properly refers to by 
using the proposition ‘airplane’ will have to 
have certain specifiable properties, e.g. be 
self-propelled, man-made, having wings, etc. 

• These specifiable properties go to define the 
intension of the proposition ‘airplane’.

21
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Intensional 
Interpretation

• Definition. The intensional interprertation I 
of a proposition P, denoted by I(P), is the 
intension of P.

• Example 1:  I(‘airplane’) = 
= {self-propelled, man-made, having wings, ...}

• Example 2:  I(‘inLab-Monkey’) = 
= {there is a monkey, there is a lab, the 
monkey is in the lab}

22
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Intensions versus 
Truth-Values

• The intensional interpretation of a 
proposition determines its truth-value.

• Example:  Proposition ‘airplane’ is true iff 
airplanes are 
- self-propelled and 
- man-made and
- have wings or
- fly and
- are not birds, ...

23
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Truth-values

• In intensional semantics, the central notion is 
that of  ‘truth valuation’.

• Definition. A truth valuation on a 
propositional language L is a mapping % 
assigning to each formula P of L a truth value 
%(P), i.e., a member of the set {True, False} 
(in short {T, F}), defined as follows.

[see the next slide]

24
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Truth-valuation %

• %(¬P) = True iff %(P)=False 

• %(P∧Q) = True iff %(P)=True and %(Q)=True 

• %(P∨Q) = True iff %(P)=True or %(Q)=T

• %(⊥) = False (since ⊥=df P∧¬P)

• %(!) = True (since!=df ¬⊥)

25
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Truth Tables

• To compute (in polynomial time) truth 
valuations, the method of Truth Tables was 
introduced (Wittgenstein, 1921).

• Truth tables are well-know:

26

Truth-table (TT) 
for the logical 

constants   
¬ , ∧, ∨
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Truth Relation
(Satisfaction Relation)

• Let % be a truth valuation on language L. 

• We define the truth-relation (or 
satisfaction-relation) |= and write
                     % |= P
(read: % satisfies P) iff %(P) = True.

• Given a set of propositions &, we define 
                     % |= &  
iff if % |= " for all " ∈ &. 

27
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Model, Satisfiable

• Definition. Let % be a truth valuation on 
language L. 

• % is a model of a proposition P (set of 
propositions &) iff % satisfies P (&).

• P (&) is satisfiable if there is some truth 
valuation % such that % |= P (% |= &). 

28
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Truth and Validity

• Definition. Let % be a truth valuation: 
(1) P is true under % if % |= P.
(2) P is valid (and P is called a tautology), 
if % |= P for all % (notation: |= P).

• Note that the notions of ‘true’ and ‘false’ are  
relative to some truth valuation (cf. ‘under’). 

• Fact:  A proposition is true iff is satisfiable.

29
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Truth Relation and 
Reasoning Services

• The basic reasoning tasks (or “services”) we 
can represent (and compute) using |= are:

• Model Checking (EVAL): Is a 
proposition P true under a truth-valuation % 
(i.e., is % a model of P: % |= P)? 

• Example: P = ‘inLab-monkey∨inLab-box’

P is true under any truth-valuation % that 
assigns True to ‘¬LabEmpty’.

30
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Truth Relation and 
Reasoning Services

• Validity: Is a proposition P true under 
every possible truth-valuation %?

• Example: P = ‘Being∨¬Being’.

P is valid, since for every truth-valuation %, 
either 
%(‘Being’) = T, so %(P) = T; 
or 
%(‘Being’) = F, so %(¬‘Being’) = T, i.e. %(P) = T.

31
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Truth Relation and 
Reasoning Services

• Satisfiability (SAT): Is P satisfiable? 

• Example: 1. ‘Being∨¬Being’ is satisfiable.

2. P = ‘A∧¬A’ is unsatisfiable (inconsistent):

for every truth-valuation %, 
either 
%(A) = T, so %(¬A) = F, hence %(P) = F; 
or 
%(A) = F, so %(¬A) = T, hence %(P) = T.

32
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• Definition. A set & (eventually empty) of 
propositions entails a proposition ! 
(written: & |= !) if for all %, 
       if % |= " for all " ∈ &, then % |= !.

• If & |= !, then we say that ! is a logical 
consequence of &, and & logically implies !.

• Remark: The entailment is a relationship 
between wff’s that is based on semantics

33
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Propositional Entailment Examples

• Suppose P = ‘today’∨‘tomorrow’. Then:

• {} |= P (notation: |= P)

• {‘today’} |= ‘today’∨‘tomorrow’

• {‘today’} not-|= ‘tomorrow’

• Exercise: 
(a) Define & and P such that & |= P.
(b) Define & and P such that & not-|= P.

34
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Reductio ad Absurdum

• In the finite, we can formally relate the 
propositional entailment to satisfiability. 

• Theorem: {"1, ..., "n} |= ! if and only if 
{"1, "2, ... , "n, ¬!} is unsatisfiable.

• Proof: exercise.

• The theorem fixes the way to prove ! by 
reductio ad absurdum.

35
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Implication
Premise

• Propositional entailment in the finite, i.e.:

                 {"1, ..., "n} |= !
({"1, ..., "n} finite set of propositions) can be 
viewed as the logical implication
             
               ("1∧"2∧ ... ∧"n) $ !

[ ("1∧"2∧ ... ∧"n) logically implies ! ]

36
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• We extend our alphabet of symbols with the  
defined logical constants:
$  (implication)
↔  (double implication or equivalence)

• Remark: ⊥ and!are syntactically defined 

symbols: ⊥ =df P∧¬P, !=df ¬⊥,

$,↔ are semantically defined symbols! 

Implication 
(Syntax)

37
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Implication
(Semantics)

• P$Q, P↔Q are wff’s for all wff ’s P, Q. 

• Let propositions !, ", and finite set {"1,...,"n} 
of propositions be given. We define:

• |= "$! ("$! valid) iff  " |= !

• |= ("1∧...∧"n)$! iff  {"1,...,"n} |= !

• |= "↔! iff  "$! and !$".

38
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• By the definition of the semantics of $ in 
terms of |= we have the following truth-
table for the logical implication P$Q: 

Truth Table of $ 

39
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Logical Implication
Three Properties

• P1: For all !,",
                !$" iff ¬!∨".

• P2: For all !,
                   ¬! iff !$⊥.

• P3: For all !, 
                      ⊥ |= !

(inconsistent theories imply any proposition)

40
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Examples

• Laws for ∧, ¬ and $: 

- (A∧¬B) $ ¬(A$B) 

- ¬(A$B) $(A∧¬B) 

• Pierce’s law: ((A$B) $A) $A

• De Morgan’s laws: 
1. ¬(A∨B) $(¬A∧¬B); (¬A∧¬B) $¬(A∨B)

2. ¬(A∧B) $(¬A∨¬B); (¬A∨¬B) $¬(A∧B) 

41
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Exercise

• Prove the following double implications (i.e., 
logical equivalences) by using truth tables. 

• (' ∧ () ↔ (( ∧ ')      commutativity of ∧ 

• (' ∨ () ↔ (( ∨ ')      commutativity of ∨ 

• ((' ∧ () ∧ )) ↔ (' ∧ (( ∧ )))

                                     associativity of ∧ 
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Exercise (cont’)

• ((' ∨ () ∨ )) ↔ (' ∨ (( ∨ )))

                                        associativity of ∨ 

• ¬(¬') ↔ '        double-negation elimination 

• (' $() ↔ (¬( $¬')           contraposition 

• (' $()↔ (¬' ∨ ()               $-elimination

• (' ↔()↔((' $()∧(( $'))  ↔-elimination

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 
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Exercise (cont’)

• ¬(' ∧ () ↔ (¬'∨¬()  DeMorgan Law for ∧
• ¬(' ∨ () ↔ (¬'∧¬()  DeMorgan Law for ∨ 

• (' ∧ (( ∨ ))) ↔ ((' ∧ () ∨ (' ∧ )))

                             distributivity of ∧ over ∨ 

• (' ∨ (( ∧ ))) ↔ ((' ∨ () ∧ (' ∨ )))

                             distributivity of ∨ over ∧ 
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Reasoning
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Reasoning Services

• Basic reasoning tasks for a PL-based system :

• Entailment: Is a proposition ! true if 
the world represented by a propositional 
theory KB is true? I.e.: KB    !?

• Consistency: Is ! consistent in a KB?
I.e.: KB∪{!}   ⊥?

• Satisfiability (SAT): Is KB satisfiable? 

46

|=

|=

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 

• Definition. 
PSAT = {P ∈ PL | exists % such that % |= P}. 

• Satisfiability Problem: Is PSAT decidable? 

• Theorem [Cook,1971] PSAT is NP-complete

The theorem established a “limitative result” 
of PL (and Logic). A problem is NP-complete 
when it is very difficult to be computed!

PSAT-Problem
(Boolean SAT)

47
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PSAT
(Two Remarks)

• Remark 1: Cook’s Theorem know as Cook-
Levin’s Theorem, since L. Levin proved an 
equivalent theorem two years later (1973).

• Remark 2:  PSAT (i.e. SAT in PL) and Cook-
Levin’s Theorem motivated an active area of 
reseach on heuristic algorithms for PSAT.

• PSAT: a fundamental problem in applications 
See for instance: http://www.satisfiability.org
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Davis-Putnam’s 
Procedure

49

Premise

• The Davis–Putnam algorithm was developed 
by Martin Davis and Hilary Putnam in 1960 
for checking the validity of a FOL-formula. 

• The Davis–Putnam algorithm is not a 
decision procedure in the strict sense, as it 
does not terminate on some inputs.

• We are interested in the PL part of the DP 
algorithm well-known as DPLL procedure.

50
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DPLL Procedure
Introduction

• The DPLL algorithm is a decision procedure 
developed by M. Davis, H. Putnam, G. 
Logemann, and D. Loveland in 1962 for 
deciding the satisfiability of a proposition in 
conjunctive normal form (CNF).

• DPLL is a highly efficient procedure for a 
NP-complete and important SAT problem.

• We present the main elements of DPLL.

51
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Background Concepts

• To understand the DPLL procedure we first 
require to know some background concepts:

• literal (negative / positive)

• clause (unit / empty)

• conjunctive normal form (CNF)

• the conversion procedure to rewrite a 
proposition to its equivalent CNF.

52
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Literals

• A literal is either an atomic proposition or 
the negation of an atomic proposition, i.e., 
for all propositional variables P, 

P and ¬P are literals.

• P is a positive literal, ¬P is a negative literal 

• Examples: ‘inLab-monkey’, ‘airplane’, 
‘¬highBox=1mt’, ‘¬inLab-monkey’,  ...

53
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Clauses

• A clause is the disjunction of literals. 

• Example: B∨¬C∨¬D, Being∨¬Being, ...

• A unit clause is a clause that contains only a 
single literal.

• Example: B,¬C are unit clauses, B∨¬C isn’t

• A empty clause is a clause with all variables 
assigned so that all the literals in it are false.

54
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Conjunctive Normal 
Form (CNF)

• A proposition is in conjunctive normal form 
(CNF) if it is a (finite) conjunction of clauses. 

• Examples: (A∨¬B) ∧ (B ∨¬C ∨¬D),

¬A ∧ B,  A ∧ (B ∨ C ∨¬D), ...

• Counter-examples:
¬(A ∧ B) : ¬ is the outmost operator

A ∧ (B ∨ C ∧ ¬D) :  ∧ is nested within ∨  

55
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Conversion to CNF

• Theorem. Every proposition P has a CNF, 
i.e., P can be converted (in polynomial time) 
into a proposition Q such that:

• Q is in CNF

• P and Q are equivalent 
(i.e., have the same truth table).

• Proof: See e.g. (Mendelson, 1987) [Prop. 1.4, Ex. 1.41(a)].

56
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Conversion to CNF
(Remark)

• A conversion to a CNF that operates as in 
the theorem above is said to be complete.

• The algorithm implementing the conversion 
to a CNF is based on the tautologies about 
logical equivalence (or double implication):

- double-negation law (i.e. elimination of ¬¬)
- De Morgan’s laws
- distributive laws

- elimination of $ and ↔          (see the next slide)

57
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Conversion to CNF 
Basic Tautologies 

• ¬(¬') ↔ '                              double-negation elimination 

• ¬(' ∧ () ↔ (¬'∨¬()                     De Morgan’s Law for ∧
• ¬(' ∨ () ↔ (¬'∧¬()                     De Morgan’s Law for ∨ 

• (' ∧ (( ∨ ))) ↔ ((' ∧ () ∨ (' ∧ )))

                                                   distributivity of ∧ over ∨ 

• (' ∨ (( ∧ ))) ↔ ((' ∨ () ∧ (' ∨ )))

                                                   distributivity of ∨ over ∧ 

• (' $()↔ (¬' ∨ ()                                     $-elimination

• (' ↔()↔((' $()∧(( $'))                        ↔-elimination

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia 

Example
Conversion to CNF of  ‘A↔(B∨C)’

1. Eliminate ↔: (A$(B ∨C)) ∧ ((B ∨C) $A)

2. Eliminate $: (¬A∨B ∨C) ∧ (¬(B ∨C) ∨A)

3. Move ¬ inwards using de Morgan’s laws:
(¬A∨B ∨C) ∧ ((¬B ∧¬C) ∨A) 

4. Apply distributivity of ∨ over ∧ and flatten: 

(¬A∨B ∨C) ∧ (¬B ∨A) ∧ (¬C ∨A)  (*)

(*) in CNF and equivalent to ‘A↔(B∨C)’.

59
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Disjunctive Normal 
Form (DNF)

• Although not necessary to the DPLL 
procedure, we mention also the DNFs.

• Premise: A conjunctive clause is a (finite) 
conjunction of literals. NB: it is not a clause!

• A proposition is in disjunctive normal form 
(DNF) if it is a (finite) disjunction of 
conjunctive clauses.

• Examples: ¬A ∨ B,  A ∨ (B ∧ C ∧ ¬D), ...

60
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• Definition. 
CNFSAT = {P in CNF | exists % s.t. % |= P}. 

• Informally, CNFSAT is a set of propositions P in CNF 
such that there is some truth-valuation (also called truth- 
or propositional assignment) of the truth-values to the 
propositional variables in P that will make P true.

• CNFSAT-Problem: Is CNFSAT decidable? 

• Like PSAT, CNFSAT is NP-complete.

CNFSAT-Problem

61
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DPLL Procedure

• DPLL employs a backtracking search to 
explore the space of propositional variables 
truth-valuations of an proposition P in CNF, 
looking for a satisfying truth-valuation of P.

• DPLL solves the CNFSAT-Problem by 
searching a truth-assignment that satisfies all 
clauses in the input proposition.

62
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DPLL Procedure
Main Steps

• The DPLL procedure does the following:

1. chooses a literal in the input proposition P
2. assignes a truth-value (*) to its variable as to satisfy it
3. simplifies P by removing all clauses in P which become 
true under the truth-assignment in step 2. and all literals in 
P that become false from the remaining clauses
4. recursively checks if the simplified proposition obtained 
in step 3. is satisfiable; if this is the case, then P is satisfiable. 
Otherwise, the same recursive checking is done assuming 
the opposite truth value (*).

63
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DPLL Procedure

• Input:  a propositin P in CNF.

• Output: "P satisfiable" or " P unsatisfiable".

Step 1 : Unit Propagation  
While there is no empty clause and an unit clause exists, 
select an unit clause and assign a variable in it to satisfy it.  

Step 2 : Satisfiability Checking  
If all clauses are satisfied, return "satisfiable".   

Steps 3 and 4 : see the next slide.

64
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DPLL Procedure (cont’)

Step 3 : Unsatisfiability Checking  
If an empty clause exists, return "unsatisfiable". 

Step 4 : Splitting Rule  
- Select a variable whose value is not assigned.  
- Assign True to the variable and call DPLL. If the result is  
"satisfiable" then return "satisfiable". 
- Otherwise,  assign False to the variable an call DPLL again.
Return the result of it.  
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• Take P = A ∧ (A ∨ ¬A) ∧ B 

• The DPLL procedure does the following:
1. chooses a literal in P, e.g.,  A
2. assignes a truth-value to A, e.g., %(A) = T
3.1 simplifies P by removing all clauses in P which become 
true under %(A) = T in step 2: remove A and (A∨¬A)

[ in fact: by assuming %(A) = T we have %(A∨¬A) = T ]

3.2 simplifies P by removing all literals in P that become 
false from the remaining clauses: nothing to remove 
[ in fact: B is the only remaining clause, and %(B) = ? ]

DPLL Procedure
Example 1
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DPLL Procedure
Example 1 (cont’)

• 4. recursively checks if the simplified proposition obtained in 
step 3. is satisfiable:
- simplified proposition from step 3: B
- is B satisfiable? Yes: just define %(B) = T, hence % |= B.

4.1 if this is the case, the original formula is satisfiable:
- Yes, this is the case: 
a model for it is % s.t. %(A) = T and %(B) = T; 

4.2 otherwise, the same recursive check is done assuming 
the opposite truth value:
- No, not the case, DPLL did terminate in 4.1. 
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• Take P = C ∧ (A ∨ ¬A) ∧ B 

• The DPLL procedure does the following:
1. chooses a literal in P, e.g.,  C
2. assignes a truth-value to C, e.g., %(C) = T
3.1 simplifies P by removing all clauses in P which become 
true under %(C) = T in step 2: remove C

3.2 simplifies P by removing all literals in P that become 
false from the remaining clauses: nothing to remove 
[ the remaining clauses were not assigned a truth-value ]

DPLL Procedure
Example 2
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DPLL Procedure
Example 2 (cont’)

• 4. recursively checks if the simplified proposition obtained in 
step 3. is satisfiable:
- simplified proposition from step 3: (A∨¬A) ∧ B

- is (A∨¬A) ∧ B satisfiable? 

• Call DPLL from step 1:
1. choose a literal in (A∨¬A) ∧ B, e.g.,  A

2. assign a truth-value to A, e.g., %(A) = T
3.1 simplify by removing all clauses in (A∨¬A) ∧ B which 

become true under %(A) = T: remove (A∨¬A)
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DPLL Procedure
Example 2 (cont’)

• 3.2 simplify by removing all literals in (A∨¬A) ∧ B that 

become false from the remaining clauses: nothing to remove 

• 4. recursively checks if the simplified proposition obtained in 
step 3. is satisfiable:
- simplified proposition from step 3: B
- is B satisfiable? Yes: just define %(B) = T, hence % |= B
4.1 if this is the case, the original formula is satisfiable:
- Yes, this is the case: 
a model for it is % s.t. %(A) = T and %(B) = T

• DPLL terminate with output: "C∧(A∨¬A)∧B satisfiable"
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Horn Form
Clauses and Formulas

• A Horn clause is a clause of which at most 
one is positive. 

• Example: ¬A ∨ B ∨ ¬C ∨ D.

• It is definite if exactly one literal is positive. 

• Example: ¬A ∨ ¬B ∨ ¬C ∨ D.

• P is in horn form (P Horn formula) if P is in 
CNF and all its clauses are all Horn clauses.
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Horn Form
Clauses and Formulas

• Theorem. Every Horn clause can be written 
as conjunction of an implication whose 
premise is a conjunction of positive literals 
and whose conclusion is a single positive 
literal. 

• Proof: Exercise. 

• Example. ¬A ∨ B ∨ ¬C ∨ D can be 

rewritten as (A ∧ ¬B ∧ C) $ D
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• Definition. 
HORNSAT = {P Horn | exists % s.t. % |= P}. 

• Informally, HORNSAT is a set of propositions P in Horn 
form such that there is some truth-valuation (also called 
truth- or propositional assignment) of the truth-values to 
the propositional variables in P that will make P true.

• HSAT-Problem: Is HORNSAT decidable? 

• Unlike PSAT and CNFSAT (NP-complete),
H-SAT is solvable in polynomial time.

HORNSAT-Problem
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Summary

74

Pros and Cons - Pros

• PL is declarative: syntax captures facts. 

• PL allows partial/disjunctive/negated 
knowledge (unlike most databases). 

• PL is compositional:    A∧B from    A and   B.

• Meaning in PL is context-independent 
(unlike natural language).

• PSAT fundamental in important applications.
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Pros and Cons - Cons

• PL has very limited expressive power! (yet  
useful in applications, we’ll in a few slides)

• Example 1: In PL you cannot say “pits 
cause breezes in adjacent squares” except 
by writing one sentence for each square. 

• Example 2 (De Morgan, 1864): inferences 
like “All horses are animals; therefore, the 
head of a horse is the head of an animal” 
cannot be handled in PL.  Why?
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1. AreaManager $ Manager

2. TopManager $ Manager

3. Manager $ Employee

4. TopManager(John)

Example 
(KB)

In PL we can suppose we know that:
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Observe: 1,2,3, 4 are propositions. 
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Example (cont’)

5. Manager(John)

6. Employee(John)

• Why?

But we can’t deduce the following:
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Example (cont’)

5. Manager(John)

6. Employee(John)

• Why?

• Because of      can’t be used together!

• recall that in ‘TopManager(John)’, in PL 
‘John’ is not separable from ‘TopManager’.

But we can’t deduce the following:
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1. AreaManager(x) $ Manager(x)

2. TopManager(x) $ Manager(x)

3. Manager(x) $ Employee(x)

4. TopManager(John)

Example (cont’)

In PL we can’t suppose we know that:
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NB: 1,2,3 are not propositions, because of variables!
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Pros and Cons - Cons

• The semantics of PL - as it is based on truth 
valuation (i.e. True, False) does not help the 
concept modeler.

• Example 2: Meaning of IS-A relation:

• Manager ⊆ Employee

• Question: Is ‘Manager$Employee’ a 
proposition that models the schema?
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Summary

• PL has not much to offer to the modeler 
apart from background notions and PSAT 
algorithms crucial in many application areas.

• Philosophically interesting question: 
ClassicalPL (i.e., CLP, where |= A∨¬A) or PL? 

• Pros: 
1. PL is declarative: syntax captures facts
2. Context-independent semantics
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