LOGICS FOR DATA AND KNOWLEDGE REPRESENTATION Solutions of Midterm Exam of Thursday 16-04-2009

1. Write what you know about the "Levels of Formalization" in modeling of data and knowledge. **Solution:** See slides. \dashv

2. What are the most typical reasoning tasks, or services, provided by logic? Explain and elaborate. **Solution:** See slides. \dashv

3. What is the problem of the "semantic gap" of any representation language? Explain and elaborate. **Solution:** See slides. \dashv

4. Describe the main steps of the DPLL procedure for deciding the SAT problem of propositional logic. **Solution:** See slides. ⊣

5. What diagram models the extension of $(A \rightarrow B) \land (B \rightarrow A) \land \neg (A \land B)$? **Solution:** The Venn diagram that models the extension of $(A \rightarrow B) \land (B \rightarrow A) \land \neg (A \land B)$ is this:

 \neg

6. For all formulas $p = p(x, y)$:		
1. Is $\forall x \forall y \ p(x, y) \models \forall y \forall x \ p(x, y)$?	yes	no 🗆
2. Is $\forall x \exists y \ p(x,y) \models \exists y \forall x \ p(x,y)$?	yes	no 🗆

For each case either prove your answer or provide a counterexample.

Solution:

1. Yes. Immediate by the commutativity of 'and'.

2. No. For example, let $p(\mathbf{x}, y)$ be Loves(x, y) with the intended interpretation "person x loves person y." Then $\forall x \exists y \ p(x, y)$ means "everyone is loved by at least one person" and $\exists y \forall x \ p(x, y)$ means "there is a person that loves everyone." It is clear enough that the first sentence doesn't intuitively imply the second sentence. \dashv

7. 1. Represent in FOL the following database DB. In particular, (a) specify the alphabet of the FO-language L you intend to use, and (b) write the L-theory T_{DB} which models the database.

ID	Name	N.	Written	Oral	Final Mark
1.	A Jonny	128349	28		30
2.	B Gabriele	128839	20		23
3.	C Massimo	128705	27		29
4.	D Mir Shahidul	130850	27		24
5.	E Jeffrey	130882	25		30

Results-LDKR

2. Define the answer set A_q for a query q represented by the formula:

 $\exists x_1 \forall x_2 \exists x_3 \exists x_4 (\mathsf{ResultsLDKR}(x_1, x_2, x_3, 30) \lor \mathsf{ResultsLDKR}(x_1, x_2, 27, x_4)).$

Solution: (hints) 1. $T_{DB} = \{\text{ResultsLDKR}(1, A, n1, 28, -, 30), \text{ResultsLDKR}(2, B, n2, 20, -, 23), ...\}$. In words, the theory is composed by all formulas of the language *L* that represent all rows of the table. The alphabet of *L* contains ResultsLDKR as 6-ary predicate symbol, no function symbols, and the following constants: 1, ..., 5; *A*, ..., *E*; *n*1, ..., *n*5; -; 20, 23, 24, 25, 27, 28, 29, 30.

2. First observe that q is not a proper query on DB, since ResultsLDKR is a 6-ary predicate symbol, not a 4-ary predicate symbol. To proceed, we simplify the table and eliminate the 3rd and 5th column from it. By definition,

$$A_q = \{ a \in Data(DB) \mid M_{DB} \models q \},\$$

where $M_{DB} = (Data(DB), I)$ is a model of $T_{DB'}$ and $T_{DB'}$ is the modification of T_{DB} where every sentence is modified according to the modification of DB following the observation above. Then $A_q = \{(1, A, 28, 30), (5, E, 25, 30), (3, C, 27, 29), (4, D, 27, 24)\}$. \dashv

8. Translate into a suitable \mathcal{AL} -description logic the sentence "All students who have done at least one exam but that have not done LDKR". (Specify concepts and roles.)

Solution: We need ALE or ALN. Concepts and roles are clear from the context.

In \mathcal{ALN} we may write: Student $\sqcap \ge 1$ hasdoneExam. $\top \sqcap \forall$ hasdoneExam. \neg LDKR. In \mathcal{ALE} we may write: Student $\sqcap \exists$ hasdoneExam. $\top \sqcap \forall$ hasdoneExam. \neg LDKR. \dashv

9. Let AL*-concept C of the form $\leq n \mathbb{R}$ ("at-most number restriction") be given. Define the first-order formula $\tau(C)$ such that C is coherent (i.e., it has a model) iff $\tau(C)$ is satisfiable.

Solution:
$$\tau(C) = \forall y_1 \dots \forall y_{n+1} R(x, y_1) \land \dots \land R(x, y_{n+1}) \rightarrow \bigvee_{i < j} y_i = y_j. \dashv$$

10. Are the following concepts equivalent?

yes 🛛 no 🗖

C1. Student $\sqcap \ge n$ hasdoneExam;

C2. $\leq n$ hasdoneExam $\Box \neg$ Student

Solution: No. We can translate C1 to English as "all those students who have done at least n exams." Similarly, we can translate C2 as "all those individuals or objects that have done at most n exams, or all those individuals or objects that are not students." For, C1 and C2 are clearly not equivalent. \dashv

11. Verify the following concept equivalences:

1. $\neg (C \sqcap D) \equiv \neg C \sqcup \neg D.$ 2. $\neg \forall R.C \equiv \exists R. \neg C.$ Solution: 1. For all DL interpretations (Δ, I) , we have the following: $I(\neg (C \sqcap D)) =$ $= \Delta \setminus I(C \sqcap D)$ $= \Delta \setminus (I(C) \cap I(D))$ $= (\Delta \setminus I(C)) \cup (\Delta \setminus I(D))$ $= I(\neg C) \cup I(\neg D)$ $= I(\neg C \sqcup \neg D).$ 2. For all DL interpretations (Δ, I) , we have the following: $I(\neg \forall R.C) =$ $= \Delta \setminus I(\forall R.C)$ $= \Delta \setminus \{a \in \Delta \mid \text{for all } b \in \Delta, \text{ if } (a, b) \in I(R) \text{ then } b \in I(C)\}$ $= \{a \in \Delta \mid \text{not for all } b \in \Delta, \text{ if } (a, b) \in I(R) \text{ then } b \in I(C)\}$ $= \{a \in \Delta \mid \text{for some } b \in \Delta, \text{ not if } (a, b) \in I(R) \text{ then } b \in I(C)\}$ $= \{a \in \Delta \mid \text{there is } b \in \Delta \text{ such that not either } (a, b) \notin I(R) \text{ or } b \in I(C) \}$ $= \{a \in \Delta \mid \text{there is } b \in \Delta \text{ such that } (a, b) \in I(R) \text{ and not } b \notin I(\neg C) \}.$ $= \{a \in \Delta \mid \text{there is } b \in \Delta \text{ such that } (a, b) \in I(R) \text{ and } b \in I(\neg C) \}.$ $= I(\exists R. \neg C). \dashv$

12. A binary tree is a tree with at most two subtrees that are themselves binary trees.

1. How you represent this in DL? (I.e., write an equivalence of the form $BinaryTree \equiv$)

2. Define the concept "Array" in DL as a sequence of cells of length n. (Proceed similarly to 1.) **Solution:** In general, there are a number of equivalent representations of the notions of binary tree and n-array (i.e., an array of lenght n). We provide one example for each notion.

1. BinaryTree \equiv Tree $\sqcap \leq 2$ hasBranch $\sqcap \forall$ hasBranch.BinaryTree.

2. nArray \equiv SequenceOfCells $\sqcap \leq n$ hasCells $\sqcap \geq n$ hasCells.

 \dashv