
Alessandro Agostini Fausto Giunchiglia
agostini@dit.unitn.it fausto@dit.unitn.it

University of Trento

Logics for
Data and Knowledge

Representation

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia.
The order of the names is alphabetical.

Outline

• Introduction

• Syntax

• Semantics
- intensions
- entailment

• Reasoning
- DP Procedure

! "#! "#

!$%&'()*$#)
+,-,),.+)".$/!0+%0)

#01#0(0.-,-&$.
,!0((,.+#$),%$(-&.&

*,2(-$)%&2.'3&%!&,

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

2

Introduction

• Despite all the several representation
languages, all knowledge representation
languages deal with sentences.

• Sentences are propositions (by definition).

• Propositional logic deals with propositions.

• As propositional logic is the simplest logic
that does this, it is the right place to start.

3

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Language

4

Language (Syntax)

• The first step in setting up a formal language
(viz. a propositional language, PL) is to list
the symbols, that is, the alphabet of symbols.

• We denote the alphabet of a propositional
language by #0. So, PL is a symbolic language.

• Symbols in #0 are divided in ‘descriptive’
(nonlogical) and ‘non-descriptive’ (logical).

5

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

• 1. Propositional constants: A, B, ...

• 2. Logical constants (“Boolean operators”):
∧, ∨, ¬

• 3. Parentheses (auxiliary symbols): (,)

• 4. Propositional variables: P, Q, ..., !,"...

• Remark: not only characters but also words
like e.g. “monkey”, “LDKR,” etc. are in 4.

Logical Symbols
(non-descriptive)

6

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Defined Symbols

• Logical defined constants are, for all P:

• ⊥ (falsehood symbol): ⊥ =df P∧¬P

• !(truth symbol): !=df ¬⊥
• Remark:

Defined symbols are not strictly necessary.

• They increase the usability by reducing the
syntactic complexity of propositions.

7

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Formation Rules (FR)

• Atomic Formulas (atomic propositions):
1. A, B,..., P, Q,...; ⊥, !.

• Propositional Formulas (propositions), also
called well-formed formulas, in short wff’s):
2. All the atomic formulas.
3.¬P, P∧Q, P∨Q for all wff ’s P, Q.

• #0 + FR define a propositional language.

8

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Remark

• Propositions (wff’s in PL) are the “correct”
formal expression to be built from #0.

• Example:
- ‘inLab(Monkey)’ or also ‘inLab-Monkey’,
‘inlab-monkey’, ‘in-lab-monkey’ are correct
(with meaning T in our example);
- ‘inLab(high)’, ‘inLab(Monkey)∧’, ‘P ¬∧Q’

are not correct (i.e. with no meaning).

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

9

Important Remark!

• Observe the two equivalent propositions:
- ‘inLab(Monkey)’ (*) and ‘inLab-Monkey’.

• ‘Monkey’ does not represent an individual
of some domain; we have not such an
expressiveness in PL! (We need class-PL.)

• Parentheses in ‘inLab(Monkey)’ are not the
auxiliary symbols like in e.g. (P∧¬Q) ∨ Q

• The semantics of (*) in PL and FOL differ!

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

10

Example (MB)
“There is a monkey in a

laboratory with some bananas
hanging out of reach from the
ceiling. A box is available that

will enable the monkey to
reach the bananas if he climbs
on it. Initially, the monkey is at
A, the bananas at B, and the

box at C. The monkey and box
have height Low, but if the

monkey climbs onto the box he
will have height High, the same

as the bananas. [...]’’

• Take the Monkey-Bananas
problem.

• Some significant data are:
the monkey, the bananas,
the box, positions A, B...

• Significant knowledge is:
Low, High, Go, ClimbOn...

• All other data and
knowledge are irrelevant!

11

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Example (MB, cont’)

• Language: ‘Monkey’, ‘Bananas’, ‘Box’, ‘Ceiling’,
‘A’, ‘B’, ‘C’; ‘inLab-Monkey’, ‘inLab-Bananas’,
‘inLab-Box’, ‘high-Bananas’, ‘low-Monkey’, ...

• blue wff’s: data, red wff’s: knowledge.

• Important Remark:
In PL we cannot reason by using ‘Monkey’
and ‘inLab-Monkey’ to conclude something
on the monkey as an individual in the world.

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

12

Example (MB, cont’)

• Intended interpretation (informal semantics):
- ‘Monkey’ is intended to be a monkey,
- ‘Bananas’ is intended to be some bananas
- ...
- ‘inLab-Monkey’ is intended to say that a
monkey is in a laboratory...
- ...
- ‘high-Bananas’ is intended to say that some
bananas are high to be reached, ... etc.

data

knowledge

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

13

Propositional Theory

• Definition. A set of propositions is a
propositional (or sentential) theory.

• NB: a propositional theory is a
(propositional) knowledge base.

• Recall that:

• knowledge is a “statement”

• we assumed statements are propositions.

14

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Propositional Theories
and Databases

• A propositional theory is not a data base!

• Propositions don’t show data explicitely

• Example: In ‘inLab(Monkey)’, ‘Monkey’
does not refer to an individual from
some data domain.

• In PL the form P(a) must be interpreted as
P-a (so the use of form P(a) is ambiguous).

15

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Example + Remark

• Example: A propositional theory, i.e., a
knowledge base (KB) for the MB problem is
a set like this:

{inLab-Monkey, inLab-Bananas, inLab-Box, high-Bananas,
low-Monkey, isAtMonkey-A, isAtBananas-B, isAtBox-C,

ClimbMonkeyBox∧isAtBox-B)$reachMonkey-Bananas,...}.

• Remark: The notion of theory / KB is a
syntactic notion (i.e. no meaning in symbols).

16

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Semantics

17

Semantics

• So far the elements of our propositional
language are simply strings of symbols

 without formal meaning

• The meanings which are intended to be
attached to the symbols and propositions
form the intended interpretation of the
language (viz. its symbols, formulas, etc.).

18

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

• We must make sure to assign the formal
meanings out of our intended interpretation
to the language, so that formulas
(propositions) express what we intended.

• This is done by defining a formal model M.

• Technically: we have to define a pair (M, |=)
for our propositional language (see below).

19

 Semantics

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Intensional Semantics
Intensions (Definition)

20

• Definition. The intension of a proposition is
the sum of all the properties that must be
possessed by every particular to which the
proposition can be applied.

The intension consists of all the properties
the proposition implies (Rescher, 1964).

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Example

• Take the proposition ‘airplane’:

• Airplanes may differ in many ways, but
anything to which one properly refers to by
using the proposition ‘airplane’ will have to
have certain specifiable properties, e.g. be
self-propelled, man-made, having wings, etc.

• These specifiable properties go to define the
intension of the proposition ‘airplane’.

21

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Intensional
Interpretation

• Definition. The intensional interprertation I
of a proposition P, denoted by I(P), is the
intension of P.

• Example 1: I(‘airplane’) =
= {self-propelled, man-made, having wings, ...}

• Example 2: I(‘inLab-Monkey’) =
= {there is a monkey, there is a lab, the
monkey is in the lab}

22

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Intensions versus
Truth-Values

• The intensional interpretation of a
proposition determines its truth-value.

• Example: Proposition ‘airplane’ is true iff
airplanes are
- self-propelled and
- man-made and
- have wings or
- fly and
- are not birds, ...

23

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Truth-values

• In intensional semantics, the central notion is
that of ‘truth valuation’.

• Definition. A truth valuation on a
propositional language L is a mapping %
assigning to each formula P of L a truth value
%(P), i.e., a member of the set {True, False}
(in short {T, F}), defined as follows.

[see the next slide]

24

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Truth-valuation %

• %(¬P) = True iff %(P)=False

• %(P∧Q) = True iff %(P)=True and %(Q)=True

• %(P∨Q) = True iff %(P)=True or %(Q)=T

• %(⊥) = False (since ⊥=df P∧¬P)

• %(!) = True (since!=df ¬⊥)

25

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Truth Tables

• To compute (in polynomial time) truth
valuations, the method of Truth Tables was
introduced (Wittgenstein, 1921).

• Truth tables are well-know:

26

Truth-table (TT)
for the logical

constants
¬ , ∧, ∨

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Truth Relation
(Satisfaction Relation)

• Let % be a truth valuation on language L.

• We define the truth-relation (or
satisfaction-relation) |= and write
 % |= P
(read: % satisfies P) iff %(P) = True.

• Given a set of propositions &, we define
 % |= &
iff if % |= " for all " ∈ &.

27

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Model, Satisfiable

• Definition. Let % be a truth valuation on
language L.

• % is a model of a proposition P (set of
propositions &) iff % satisfies P (&).

• P (&) is satisfiable if there is some truth
valuation % such that % |= P (% |= &).

28

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Truth and Validity

• Definition. Let % be a truth valuation:
(1) P is true under % if % |= P.
(2) P is valid (and P is called a tautology),
if % |= P for all % (notation: |= P).

• Note that the notions of ‘true’ and ‘false’ are
relative to some truth valuation (cf. ‘under’).

• Fact: A proposition is true iff is satisfiable.

29

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Truth Relation and
Reasoning Services

• The basic reasoning tasks (or “services”) we
can represent (and compute) using |= are:

• Model Checking (EVAL): Is a
proposition P true under a truth-valuation %
(i.e., is % a model of P: % |= P)?

• Example: P = ‘inLab-monkey∨inLab-box’

P is true under any truth-valuation % that
assigns True to ‘¬LabEmpty’.

30

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Truth Relation and
Reasoning Services

• Validity: Is a proposition P true under
every possible truth-valuation %?

• Example: P = ‘Being∨¬Being’.

P is valid, since for every truth-valuation %,
either
%(‘Being’) = T, so %(P) = T;
or
%(‘Being’) = F, so %(¬‘Being’) = T, i.e. %(P) = T.

31

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Truth Relation and
Reasoning Services

• Satisfiability (SAT): Is P satisfiable?

• Example: 1. ‘Being∨¬Being’ is satisfiable.

2. P = ‘A∧¬A’ is unsatisfiable (inconsistent):

for every truth-valuation %,
either
%(A) = T, so %(¬A) = F, hence %(P) = F;
or
%(A) = F, so %(¬A) = T, hence %(P) = T.

32

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

• Definition. A set & (eventually empty) of
propositions entails a proposition !
(written: & |= !) if for all %,
 if % |= " for all " ∈ &, then % |= !.

• If & |= !, then we say that ! is a logical
consequence of &, and & logically implies !.

• Remark: The entailment is a relationship
between wff’s that is based on semantics

33

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Propositional Entailment Examples

• Suppose P = ‘today’∨‘tomorrow’. Then:

• {} |= P (notation: |= P)

• {‘today’} |= ‘today’∨‘tomorrow’

• {‘today’} not-|= ‘tomorrow’

• Exercise:
(a) Define & and P such that & |= P.
(b) Define & and P such that & not-|= P.

34

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Reductio ad Absurdum

• In the finite, we can formally relate the
propositional entailment to satisfiability.

• Theorem: {"1, ..., "n} |= ! if and only if
{"1, "2, ... , "n, ¬!} is unsatisfiable.

• Proof: exercise.

• The theorem fixes the way to prove ! by
reductio ad absurdum.

35

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Implication
Premise

• Propositional entailment in the finite, i.e.:

 {"1, ..., "n} |= !
({"1, ..., "n} finite set of propositions) can be
viewed as the logical implication

 ("1∧"2∧ ... ∧"n) $!

[("1∧"2∧ ... ∧"n) logically implies !]

36

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

• We extend our alphabet of symbols with the
defined logical constants:
$ (implication)
↔ (double implication or equivalence)

• Remark: ⊥ and!are syntactically defined

symbols: ⊥ =df P∧¬P, !=df ¬⊥,

$,↔ are semantically defined symbols!

Implication
(Syntax)

37

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Implication
(Semantics)

• P$Q, P↔Q are wff’s for all wff ’s P, Q.

• Let propositions !, ", and finite set {"1,...,"n}
of propositions be given. We define:

• |= "$! ("$! valid) iff " |= !

• |= ("1∧...∧"n)$! iff {"1,...,"n} |= !

• |= "↔! iff "$! and !$".

38

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

• By the definition of the semantics of $ in
terms of |= we have the following truth-
table for the logical implication P$Q:

Truth Table of $

39

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Logical Implication
Three Properties

• P1: For all !,",
 !$" iff ¬!∨".

• P2: For all !,
 ¬! iff !$⊥.

• P3: For all !,
 ⊥ |= !

(inconsistent theories imply any proposition)

40

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Examples

• Laws for ∧, ¬ and $:

- (A∧¬B) $ ¬(A$B)

- ¬(A$B) $(A∧¬B)

• Pierce’s law: ((A$B) $A) $A

• De Morgan’s laws:
1. ¬(A∨B) $(¬A∧¬B); (¬A∧¬B) $¬(A∨B)

2. ¬(A∧B) $(¬A∨¬B); (¬A∨¬B) $¬(A∧B)

41

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Exercise

• Prove the following double implications (i.e.,
logical equivalences) by using truth tables.

• (' ∧ () ↔ ((∧ ') commutativity of ∧

• (' ∨ () ↔ ((∨ ') commutativity of ∨

• ((' ∧ () ∧)) ↔ (' ∧ ((∧)))

 associativity of ∧

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

42

Exercise (cont’)

• ((' ∨ () ∨)) ↔ (' ∨ ((∨)))

 associativity of ∨

• ¬(¬') ↔ ' double-negation elimination

• (' $() ↔ (¬($¬') contraposition

• (' $()↔ (¬' ∨ () $-elimination

• (' ↔()↔((' $()∧(($')) ↔-elimination

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

43

Exercise (cont’)

• ¬(' ∧ () ↔ (¬'∨¬() DeMorgan Law for ∧
• ¬(' ∨ () ↔ (¬'∧¬() DeMorgan Law for ∨

• (' ∧ ((∨))) ↔ ((' ∧ () ∨ (' ∧)))

 distributivity of ∧ over ∨

• (' ∨ ((∧))) ↔ ((' ∨ () ∧ (' ∨)))

 distributivity of ∨ over ∧

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

44

Reasoning

45

Reasoning Services

• Basic reasoning tasks for a PL-based system :

• Entailment: Is a proposition ! true if
the world represented by a propositional
theory KB is true? I.e.: KB !?

• Consistency: Is ! consistent in a KB?
I.e.: KB∪{!} ⊥?

• Satisfiability (SAT): Is KB satisfiable?

46

|=

|=

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

• Definition.
PSAT = {P ∈ PL | exists % such that % |= P}.

• Satisfiability Problem: Is PSAT decidable?

• Theorem [Cook,1971] PSAT is NP-complete

The theorem established a “limitative result”
of PL (and Logic). A problem is NP-complete
when it is very difficult to be computed!

PSAT-Problem
(Boolean SAT)

47

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

PSAT
(Two Remarks)

• Remark 1: Cook’s Theorem know as Cook-
Levin’s Theorem, since L. Levin proved an
equivalent theorem two years later (1973).

• Remark 2: PSAT (i.e. SAT in PL) and Cook-
Levin’s Theorem motivated an active area of
reseach on heuristic algorithms for PSAT.

• PSAT: a fundamental problem in applications
See for instance: http://www.satisfiability.org

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

48

Davis-Putnam’s
Procedure

49

Premise

• The Davis–Putnam algorithm was developed
by Martin Davis and Hilary Putnam in 1960
for checking the validity of a FOL-formula.

• The Davis–Putnam algorithm is not a
decision procedure in the strict sense, as it
does not terminate on some inputs.

• We are interested in the PL part of the DP
algorithm well-known as DPLL procedure.

50

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

DPLL Procedure
Introduction

• The DPLL algorithm is a decision procedure
developed by M. Davis, H. Putnam, G.
Logemann, and D. Loveland in 1962 for
deciding the satisfiability of a proposition in
conjunctive normal form (CNF).

• DPLL is a highly efficient procedure for a
NP-complete and important SAT problem.

• We present the main elements of DPLL.

51

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Background Concepts

• To understand the DPLL procedure we first
require to know some background concepts:

• literal (negative / positive)

• clause (unit / empty)

• conjunctive normal form (CNF)

• the conversion procedure to rewrite a
proposition to its equivalent CNF.

52

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Literals

• A literal is either an atomic proposition or
the negation of an atomic proposition, i.e.,
for all propositional variables P,

P and ¬P are literals.

• P is a positive literal, ¬P is a negative literal

• Examples: ‘inLab-monkey’, ‘airplane’,
‘¬highBox=1mt’, ‘¬inLab-monkey’, ...

53

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Clauses

• A clause is the disjunction of literals.

• Example: B∨¬C∨¬D, Being∨¬Being, ...

• A unit clause is a clause that contains only a
single literal.

• Example: B,¬C are unit clauses, B∨¬C isn’t

• A empty clause is a clause with all variables
assigned so that all the literals in it are false.

54

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Conjunctive Normal
Form (CNF)

• A proposition is in conjunctive normal form
(CNF) if it is a (finite) conjunction of clauses.

• Examples: (A∨¬B) ∧ (B ∨¬C ∨¬D),

¬A ∧ B, A ∧ (B ∨ C ∨¬D), ...

• Counter-examples:
¬(A ∧ B) : ¬ is the outmost operator

A ∧ (B ∨ C ∧ ¬D) : ∧ is nested within ∨

55

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Conversion to CNF

• Theorem. Every proposition P has a CNF,
i.e., P can be converted (in polynomial time)
into a proposition Q such that:

• Q is in CNF

• P and Q are equivalent
(i.e., have the same truth table).

• Proof: See e.g. (Mendelson, 1987) [Prop. 1.4, Ex. 1.41(a)].

56

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Conversion to CNF
(Remark)

• A conversion to a CNF that operates as in
the theorem above is said to be complete.

• The algorithm implementing the conversion
to a CNF is based on the tautologies about
logical equivalence (or double implication):

- double-negation law (i.e. elimination of ¬¬)
- De Morgan’s laws
- distributive laws

- elimination of $ and ↔ (see the next slide)

57

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Conversion to CNF
Basic Tautologies

• ¬(¬') ↔ ' double-negation elimination

• ¬(' ∧ () ↔ (¬'∨¬() De Morgan’s Law for ∧
• ¬(' ∨ () ↔ (¬'∧¬() De Morgan’s Law for ∨

• (' ∧ ((∨))) ↔ ((' ∧ () ∨ (' ∧)))

 distributivity of ∧ over ∨

• (' ∨ ((∧))) ↔ ((' ∨ () ∧ (' ∨)))

 distributivity of ∨ over ∧

• (' $()↔ (¬' ∨ () $-elimination

• (' ↔()↔((' $()∧(($')) ↔-elimination

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Example
Conversion to CNF of ‘A↔(B∨C)’

1. Eliminate ↔: (A$(B ∨C)) ∧ ((B ∨C) $A)

2. Eliminate $: (¬A∨B ∨C) ∧ (¬(B ∨C) ∨A)

3. Move ¬ inwards using de Morgan’s laws:
(¬A∨B ∨C) ∧ ((¬B ∧¬C) ∨A)

4. Apply distributivity of ∨ over ∧ and flatten:

(¬A∨B ∨C) ∧ (¬B ∨A) ∧ (¬C ∨A) (*)

(*) in CNF and equivalent to ‘A↔(B∨C)’.

59

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Disjunctive Normal
Form (DNF)

• Although not necessary to the DPLL
procedure, we mention also the DNFs.

• Premise: A conjunctive clause is a (finite)
conjunction of literals. NB: it is not a clause!

• A proposition is in disjunctive normal form
(DNF) if it is a (finite) disjunction of
conjunctive clauses.

• Examples: ¬A ∨ B, A ∨ (B ∧ C ∧ ¬D), ...

60

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

• Definition.
CNFSAT = {P in CNF | exists % s.t. % |= P}.

• Informally, CNFSAT is a set of propositions P in CNF
such that there is some truth-valuation (also called truth-
or propositional assignment) of the truth-values to the
propositional variables in P that will make P true.

• CNFSAT-Problem: Is CNFSAT decidable?

• Like PSAT, CNFSAT is NP-complete.

CNFSAT-Problem

61

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

DPLL Procedure

• DPLL employs a backtracking search to
explore the space of propositional variables
truth-valuations of an proposition P in CNF,
looking for a satisfying truth-valuation of P.

• DPLL solves the CNFSAT-Problem by
searching a truth-assignment that satisfies all
clauses in the input proposition.

62

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

DPLL Procedure
Main Steps

• The DPLL procedure does the following:

1. chooses a literal in the input proposition P
2. assignes a truth-value (*) to its variable as to satisfy it
3. simplifies P by removing all clauses in P which become
true under the truth-assignment in step 2. and all literals in
P that become false from the remaining clauses
4. recursively checks if the simplified proposition obtained
in step 3. is satisfiable; if this is the case, then P is satisfiable.
Otherwise, the same recursive checking is done assuming
the opposite truth value (*).

63

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

DPLL Procedure

• Input: a propositin P in CNF.

• Output: "P satisfiable" or " P unsatisfiable".

Step 1 : Unit Propagation
While there is no empty clause and an unit clause exists,
select an unit clause and assign a variable in it to satisfy it.

Step 2 : Satisfiability Checking
If all clauses are satisfied, return "satisfiable".

Steps 3 and 4 : see the next slide.

64

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

DPLL Procedure (cont’)

Step 3 : Unsatisfiability Checking
If an empty clause exists, return "unsatisfiable".

Step 4 : Splitting Rule
- Select a variable whose value is not assigned.
- Assign True to the variable and call DPLL. If the result is
"satisfiable" then return "satisfiable".
- Otherwise, assign False to the variable an call DPLL again.
Return the result of it.

65

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

• Take P = A ∧ (A ∨ ¬A) ∧ B

• The DPLL procedure does the following:
1. chooses a literal in P, e.g., A
2. assignes a truth-value to A, e.g., %(A) = T
3.1 simplifies P by removing all clauses in P which become
true under %(A) = T in step 2: remove A and (A∨¬A)

[in fact: by assuming %(A) = T we have %(A∨¬A) = T]

3.2 simplifies P by removing all literals in P that become
false from the remaining clauses: nothing to remove
[in fact: B is the only remaining clause, and %(B) = ?]

DPLL Procedure
Example 1

66

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

DPLL Procedure
Example 1 (cont’)

• 4. recursively checks if the simplified proposition obtained in
step 3. is satisfiable:
- simplified proposition from step 3: B
- is B satisfiable? Yes: just define %(B) = T, hence % |= B.

4.1 if this is the case, the original formula is satisfiable:
- Yes, this is the case:
a model for it is % s.t. %(A) = T and %(B) = T;

4.2 otherwise, the same recursive check is done assuming
the opposite truth value:
- No, not the case, DPLL did terminate in 4.1.

67

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

• Take P = C ∧ (A ∨ ¬A) ∧ B

• The DPLL procedure does the following:
1. chooses a literal in P, e.g., C
2. assignes a truth-value to C, e.g., %(C) = T
3.1 simplifies P by removing all clauses in P which become
true under %(C) = T in step 2: remove C

3.2 simplifies P by removing all literals in P that become
false from the remaining clauses: nothing to remove
[the remaining clauses were not assigned a truth-value]

DPLL Procedure
Example 2

68

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

DPLL Procedure
Example 2 (cont’)

• 4. recursively checks if the simplified proposition obtained in
step 3. is satisfiable:
- simplified proposition from step 3: (A∨¬A) ∧ B

- is (A∨¬A) ∧ B satisfiable?

• Call DPLL from step 1:
1. choose a literal in (A∨¬A) ∧ B, e.g., A

2. assign a truth-value to A, e.g., %(A) = T
3.1 simplify by removing all clauses in (A∨¬A) ∧ B which

become true under %(A) = T: remove (A∨¬A)

69

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

DPLL Procedure
Example 2 (cont’)

• 3.2 simplify by removing all literals in (A∨¬A) ∧ B that

become false from the remaining clauses: nothing to remove

• 4. recursively checks if the simplified proposition obtained in
step 3. is satisfiable:
- simplified proposition from step 3: B
- is B satisfiable? Yes: just define %(B) = T, hence % |= B
4.1 if this is the case, the original formula is satisfiable:
- Yes, this is the case:
a model for it is % s.t. %(A) = T and %(B) = T

• DPLL terminate with output: "C∧(A∨¬A)∧B satisfiable"

70

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Horn Form
Clauses and Formulas

• A Horn clause is a clause of which at most
one is positive.

• Example: ¬A ∨ B ∨ ¬C ∨ D.

• It is definite if exactly one literal is positive.

• Example: ¬A ∨ ¬B ∨ ¬C ∨ D.

• P is in horn form (P Horn formula) if P is in
CNF and all its clauses are all Horn clauses.

71

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Horn Form
Clauses and Formulas

• Theorem. Every Horn clause can be written
as conjunction of an implication whose
premise is a conjunction of positive literals
and whose conclusion is a single positive
literal.

• Proof: Exercise.

• Example. ¬A ∨ B ∨ ¬C ∨ D can be

rewritten as (A ∧ ¬B ∧ C) $ D

72

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

• Definition.
HORNSAT = {P Horn | exists % s.t. % |= P}.

• Informally, HORNSAT is a set of propositions P in Horn
form such that there is some truth-valuation (also called
truth- or propositional assignment) of the truth-values to
the propositional variables in P that will make P true.

• HSAT-Problem: Is HORNSAT decidable?

• Unlike PSAT and CNFSAT (NP-complete),
H-SAT is solvable in polynomial time.

HORNSAT-Problem

73

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Summary

74

Pros and Cons - Pros

• PL is declarative: syntax captures facts.

• PL allows partial/disjunctive/negated
knowledge (unlike most databases).

• PL is compositional: A∧B from A and B.

• Meaning in PL is context-independent
(unlike natural language).

• PSAT fundamental in important applications.

75

|= |=|=

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Pros and Cons - Cons

• PL has very limited expressive power! (yet
useful in applications, we’ll in a few slides)

• Example 1: In PL you cannot say “pits
cause breezes in adjacent squares” except
by writing one sentence for each square.

• Example 2 (De Morgan, 1864): inferences
like “All horses are animals; therefore, the
head of a horse is the head of an animal”
cannot be handled in PL. Why?

76

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

1. AreaManager $ Manager

2. TopManager $ Manager

3. Manager $ Employee

4. TopManager(John)

Example
(KB)

In PL we can suppose we know that:

77

Observe: 1,2,3, 4 are propositions.

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Example (cont’)

5. Manager(John)

6. Employee(John)

• Why?

But we can’t deduce the following:

78

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Example (cont’)

5. Manager(John)

6. Employee(John)

• Why?

• Because of can’t be used together!

• recall that in ‘TopManager(John)’, in PL
‘John’ is not separable from ‘TopManager’.

But we can’t deduce the following:

79

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

1. AreaManager(x) $ Manager(x)

2. TopManager(x) $ Manager(x)

3. Manager(x) $ Employee(x)

4. TopManager(John)

Example (cont’)

In PL we can’t suppose we know that:

80

NB: 1,2,3 are not propositions, because of variables!

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Pros and Cons - Cons

• The semantics of PL - as it is based on truth
valuation (i.e. True, False) does not help the
concept modeler.

• Example 2: Meaning of IS-A relation:

• Manager ⊆ Employee

• Question: Is ‘Manager$Employee’ a
proposition that models the schema?

81

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

Summary

• PL has not much to offer to the modeler
apart from background notions and PSAT
algorithms crucial in many application areas.

• Philosophically interesting question:
ClassicalPL (i.e., CLP, where |= A∨¬A) or PL?

• Pros:
1. PL is declarative: syntax captures facts
2. Context-independent semantics

82

Copyright © 2009-11 Alessandro Agostini and Fausto Giunchiglia

