
Associating Assertions with Business Processes and
Monitoring their Execution

Alexander Lazovik
ITC-IRST

and
DIT, University of Trento

38050 Trento, Italy

lazovik@dit.unitn.it

Marco Aiello
DIT

University of Trento
Via Sommarive, 14, 38050

Trento, Italy

aiellom@dit.unitn.it

Mike Papazoglou
Infolab

Tilburg University
PO Box 90153, NL-5000 LE,

The Netherlands

mikep@uvt.nl

ABSTRACT
Business processes that span organizational borders describe
the interaction between multiple parties working towards a
common objective. They also express business rules that
govern the behavior of the process and account for express-
ing changes reflecting new business objectives and new mar-
ket situations.

In our previous work we developed a service request lan-
guage and support framework that allow users to formulate
their requests against standard business processes. In this
paper we extend this approach by presenting a framework
capable of automatically associating business rules with rel-
evant processes involved in a user request. This framework
plans and monitors the execution of the request against ser-
vices underlying these processes. Definitions and classifi-
cations of business rules (named assertions in the paper)
are given together with an assertion language for expressing
them. The framework is able to handle the non-determinism
typical for service-oriented computing environments and it
is based on the interleaving of planning and execution.

Categories and Subject Descriptors
H.3.5 [Information Storage And Retrieval]: Online In-
formation Services—Web-based services; I.2.8 [Artificial In-

telligence]: Problem Solving, Control Methods, and Search—
Plan execution, formation, and generation

General Terms
Verification, Algorithms, Design

Keywords
Service delivery, monitoring, quality, and management, The-
oretical frameworks for service representation and composi-
tion, Service and AI Computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSOC’04, November 15–19, 2004, New York, USA.
Copyright 2004 ACM 1-58113-871-7/04/0011 ...$5.00.

1. INTRODUCTION
Web services technologies offer high-level specifications

that provide functionality that supports and leverages web
services and enables specifications for integrating automated
business processes. Currently, there are two largely comple-
mentary initiatives for developing business process defini-
tion specifications which aim to define and manage business
process activities and business interaction protocols com-
prising collaborating web services. The terms orchestration
and choreography have been widely used to describe business
interaction protocols comprising collaborating web services.
Orchestration (as championed by BPEL) describes how web
services can interact with each other at the message level,
including the business logic and execution order of the inter-
actions from the perspective and under control of a single
endpoint. Orchestration refers to an executable business
process that may result in a long-lived, transactional, multi-
step process model. Choreography (as championed by the
Web Services Choreography Description Language) is typ-
ically associated with the public (globally visible) message
exchanges, rules of interaction and agreements that occur
between multiple business process endpoints, rather than a
specific business process that is executed by a single party.
Choreography is more collaborative in nature than orches-
tration. It is described from the perspectives of all parties
(common view), and defines the complementary observable
behavior between participants in business process collabo-
ration. Currently, both orchestration and choreography ini-
tiatives are in their infancy and based on WSDL which is
strongly emphasizes XML syntax and human-targeted de-
scriptions.

In this paper we propose an approach based on interleav-
ing planning and execution in the context of non-deterministic
domains to deal with user expressed requests against stan-
dard business processes that result in initiating and exe-
cuting business processes from diverse organizations. The
execution of these business processes in the proposed frame-
work is governed by assertions, which are business rules ap-
plied to processes. The framework we propose deals with
non-deterministic domains, where it tries to satisfy a user
request by taking into account how assertions that appear
at different levels, e.g., business process, role, and provider
level, are applied during business process execution. The
framework focuses in particular on the application of busi-
ness rules that are associated with choreographies. The ap-

plication of choreography assertions usually results in acti-
vating only selected business process segments in different
organizations. These are the business process segments that
satisfy the choreography constraints and consequently can
be involved in the result of a user request. In addition, the
execution path of business processes is monitored to make
certain that environmental conditions, i.e., web service sup-
plied information, conform to the choreography assertions
and user request requirements. The proposed framework
deals with three kinds of assertions depending on their op-
erational context and complexity: simple assertions, where
simple reachability conditions are checked; preservation as-
sertions, where maintenance of some condition needs to be
satisfied throughout a path comprising a set of states tra-
versed by the process during execution time; and business
entity assertions, where the evolution sequence of a partic-
ular variable is monitored for correctness. In this paper we
are not concerned with the effect that choreography asser-
tions have on orchestration assertions (assertions that apply
in the local context of an organization). We henceforth use
the term assertion to mean choreography assertions.

The remainder of the paper is organized as follows. In Sec-
tion 2, we recall the notion of the service-oriented business
process and introduce various kinds of assertions. Section 3
presents an interleaving planning and execution framework
for the monitoring of the execution of user requests and as-
sertions against standardized business processes. Section 3.1
presents a formal domain definition. Section 3.2 introduces
the service assertion language XSAL. A formulation of an
example in terms of the formally defined domain is the of-
fered in Section 3.3; while Section 3.4 provides algorithms for
the working of the framework. Section 4 illustrates how the
proposed framework processes the assertions on a traveling
marketplace example. Related work is overviewed in Sec-
tion 5. Concluding remarks and future work are discussed
in Section 6.

2. BUSINESS PROCESSES AND ASSERTIONS
A process is an ordering of activities with a beginning and

an end; it has inputs (in terms of resources, materials and
information) and a specified output. We may thus define
a process as any sequence of steps that is initiated by an
event, transforms information, materials, or business com-
mitments, and produces an output [6]. In this paper, we
consider business processes as a means to represent the con-
trol flow of business logic and applications. This is achieved
by introducing the notion of a state and an action. A state
represents the state of the process execution. An action rep-
resents a business activity, which is modeled as a transition
between given states. Each action is executed on behalf of
a role. A role represents a set of business operations that
relate to the same party, e.g., a travel agency. Each role has
a number of providers associated with it. The providers can
be found by interacting with service registries, e.g., UDDI.
A provider is the actual party that implements a role, e.g., a
specific travel agency. It is convenient to also define the no-
tion of a process variable, which is a variable associated with
a process changing values, e.g., travel packages, hotel reser-
vations, etc, as the process progresses through its execution
path and its states change. The use of process variables
guarantees that the execution of a business process can be
monitored during execution as the process traverses a set
of states where constraints may need to be applied to these

variables. Constraints on the variables may represent user
request or business rules.

2.1 An example in the traveling marketplace

Figure 1: A traveling business process.

Consider a user requesting a trip to Nowhereland and hav-
ing a number of additional requirements regarding such a
trip, e.g., that the total price of the trip be lower than 300
euro, the prices of the hotel below 200 euro, avoid using the
train, and so on. To be satisfied such a request involves
the interaction with various autonomous service providers,
including a travel agency, a hotel booking company and a
flight carrier. The services reside in the same travel market-
place and must follow a standard business process for that
domain such as the one exemplified in Figure 1. This pro-
cess is modeled as a state transition diagram, that is, every
node represents a state in which the process can be, while
labeled arcs indicate how the process changes state. Actors
involved in the process are shown at the top of the diagram.
The actors include the user, a travel agency, a hotel service,
an air service, a train service and a payment service.

The process is initiated by a user contacting a travel agency,
hence, (1) is the initial state. The state is then changed
to (2) by requesting a quote from an hotel (action a1). The
dashed arcs represent web service responses, in particular
arc a2 brings the system in the state (3). The execution

continues along these lines by traversing the paths in the
state transition diagram until we reach state (14). In this
state a confirmation of a hotel and of a flight or train is
provided by the travel agency and the user is prompted for
acceptance of the travel package (13).

The state transition diagram is non-deterministic. This is
illustrated, for instance, in state (4). In this state the user
has accepted the hotel room price, however, is faced with two
possible outcomes, one that a room is not available (where
the system transits back to state (1)) and the other where a
room reservation can be made (state (5)). The actual path
will be determined at run-time when appropriate services
provide information regarding how availability for the hotel
providers is chosen.

The lower part of the business process models the payment
of the travel package just booked as an atomic action. This
means the entire trip is payment atomic.

Services involved in the above process may have additional
requirements and business rules that need to be followed. A
particular travel carrier may require advanced payment, a
travel agency may want to always have explicit user’s ap-
proval before committing to a package. At a higher level,
different marketplaces may implement the same process but
with different rules. For instance, one may additionally re-
quire that all air carriers use a specific communication pro-
tocol. This sort of additional business rules are called asser-
tions and are defined next.

2.2 Assertions
Actions of a business process are usually extend across dif-

ferent parties (organizations which may play different roles)
that are involved in different fragments of the process. A
choreography language can guarantee the consistency of ser-
vice interfaces, message ordering and message invocations
but it can not be used to check process runtime properties.
Safe execution of the business process can only be ensured by
a monitoring mechanism that checks the run-time properties
of business process and possibly recovers it from assertion
violations. The monitoring of the business process based on
observing their assertions is performed in the following way.
First, assertions are published by the party which wants its
assertions to be applied to business processes and monitored
during execution. When executing the business process, the
framework allows only those executions to proceed where
published assertions are satisfied. If an assertion is violated
then the system tries to find an alternative execution path
in the business process that does not violate the assertion,
if any. Assertions are published on different levels: busi-
ness process, role or provider. During execution, assertions
defined on the business process level are always taken into
account; assertions defined by roles are checked only if op-
erations for that role are invoked; provider level assertions
are considered if an action of the particular provider is nec-
essary.

More precisely, monitoring is a mechanism that ensures
the execution of a process is consistent with respect to chore-
ography business rules and user specified requests. As a
business process spans several organizations, all of them ex-
pect that their business rules are taken into account when
executing the process. Business rules are supplied by ser-
vice providers and are enforced on business processes that
are associated with such rules during their execution.

Business rules are expressed in the context of a process

requested

rejected
accepted by

travel agency

approved by

client

package

completed

Figure 2: A travel package business entity assertion.

by assertions. An assertion may be either satisfied or not
during the execution of a business process. An assertion
may be defined formally as follows:

Definition 1. An assertion is a condition that applies over
the execution of a business process. Given a business process
and a specific state, we say that an assertion is satisfied if
the assertion is true in its current state and in all future
states visited during process execution. In the following we
use the term assertion and business rule interchangeably.

We may classify assertions along two different dimensions:
(i) operational assertions: on the basis of the operational
context and complexity of the assertion; (ii) actor asser-
tions: on the basis of the ownership of the assertion.

There are three types of operational assertions that can
be distinguished on the basis of the above classification:

Simple assertion. A simple assertion is a condition to be
satisfied in a given state or a specific set of states in
order to reach a successor state. Simple assertions are
also named reachability assertions. An example of such
an assertion in the context of a traveling domain is
the requirement for having a medical insurance if the
period of being abroad is more than two weeks. To
comply with this assertion we must ensure that if the
client requests a travel package with duration beyond
two weeks then a medical insurance must be obtained
before the business process progresses successfully.

Preservation assertion. A preservation assertion is a con-
dition to be maintained throughout all states reached
during the execution of a business process. Preser-
vation assertions are also named maintainability as-
sertions. In the same traveling example, consider a
situation where special offers exist for clients who hold
a frequent flyer royalty card, e.g., OneWorld. An as-
sertion for the use of such card would require that all
invoked services accept the card to provide discount or
points. To comply with this assertion the execution of
the business process will attempt to maintain the ex-
ecution on those paths where services adhering to the
royalty program are available.

Business entity assertion. A business entity assertion is
a property that applies to the evolution sequence of

a process variable during process execution. For in-
stance, a business entity assertion can be associated
with the status of a travel package, see Figure 2. Ini-
tially, the “status” variable must assume the value ‘re-
quested’ when the travel package operation is started.
From this state, the request can be ‘rejected’ if the
traveling agency fails to satisfy it and, eventually, re-
turn in a ‘requested’ status. Alternatively, the status
variable can be ‘accepted by travel agency’ and sub-
sequently be ‘approved by client’ and finally become
a ‘package completed’. To comply with this assertion
the execution of the business process must ensure that
the states of the travel package variable are reached in
the prescribed sequence and only change value accord-
ing to the valid states of the business entity assertion
described above.

Assertions are not only classified on the basis of their oper-
ational dimension but also on the basis of ownership. Based
on this criterion we may distinguish between different levels
of assertion ownership , see Table 1.

Business process-level. The business process level asser-
tions are applied to the whole business process. The
business process execution environment verifies these
assertions during all executions and for all used ser-
vices. Assertions of this type are maintained by the
party who defines the choreography message sequences.
These assertions are stored together with the business
process itself. The business entity assertion defined in
Figure 2 is an example of business process level asser-
tion. It defines possible state transitions for the travel
package for all execution sequences in the business pro-
cess. Another example is the following. Usually busi-
ness processes have an assertion of always reaching the
final state despite of the nondeterminism inherent in
dealing with web service implementations, e.g., pur-
chase a travel package. This assertion ensures process
consistency with organization rules and policies.

Role-level. Role-level assertions that are valid for all the
providers undertaking a specific role. Typically these
assertions represent the constraints defined by stan-
dard organizations, government, etc. For example, due
to governmental laws all travel agencies may require
that together with a flight ticket also a medical insur-
ance is purchased, whenever the final destination is in
a particular set of geographic locations where health
risks may exist. These assertions are defined together
with the service interfaces and stored together with
the service descriptions.

Provider-level. At the lowest abstraction level assertions
are published by a particular service provider. These
assertions are stored in service registries together with
service implementations. Provider-level assertions are
used when a particular provider wants to enforce in-
ternal consistency of the business process by making
the process observe its own business rules at runtime.
For instance, provider role assertions may involve pay-
ment service providers having additional constraints,
such as, protocol communication preferences, organi-
zation licensing, authentication, etc.

3. MONITORING FRAMEWORK
One of the biggest challenges that web service enabled e-

marketplaces face is the lack of support for appropriate ser-
vice request languages that retrieve and aggregate services
that contribute to the solution of a business problem. Users
typically require services from an service-based marketplace
on the basis of service characteristics and functionality as
supplied by service providers. A service request language
provides for a formal means of describing desired service
attributes and functionality, including temporal and non-
temporal constraints between services, and service schedul-
ing preferences.

Our previous research work concentrated on developing a
service request language for web services in service-oriented
marketplaces that contains a set of appropriate constructs
for expressing requests and constraints over requests as well
as scheduling operators [1, 13, 9]. This language is named
XSRL for XML Service Request Language. XSRL was in-
troduced in [1, 13] and enables a user to formulate complex
requests against standard business processes. These stan-
dard processes are provided by a market maker (a consor-
tium of organizations) that brings customers, suppliers and
vendors together. The market maker assumes the responsi-
bility of creating a service-marketplace administration and
performs maintenance tasks to ensure the administration
is open for business and, in general, provides facilities for
the design and delivery of business processes that meet spe-
cific business needs and conforms to industry standards [14].
Standard business processes are described in a choreography
language such as Web Services Choreography Description
Language (WS-CDL) [7]. WS-CDL specifies the common
observable behavior of all participants engaged in business
collaboration. Each participant could be implemented by
completely different languages such as web services applica-
tions, whose implementation is based on executable business
process languages like BPEL, XPDL and BPML.

XSRL expresses a request and executes it according to
the user preferences. The framework that takes XSRL re-
quest as input returns a product as the result of the request,
e.g., constructs an end-to-end holiday packages (documents)
comprising a number of flight and accommodation choices.
XSRL is equipped with constructs for expressing quantita-
tive requests, such as, booking of a room for two nights,
spending between 100 and 200 euro, etc., but also quali-
tative operations for sequencing goals, such as, booking a
room only after having booked a plane, for stating prefer-
ences, e.g., flying rather than taking a train to a destination,
for stating the maintaining of a condition during execution,
such as, keeping the budget below 500 euro. Loosely speak-
ing, the response documents can be perceived as a series
of plans that potentially satisfy a request. In expressing
an XSRL request it is important that a user is enabled to
specify the way that the request needs to be planned and
executed. We refer to [9] for the syntax, semantics and de-
tailed examples of XSRL.

XSRL and its supporting framework are a powerful tool
for enabling a user to formulate requests against business
processes but it currently lacks support for choreography as-
sertions supplied by service providers and/or market mak-
ers that can be associated with the execution of a chore-
ographed process. Assertions are essential means for the
actors delivering the services and market makers to apply
enterprise/marketplace policies and conditions. In this pa-

Assertion level Location stored Usage

business process domain description concatenated with user request

role service description applied if an action of the role is invoked

provider service registry applied if the provider is associated with an action to be invoked

Table 1: Assertion levels.

Figure 3: Handling of XSAL and XSRL requests.

per we address this limitation of XSRL by demonstrating
how the language and its support environment is extended
by means of an assertion language, which we name XSAL
(XML Service Assertion Language). This language is de-
fined in Section 3.2.

XSRL and XSAL work in tandem during the planning and
monitoring of business processes in order to satisfy the user
requests in conjunction with applying service provider and
marketplace maker supplied assertions. Figure 3 illustrates
marketplace makers and actual service providers involved in
the marketplace. These provide a set of assertions in XSAL
which govern the behavior and execution of standard busi-
ness processes. Assertions are associated with the standard
business processes against which requests are specified. The
standard business process are typically provided by the mar-
ket maker. In exceptional circumstances the market maker
could allow the client to provide his/her own business pro-
cess and then provide additional business rules on top. In
Figure 3 a user or client states his/her requests in XSRL.
These are combined with the appropriate XSAL assertions
and then forwarded to the planning and monitoring frame-
work presented in Figure 4. The planning and monitoring
framework interacts with the actual implementations of the
services in the service marketplace.

To deal with assertions and user requests we propose a
system based on the interleaving of planning and execution.
The proposed framework, shown in Figure 4, consists of four
components: monitor, planner, executor and run-time sup-
port environment and can be seen as an extension of the
monitoring framework introduced in [9] to deal with user
requests expressed in XSRL.

In this framework the monitor manages the overall pro-
cess of interleaving planning and execution. It takes user
requests, the business process, the business process level as-

SERVICE

IMPLEMENTATIONS

WEB SERVICES

MONITOR

Goal (XSRL)

Business domain

Produce plan

User interaction

Collect new information
Retrieve
providers

Update domain, goal, current state

Invoke WS

Request
execution

Request plan

EXECUTOR

Assertions

 provider-level
assertions

role-level

business process
level assertions

REGISTRY

PLANNER
(XSAL)

assertions

(XSAL)

(XSAL)

Figure 4: Planning and monitoring framework.

sertions and starts interacting with the planner. The plan-
ner synthesizes a plan and returns it to the monitor. The
plan is a sequence of actions to be executed. The planner
returns a failure if there was no possible execution satisfy-
ing the user request in the given domain without violating
the assertions. In case of failure, the monitor eliminates
eventual optional goals and assertions or it tries to change
service providers. For example, if a business process fails to
satisfy the assertion published by one hotel service provider,
the framework can try to switch to another hotel service
provider whose assertions are less strict. If the planner fails
for all possible combinations then the overall execution of
the business process fails. If a correct plan exists and there-
fore it is synthesized. Then the monitor passes it to the ex-
ecutor. The executor is responsible for executing the plan.
While executing each action of the plan, the executor may
gather new information from the service registry or from
the service implementations. Whenever new information is
obtained, replanning is potentially needed and the domain
updated with the just gathered information is returned back
to the monitor. The framework works iteratively until the
request is satisfied under the given assertions or there is no
successful execution path.

3.1 Planning domain description
Using a framework based on interleaved planning and ex-

ecution demands a formal specification of the business pro-
cess in terms of planning domains. None of the existing
business process definition languages can be used as a do-
main description for our framework. For example, WS-CDL
lacks planning and monitoring mechanisms, BPEL in addi-
tion lacks choreography protocol support. The domain rep-
resentation that we adopt is a state-transition system. It is
able to represent non-deterministic actions and potentially

incomplete knowledge about the environment. Information
that is unknown in advance is gathered at run-time by invo-
cations of web services and by contacting the service registry
(UDDI) to obtain web service generated information, e.g.,
current balances, debt histories, etc. Formally, a domain D

is a tuple < S ,A,V,R,P >, where:

• S is a set of states a business process can be in.

• A is a set of actions. An action represents an atomic
activity of the business process. Each action is asso-
ciated with a role. If an action has only one outcome
it is called deterministic, it is called nondeterministic
otherwise. Action is said to be retractable in a par-
ticular state if there exists a sequence of actions that
deterministically, independently of the output of the
action, will bring back to the state where action was
applied preserving the variable values.

• V is a set of process variables. A variable set includes
all the message definitions that are part of the business
process. During the execution of the process some of
the variables can be undefined. Actions that depend
on undefined variables cannot be invoked.

• R is a set of roles. Roles represent service interfaces
that are used in the business process.

• P is a set of providers. A provider provides a service
specification and possibly one or more service imple-
mentations. A provider is associated with one of the
process roles.

In addition to a domain definition the following relations
between the domain items are specified:

• →: S ×A → 2S is a transition relation between states
and actions. A transition represents the application of
an action to a state and returns a set of states resulting
from that action. Transitions are used to represent the
skeleton of the business process control flow. An action
can be associated with several transitions.

• role : A → R is a relation between actions and roles
associating a role to each action in the domain. If
the service interface is defined in terms of WSDL, the
relation is extracted from the port types definition.

• providers : R → 2P is a relation between roles and
providers associating a provider to each role. This
mapping is defined in the service registry and typically
available to the system only at run-time.

• fa,o : V → V is a semantic function associated with an
action a with an outcome o. An outcome can be either
‘normal’ or ‘failure’. For each action, there can be sev-
eral exception outcomes but there can be only a single
normal outcome. All action outcomes are defined with
the service interface definition.

3.2 Service assertion language
In Section 2.2 we motivated the necessity for having asser-

tions and we classified the operational assertions into simple,
preservation, and business entity assertions. The assertions
need to be stated in a uniform and unambiguous way by the
parties involved in the business process. XSAL (Xml Ser-
vice Assertion Language) serves this purpose. The syntax
of XSAL is defined using BNF notation as follows:

xsal <- ’<XSAL>’ assertion ’</XSAL>’
assertion <- statement | achieve-all | then | prefer

achieve-all <- ’<ACHIEVE-ALL>’ +assertion ’</ACHIEVE-ALL>’
then <- ’<BEFORE>’ assertion ’</BEFORE>’

’<THEN>’ assertion ’</THEN>’
prefer <- ’<PREFER>’ assertion ’</PREFER>’

’<TO>’ assertion ’</TO>’

statement <- entity | vital | optional |
atomic | vital-maint | optional-maint

entity <- ’< ENTITY VARIABLE = ’ var ’>’
start-from

follows*
’</ENTITY>’

start-from <- ’<START-FROM>’ proposition ’</START-FROM>’
follows <- ’<FOLLOWS>’ proposition ’</FOLLOWS>’

’<BY>’ proposition ’</BY>’

vital <- ’<VITAL>’ proposition ’</VITAL>’
optional <- ’<OPTIONAL>’ proposition ’</OPTIONAL>’
atomic <- ’<ATOMIC>’ proposition ’</ATOMIC>’

vital-maint
<- ’<VITAL-MAINT>’ proposition ’</VITAL-MAINT>’

optional-maint
<- ’<OPTIONAL-MAINT>’ proposition ’</OPTIONAL-MAINT>’

proposition <- ’<CONST ATT="true|false">’ | var |
’<AND>’ +proposition ’</AND>’ |
’<OR>’ +proposition ’</OR>’ |
’<NOT>’ proposition ’</NOT>’ |
’<GREATER>’ var ’</GREATER>’
’<THAN>’ rval ’</THAN>’ |

’<LESS>’ var ’</LESS>’
’<THAN>’ rval ’</THAN>’ |

’<EQUAL>’ var rval ’</EQUAL>’
var <- a..zA..Z[rval]
rval <- +a..zA..Z0..9.

One may observe the similarity between XSAL and XSRL.
In fact, these two languages share the same expressive power
and interpretation capabilities, though their intended use is
quite different. XSAL is used for expressing assertions while
XSRL is used for expressing user requests. Before delineat-
ing the formal connection among these two languages we
shall first provide the intuitive meaning behind XSAL ex-
pressions.

The atomic objects of XSAL are propositions, i.e., boolean
combination of linear inequalities and boolean propositions.
These can be either true or false in any given state. Proposi-
tions are further combined by sequencing operators to form
assertions. The sequencing operators are: achieve-all,
then, prefer. achieve-all succeeds when all nested as-
sertions defined inside the tag <ACHIEVE-ALL> are satisfied,
it fails otherwise. The construct then is satisfied when the
first statement is satisfied and, from the state where the
first statement is satisfied, the second is also satisfied. It
fails otherwise. The construct prefer succeeds if the first
statement is satisfiable, if not then it succeeds if the sec-
ond statement is satisfiable, it fails if both statements are
unsatisfiable.

The operational assertions can be expressed using the
XSAL language. All of the following operators take propo-
sitions as arguments. The simple, or reachability, assertions
are expressed by XSAL reachability constructs. Formally,
reachability constraints require satisfaction of some propo-
sition before execution of the service that has reachability

assertion. However, strictness of the satisfaction depends
on the particular operator. There are three corresponding
XSAL operators: atomic, vital, and optional. The atomic
operator is used when assertion is strictly important for the
party that specifies it and it must be satisfied regardless of
nondeterminism or not. More formally, before executing a
service that has this type of assertion, constrained proposi-
tions must be true. If there is no such execution that makes
it true despite of nondeterministic services then the execu-
tion fails immediately. The vital operator is used when
less strict assertions need to be applied. It tries to find a
successful execution to satisfy the constrained proposition.
It executes until it has a chance to reach the successful state
and fails otherwise. The last operator (optional) is the
least strict constraint and demands the satisfaction of the
assertion if possible, if not the assertion is just ignored.

XSAL maintainability constructs are employed to express
the preservation, or maintainability, assertions. This con-
structs are used when preservation of some value is needed
not only in a single state but during a whole execution se-
quence. When executing a service with this kind of asser-
tion, only execution paths that preserves the constrained
value can be followed. Retractable actions must be handled
with care. In fact, if such an action is invoked and later
retracted all associated assertions are ignored. As in the
case with simple assertions, maintainability assertions can
be of different types depending on strictness. We define two
types: vital-maint and optional-maint. The first one is
used when the proposition value must be preserved along
the whole execution path regardless of the nondeterminism.
The second (optional-maint) is used when the maintenance
assertion is optional.

The entity expression is used to form business entity as-
sertions. This expression begins by relating to a particular
variable. It specifies its starting value in the start-from

statement and it is continued by any number of follows

statements which specify the possible evolutions of the vari-
able. Assertions of this type are always strict.

The semantics of XSAL can be defined following two tra-
jectories: (i) considering formal semantic definition based on
execution structures over planning domains as done in [9];
(ii) providing translation rules for transforming XSAL ex-
pressions into XSRL and combining them with XSRL ex-
pressions. We pursue the second trajectory as it is more
intuitive and demonstrates better the relationship between
XSAL and XSRL. As a point of notation, we introduce a .t

postfix construct to denote the XSAL expression translated
into XSRL and (...) to denote the passing of a parameter
to a rule, e.g., start-from (var) and follows (var) takes
var as a parameter. Expressions where the translation is
omitted are propagated unchanged. The symbol ’*’ in the
reduction rule denotes the usual Kleene star.

xsal <- ’<XSAL>’ statement ’</XSAL>’
xsrl.t = ’<XSRL>’ statement.t ’</XSRL>’

entity <- ’<ENTITY VARIABLE = ’ var ’>’
start-from (var)
follows (var)*

’</ENTITY >’

entity.t = start-from.t +
’<THEN>’

’<ACHIEVE-ALL>’
follows.t*

’</ACHIEVE-ALL>’
’</THEN>’

start-from (var)
<- ’<START-FROM>’ proposition ’</START-FROM>’

start-from.t = ’<BEFORE>’ var proposition ’</BEFORE>’

follows (var)
<- ’<FOLLOWS>’ proposition1 ’</FOLLOWS>’

’<BY>’ proposition2 ’</BY>’
follows.t = ’<BEFORE>’

’<EQUAL>’ var proposition1 ’</EQUAL>’
’</BEFORE>’
’<THEN>’

’<EQUAL>’ var proposition2 ’</EQUAL>’
’<THEN>’

One notes from the translation that the constructs used
for propositions, sequencing and expressing preference state-
ments are the same in both languages XSAL and XSRL.
The XSAL business entity assertion construct is not present
in XSRL and is translated into the sequencing operators
before-then binding the business entity variable to propo-
sitions.

3.3 A domain instance
In the following we revisit the traveling domain example

shown in Figure 1 to explain the use of XSAL and associ-
ated constructs. Next we present it according to the formal
definition of a domain D presented in Section 3.1.

There are fourteen states S = {1, 2, . . . , 14} in the upper
half of the figure. The set of variables V ar is {hotelReserved,
hotelPrice, location, trainBooked, trainPrice, flightBooked,
flightPrice, confirmed, money}, among which one distin-
guishes the boolean variables (hotelReserved , trainBooked ,
flightBooked , confirmed), from the real variables (hotelPrice
, trainPrice , flightPrice , money), and a variable represent-
ing location names (location). In the set of variables a sub-
set is defined to be of knowledge variables. In the example,
we define hotelPrice, trainPrice, flightPrice to be knowl-
edge variables. There are also nineteen actions that can be
performed in the domain Act = {a1, . . . , a19}.

Several roles are involved in the travelling business pro-
cess, that is, R = {user, hotel, payment, insurance, train,
air}. The user role represents the requesting party. Typi-
cally, it is a human user but it could also be any application
software utilizing the business process. The set of actual
providers for the roles R are stored in the service registry.

Arrows in Figure 1 represent process actions. For exam-
ple, states (3) and (4) are connected by the reserveHotel

action of the hotel role. This has two outcomes: normal,
where the variable hotelReserved is set to true and excep-
tion, where the hotel remains unreserved. This action is an
example of a nondeterministic action. The two arrows from
the state (4) represent different outcomes for this action.
Other examples of actions are bookFlight for the air role
and getTrainPrice for train role.

Assertions work in conjunction with the travelling busi-
ness process and are defined in XSAL. The business process
level assertion that ensures that the process always reaches
the final state is expressed in the following way: atomic

final. In the following we omit XML tags brevity. Examples
of a role-level assertions are requirement for insurance in case
of long vacations: vital (healthRisk → insuranceTaken),
where → represents logical implication and is expressed us-

ing the <NOT> and <OR> XSAL expressions, as usual.
At the provider level, the hotel provider may prefer, for

example, a specific credit card type for payment: optional

cardType = VISA.
The maintenance assertion for customers of royalty ser-

vices that was introduced in Section 3.1 is encoded as fol-
lows: optional(royaltyCard → (roleType = acceptsRoyal-
tyCard)).

In the following we use XSAL to codify the business entity
assertion that was presented in Figure 2. The XSAL syntax
for this assertion is:

entity travelPackage
start-from requested
follows requested by rejected ∨ accepted by travel agency
follows rejected by requested
follows accepted by travel agency by

rejected ∨ approved by client
follows approved by client by package completed

Additional details like precise hotel information, seats type,
payment numbers, etc. can be easily integrated in the above
example. To do so, one should add corresponding variables
and modify the semantic functions of the actions to take into
account the variables introduced. We omit such additional
details herein to improve readability.

3.4 Planning and monitoring algorithms
in the previous we have introduced a planning and moni-

toring framework and the assertion language XSAL. In this
section, we present the algorithms which handle XSAL as-
sertions together with XSRL requests. The algorithms pre-
sented are an extension of the ones based on interleaving
planning and execution introduced to handle XSRL requests
in [9]. Referring to Figure 4, we recall that the framework
consists of three main components, that is, a monitoring,
a executor and a planner. We present algorithms for these
components in the following.

Algorithm 1 monitor(domain d, state s, goal g)

π = assert-plan(d, s, g)
if π = ∅ then

return success
else

if π = failure then

if chooseNewProvider(provider) then

d′ = updateDomain(d)
assertprovider = extractAssertions(provider)
g′ = updateGoal(g, assertprovider)
return monitor (d′, s, g′)

else

g′ = generate-rollback-goal()
monitor(d, s, g′)
return failure

end if

end if

(d′, s′, g′) = execute(π, d, s, g)
return monitor (d′, s′, g′)

end if

The monitor takes a domain d, that is built on the ba-
sis of the business process, an initial state s and a goal
g. The initial request of the user to the system is com-
bined together with business process assertions, thus, the
monitoring algorithm is invoked initially with the following

goal: achieve-all(request, assertbp), where request is the
user request and assertbp is the set of business process level
assertions.

The monitor (Algorithm 1) is the core of the interleaved
planning and execution process. It invokes the planner and
the executor in order to satisfy the user requests and the
assertions, and it recovers from failures. The algorithm is
an extension of the monitoring algorithm presented in [9],
where the most notable difference is the updating of the goal
to take into account the provider level assertions. When a
new provider is chosen then the goal is modified in the fol-
lowing way. First, assertions that are associated with the
previously assigned provider being deassigned are eliminated
from the goal. Second, assertions of the new provider are
added to a goal by using the achieve-all operator. The
modification of the goal to take assertions into account is
performed by the extractAssertions and updateGoal func-
tions.

Algorithm 2 execute(plan π, domain d, state s, goal g)

repeat

a = firstAction(π)
π = π − a

if webServiceAction(a) then

if noProviderForRole(rolea) then

providersList = contactServiceRegistry(rolea)
provider = chooseProvider(providersList)
assertprovider = extractAssertions(provider)
g′ = updateGoal(g, assertprovider)
return (d′, s′, g′)

else

provider = previouslyChosenProvider(rolea)
end if

message = invoke(a, provider)
end if

(d′, s′, g′) = update(d, s, g, a,message)
if isKnowledgeGathering(a) then

return (d′, s′, g′)
end if

until π = ∅
return (d′, s′, g′)

The executor (Algorithm 2) takes a plan and executes it
in the marketplace. It contacts the service registry when a
service implementation for a given role is necessary, it exe-
cutes actions of the plan and it checks whether replanning is
required. When a new provider is requested from the service
registry, its assertions are added to the goal g in the follow-
ing way achieve-all(g, assertprovider). This is achieved via
the extractAssertions and updateGoal functions.

The planning algorithm is presented in two parts: one
dealing with role level assertion and one actually synthesiz-
ing a plan. The assert-planner (Algorithm 3) checks validity
of role-level assertions. The assert-planner works in the fol-
lowing way. First, it produces an initial plan by invoking
the plan function (Algorithm 4). If the planner succeeds
by producing a plan then the assert-planner checks if the
plan contains actions with new assertions. If it does, then
all assertions are added to the goal and replanning is re-
quested. If the planner fails to synthesize a plan then the
assert-planner marks all actions that possibly violate the
plan as optional goals and request replanning. Optional
goals are added to the current goal g in the following way:

Algorithm 3 assert-plan(domain d, state s, goal g)

π = plan(d, s, g)
if π 6= failure then

{asserta1
, . . . , assertan

} = extractAssertions(π)
g′ = updateGoal(g, {asserta1

, . . . , assertan
})

if g′ = g then

return π

else

return assert-plan(d, s, g′)
end if

else

g′ = checkViolatedActions(g, d)
if g′ = g then

return failure
else

return assert-plan(d, s, g′)
end if

end if

g′ = achieve-all(g,optional¬a1, . . . ,optional¬an), where
optional¬ai indicates that the action ai should be avoided,
if possible. The assert-planner returns a plan if the user
request and all assertions are satisfied and failure otherwise.

Algorithm 4 plan(domain d, state s, goal g)

domainbool = booleanize(d)
repeat

goalbool= booleanize(g)
π = MBPplan(domainbool,s,goalbool)
if π 6= failure then

return π

else

if there are untraversed combinations of optional
goals then

modify g accordingly
else

return failure
end if

end if

until true
return failure

The planner (Algorithm 4) is based on the existing plan-
ner based on model checking [3] and is proposed as in [9].
The planner is responsible for synthesizing a plan based on a
given domain d, an initial state s and a goal g. The planner
returns a plan if it exists and failure otherwise. The plan-
ner checks all possible combinations of optional goals before
returning a failure.

4. A MONITORING EXAMPLE
To illustrate the application of the algorithms presented

in the context of the planning and monitoring framework,
we use the example presented in section 2.1 and formalized
in section 3.3. Suppose that a user is planning a trip to
Nowhereland and is interested in a number of possibilities
in connection with this trip. These include making a ho-
tel reservation, avoiding to travel by train, if possible, and
spending an overall amount not greater than 300 euro for the
whole package. Further, the user may prefer to spend less
than 100 euro for a hotel room, if possible. However, if this
is not possible, the user is not willing to spend more than

200 euro for that room. This is expressed by the following
XSRL request:

achieve-all

achieve-all

prefer vital-maint hotelP rice < 100

to vital-maint hotelP rice < 200

optional-maint ¬trainBooked
vital confirmed ∧

location = ‘‘Nowhereland′′ ∧

hotelReserved
vital-maint price < 300

In addition, assume that two independent XSAL business
process level assertions such as the business entity assertion
in Figure 2 (state diagram) and a atomic final are pub-
lished. The first assertion specifying the various states in
which a travel package can go through, and the second forc-
ing the transactions to always completing atomically. In the
given example, the second assertion forces the package to
go to Nowhereland, once booked, to be bought or rejected
entirely.

The system starts by combining the user request with the
business process assertions in an achieve-all construct. The
monitor invokes the assert-planner which in turn invokes the
planner. With the above goal, business process assertion and
domain as shown in Figure 1, the initial plan provided by the
planner is the following sequence of actions: getHotelPrice,
reserveHotel, and so on.

The monitor then sends the plan to the executor to start
interacting with web service implementations. By these in-
vocation a travel agency and a hotel provider are selected
and a room is reserved. Suppose that the government con-
siders Nowhereland to be a health risky location. Then the
role level assertion vital (healthRisk → insuranceTaken)
coming from the service registry together with the travel
agency role is considered. At this point, the executor returns
control to the monitor which in turn requests a new plan
from the assert-planner taking into account the given role-
level assertion. The new plan generated will now comprise
an action bringing the process in the obtained a medical

insurance state.
Suppose further that the selected hotel is “MyHotel” which

comes with the provider level assertion optional cardType =
VISA. Then, when the executor runs the request payment
from the user the cardType is asked to be VISA. If the
user refuses such option, execution can nevertheless proceed
given the optionality of the assertion. Note that if the as-
sertion was vital cardType = VISA then the user’s refusal
would result in a assertion violation and thus a plan failure.

As for a maintainability assertion, suppose that the travel
agency is asked by the client to to provide services comply-
ing with a given royalty card. Therefore, the travel agency
publishes the following assertion: optional(royaltyCard →
(roleType = acceptsRoyaltyCard)). This is taken into ac-
count by the assert-planner as soon as the user has specified
the card in his request.

When a business entity assertion requires a travel pack-
age is to be assembled following specific business rules such
as the ones in Figure 2, this assertion is always taken into
account by the assert-planner when providing new plans to
the monitor. Finally, the execution proceeds until the travel
package is completed and the user approval is requested. At
this point the business level assertion atomic final is the
last to be satisfied. This is achieved by a plan going to the
final state of the business process.

5. RELATED WORK
In the web services literature there are several approaches

dealing with the monitoring of the assertions over service-
enabled business processes. The WS-Policy framework [18]
provides a general purpose model for describing a broad
range of service requirements, preferences, and capabilities.
Typically, it is used when the provider describes the set of
conditions the requester should satisfy before invoking the
service. RuleML [5] is a powerful technique for expressing
business rules over semantically annotated service. On the
negative side is the lack of any support for run-time moni-
toring of the business rules.

With respect to web services and planning techniques a
review of web service composition techniques is presented
in [17] and it is argued that planning techniques can be of
help in tackling the problem of web service composition.
Temporally extended goals, i.e., goals expressing not only
desired states to achieve but also conditions on how these
are to be reached, are on expressive way of defining complex
business goals [13, 9, 15]. Various authors have emphasized
the importance of planning for web services [8, 10, 11]. In
particular, Knoblock et al. [8] use a form of template plan-
ning based on hierarchical task networks and constraint sat-
isfaction, in [10] regression planning is used, while in [11]
the Golog planner is used to automatically compose seman-
tically described services. Various authors use planners over
service description in DAML-S [16, 17]. Feasibility of HTN
planning algorithms was shown in [19]. Finite-state machine
framework for automatic composition was introduced in [2].
Service orchestration based on object-oriented data models
are presented in [4]. In [12] service composition rules are
used for governing the business process construction.

6. CONCLUDING REMARKS
In our previous work we developed a service request lan-

guage and support framework that allow users to formu-
late their requests against standard business processes [1,
13, 9]. In this paper we extend this approach by present-
ing a framework capable of automatically associating busi-
ness rules with relevant processes involved in a user request.
More specifically, we have introduced the assertion language
XSAL whose main purpose is to express business rules in
the form of assertions over business processes. This allows
for consistency and conformance to organizational rules and
policies when executing a business process. Additionally, it
offers run-time control over its execution. We have classi-
fied assertions with respect to two process characteristics:
its operational context and its ownership. As regards the
operational context, we distinguish between simple, preser-
vation and business entity assertions. As regards ownership,
we distinguish between business process, role and provider
level assertions. We have then introduced a framework for
planning user requests that comply with assertions and mon-
itoring their execution to recover from violating conditions.
Specialized algorithms for planning, monitoring and exe-
cuting requests and assertions have been proposed for this
framework.

The proposed framework and the XSAL language open
several interesting research issues. A particularly interest-
ing open issue regards the performance of the framework,
in particular, the way providers are selected from the ser-
vice registry is crucial for the efficiency and effectiveness

of the architecture. The current proposal does not address
this issue, in other words, providers are chosen randomly. A
better solution would be that of selecting providers based on
provider-level assertions (for instance by comparing active
assertions), on reputation and history of previous interac-
tions with the provider, or optimizing some specific QoS
parameter (e.g., cost of the service, average latency of the
service, etc.).

The proposed framework plans for requests and asser-
tions, then monitoring the execution of the plans. If there
is one possible execution path that can satisfy the request
and comply with its associated assertions, this will be found
and executed, if not, a failure will be returned. In case
that a request succeeds no information is currently provided
regarding the quality of the execution. That is, if more pos-
sible execution paths complying with the assertions and the
user request exist, then only one is guaranteed to be taken.
An open issue concerns the comparison of potential solutions
(execution trajectories) against optimality metrics, e.g., the
shortest plan, the cheapest, the fastest or any other opti-
mality criteria.

7. REFERENCES
[1] M. Aiello, M. Papazoglou, J. Yang, M. Carman,

M. Pistore, L. Serafini, and P. Traverso. A request
language for web-services based on planning and
constraint satisfaction. In VLDB Workshop on
Technologies for E-Services (TES02), 2002.

[2] D. Berardi, D. Calvanese, G. D. Giacomo, and
M. Mecella. Reasoning about Actions for e-Service
Composition. In Proceedings of ICAPS’03 Workshop
on Planning for Web Services, Trento, Italy, June
2003.

[3] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and
P. Traverso. MBP: A Model Based Planner. In Proc.
IJCAI’01 Workshop on Planning under Uncertainty
and Incomplete Information, 2001.

[4] I. Fikouras and E. Freiter. Service discovery and
orchestration for distributed service repositories. In
Conf. on Service-Oriented Computing (ICSOC-03),
Lecture Notes in Computer Sciences, pages 59–74.
Springer, 2003.

[5] B. N. Grosof. Representing e-commerce rules via
situated courteous logic programs in ruleml*1.
Electronic Commerce: Research and Applications,
3(1):2–20, 2004.

[6] P. Harmon. Analyzing activities. Business Process
Trends, 1(4), 2003.

[7] Kavantzas. Web Services Choreography Description
Language 1.0, April 2004. http://lists.w3.org/
Archives/Public/www-archive/2004Apr/att-0004/

cdl_v1%-editors-apr03-2004-pdf.pdf.

[8] C. A. Knoblock, S. Minton, J. L. Ambite, M. Muslea,
J. Oh, , and M. Frank. Mixed-initiative, multi-source
information assistants. In Proceedings of the World
Wide Web Conference, 2001.

[9] A. Lazovik, M. Aiello, and M. Papazoglou. Planning
and monitoring the execution of web service requests.
In Conf. on Service-Oriented Computing (ICSOC-03),
Lecture Notes in Computer Sciences 2910, pages
335–350. Springer, 2003.

[10] D. McDermott. Estimated-regression planning for

interactions with Web Services. In 6th Int. Conf. on
AI Planning and Scheduling. AAAI Press, 2002.

[11] S. McIlraith and T. C. Son. Adapting Golog for
composition of semantic web-services. In D. Fensel,
F. Giunchiglia, D. McGuinness, and M. Williams,
editors, Conf. on principles of Knowledge
Representation (KR), 2002.

[12] B. Orriens, J. Yang, and M. Papazoglou. Model driven
service composition. In Conf. on Service-Oriented
Computing (ICSOC-03), Lecture Notes in Computer
Sciences, pages 75–90. Springer, 2003.

[13] M. Papazoglou, M. Aiello, M. Pistore, and J. Yang.
Planning for requests against web services. IEEE Data
Engineering Bulletin, 25(4):41–46, 2002.

[14] M. P. Papazoglou and D. Georgakopoulos.
Service-oriented computing. Commun. ACM,
46(10):24–28, 2003.

[15] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and
P. Traverso. Planning and Monitoring Web Service
Composition . In ICAPS’04 Workshop on Planning
and Scheduling for Web and Grid Services, June 2004.

[16] M. Sheshagiri, M. desJardins, and T. Finin. A Planner
for Composing Services Described in DAML-S. In
Proceedings of ICAPS’03 Workshop on Planning for
Web Services, Trento, Italy, June 2003.

[17] B. Srivastava and J. Koehler. Web Service
Composition - Current Solutions and Open Problems.
In Proceedings of ICAPS’03 Workshop on Planning
for Web Services, Trento, Italy, June 2003.

[18] WS-Policy. Web Services Policy Framework, May
2003. http://www-106.ibm.com/developerworks/
library/ws-polfram/.

[19] D. Wu, E. Sirin, J. Hendler, D. Nau, and B. Parsia.
Automatic Web Services Composition Using SHOP2.
In Proceedings of ICAPS’03 Workshop on Planning
for Web Services, Trento, Italy, June 2003.

