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We propose Focused Page Rank (FPR) algorithm adaptation for the problem of 
scientific papers ranking. FPR is based on the Focused Surfer model, where the 
probability to follow the reference in a paper is proportional to its citation 
count. Evaluation on Citeseer autonomous digital library content showed that 
proposed model is a tradeoff between traditional citation count and basic Page 
Rank (PR). In contrast to basic Page Rank, proposed Focused Surfer model 
suffers less from the "outbound links" problem. We believe that FPR algorithm 
is closer to reality because highly cited papers are more visible and tend to 
attract more citations in future. This is in accordance with the one of the most 
significant principles of Scientometrics. No need for lexical analysis of the 
domain corpus and simplicity of implementation are among the strong points of 
the proposed model and make the proposed ranking technique attractive for 
academia digital libraries. 
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1. Introduction 

Ten years ago Google corporation applied Page Rank (PR) algorithm [1] with great 
success to the problem of web-pages ranking. PR algorithm is purely statistical, and 
there is no need to analyze the content of each page lexically. It uses a "Random 
Surfer" model [1]  in which the process of browsing through the web pages links is 
modeled by the stochastic Markov process, fully described by a Markov chain matrix. 
Recently Page Rank has been studied from several points of view including 
computational feasibility, modifications and adaptations to the different types of 
graphs and network models, probabilistic model, mathematical background [2]. Its 
popularity for ranking web-pages makes it popular in other domains, like ranking of 
scholarly publications. 

The most intriguing question about PR is how to compute it for the whole web? 
Whole internet contains terabytes of information, and being represented as a graph it 
exceeds modern computers’ memory. It is a creative engineering task to design fast 
access storage to compute PR. Let us briefly outline major methods for PR 
computation. 
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1) The simplest one is the cyclic PR computation for all nodes – one by one - in the 
graph, using recursive formula (1) until convergence [3]. This method takes unit 
vector as initial rank approximation. 

2) PR authors, Brin and Page proposed polynomial convergence method [1], similar 
to Jacobi methods. 

3) Method (2) was improved by Haveliwala in 1999 [4] using "block-based 
strategy", similar to implementations in relational database products. 

4) In 2003 Langille [5] invented the procedure with reduction of the iterations 
number with lucky initial approximation. 

5) In 2003 Kamvar et al.[6], proposed quadratic extrapolation method to accelerate 
PR convergence and evaluated their methodology under roughly 81 millions of 
pages.  

 
Most of mentioned above works are related to the Web links ranking problem 

which usually deals with much larger graphs than scientific citing problem. So, the 
computation problem has been studied well enough and looks feasible. 

A correlated research topic is related to promising PageRank modifications, for 
instance: 
1) PR Computation with or without damp factor (see formula (2) below). 
2) Personalized Page Rank with some initial personalization vector is more common 

for web-search engines. Here all pages have their own personal weights before 
PR calculation.  

3) Focusing of PR, or redistribution of links to link probabilities in the stochastic 
Markov matrix. This means that core PR model of Random Surfer is no longer 
Random, it becomes focused. This model was successfully applied to the web 
pages ranking problem by Tony Abou-Assaleh et al. [7] and by Fuyong Yuan et 
al.[8] in 2007. 

4) Double (or more) focusing of PR takes into account more deep properties of 
citation graph entities during stochastic Markov matrix composition. For 
example, it may first focus on site name and then on site content.  

 
Ranking problem is also very important in the scholarly domain, where the main 

metrics of an article's contribution is the citations count [9]. Recently Chen and others 
[3] applied Page Rank idea for the scientific citations. The major result of this 
application is that some classical articles in Physics domain have small quantity of 
citations and very high Page Rank. Chen et al. called them “scientific gems”. 
Existence of “scientific gems” is caused by PR model which captures not only the 
total citation count, but the rank of each of the citing papers. 

Another Page Rank adaptation for the same problem was performed by Yan Sun et 
al., 2007 [10]. They applied “personalization” modification from above, where 
personalized vector was taken in proportion to the publishing journals weight. Then 
the validity of the rank was estimated by the cumulative gain function [10]. 

Recently Page Rank was successfully applied to the problem of assessing papers, 
institutions, authors for really large scale problem (~billion of items) [12]. Both 
methods of assessing academia papers – the traditional citation count and the more 
recent PageRank and are based on the quantity of citations. Citation count advantages 
are I) simplicity of computation; II) it is a proven method which has been used for 



many years in scientometrics. Proven history of use is very important in the 
conservative academia domain. Page Rank has the following strong sides: I) it 
statistically analyses whole citations graph at once; II) it captures not just quantity, 
but also quality of citing papers. However, Page Rank algorithm introduces also 
computational artifacts like the “effect of outbound links” [13]: this means that if a 
paper P is cited many times by papers with high rank but containing a large quantity 
of outgoing links — it may decrease P’s rank. Situation when a paper is highly cited 
but poorly ranked by PR looks strange for academia publications. 

In this paper, we propose Focused Page Rank adaptation to reduce the "effect of 
outbound links" and to make a tradeoff between Page Rank and Citation Count. In our 
proposed model a “reader of an article”1 may follow all references with different 
probabilities, so our random surfer model is getting focused. We take citation count as 
a measure of attractiveness of a reference inside a scientific paper. 

2. Problem statement 

Let us briefly outline what the original Page Rank algorithm does. It performs ranking 
for the nodes of the oriented graph with N vertices. There are two different link types 
which may connect node to the neighbors: outbound links and inbound ones. The 
main measure of node’s weight is inbound links quantity. When we apply this model 
to the scientific citations problem, we can establish the following similarities: papers 
are nodes of the graph; citations made by the other papers are inbound links; 
"references" section creates outbound links set. This is true for most of scientific 
papers. Rank of a node according to PR is given by the recursion formula (1): 
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where S(j) is the quantity of references for paper Pj, i,j ∈{1,..,n} are paper sequence 
numbers in a graph and Di is variety of all articles which cite article i. In the matrix 
from we can rewrite it as eigenvector problem (2): 
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where A is the transition matrix, or stochastic Markov matrix. This consideration 
exposes several potential problems in rank computation as discussed in [2],[5]. One of 
them is the presence of the papers which cite other papers but are not cited 
themselves. They are called dangling nodes and they may be treated as the most 
recent papers. In this case equation (2) may have no unique solution, or it may have 
no solution at all. It will lead to zero-rows occurrence in the transition matrix and 
uncertainty of the rank of dangling nodes. Such problem may be resolved with the 
introduction of a damp-factor d. The damp (or decay) factor is a positive number d, 
such that 0 < d < 1 and we illustrate it in formula (3): 

                                                           
1 “reader of an article” is a Focused Surfer. 
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Damp factor was proposed by PR inventors Page and Brin and widely used in 
different Page Rank computations. It helps to achieve two goals at once: 1) faster 
convergence using iterative computational methods; 2) problem becomes solvable for 
sure since all nodes have a possibility to be visited by a Random Surfer. 

2.1   Scientific Citations Graph Specific Characteristics 

When considering the scientific citation problem we may avoid the mentioned above 
problems in a very natural way because of the following peculiarities of our specific 
domain (i.e. scientific papers): 

I) After and article is published, it cannot cite anymore. 
II) If the number of articles in the graph is N, each paper may potentially have from 

1 to N-1 ingoing links and the same quantity of outgoing ones. Since N>>1, in real 
life the citation graph is extremely sparse. Indeed, articles normally have from 5 to 20 
citations inside, comparing average quantity of citations per article m with quantity of 
papers in graph N it is obvious that m<<N. 

First condition simplifies highly the problem because citations graph becomes 
unidirectional. We assume (and experimentally prove) that citation graph is free of 
loops, cliques or some other complex structures. 

Situation with a loop when paper A cites paper B and paper B cites A is 
theoretically possible, for example if authors exchange their deliverables and cite not 
yet published but already accepted for publication papers. However, according to 
Glänzel [9] traditional scientometrics does not consider such citations as the valid 
ones. 

2.2   Focused Surfer 

The Random Surfer model is the basis of PR algorithm. Page Rank of the certain node 
is proportional to the probability to reach this node by randomly riding the graph. At 
each step rider randomly chooses the link to follow. Focused Surfer decides which 
path is more preferable for him. Formula (4) expresses this mathematically: 
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where s(j|i) is the probability to follow the reference i being at the place j. s is a 
function that may be arbitrary. We propose to use the simplest variant of it, which we 
show in formula (5): 
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where C(m) is paper m citations count, and D is the set of all references in paper C(j). 
This means that more cited nodes have advantage and they are more visible and 
attractive for further citation. 

3. Evaluation and experimental methodology 

In our evaluation, we explore 266788 papers published in ACM conferences or 
journals starting from 1950 and till 2007 with the majority of papers around 2002-
2005. This dataset may be completely matched to ACM portal2 and was crawled by 
the Citeseer3 digital library. 

3.1   Plotting the difference 

We introduce here our proposed experimental methodology. The obvious approach 
to exploring the effect of using PR vs citation count (CC) in evaluating papers is to 
plot these values for the different papers. The density of points (points cloud) that 
have a high CC and low PR (or vice versa) would provide an indication of how often 
these measures can give different quality indication for a paper. However, this leads 
to charts difficult to read in many ways: First, points overlap because many papers 
have the same CC, or the same PR, or both. Second, it is hard to get a qualitative 
indication of what is “high” and “low” for CC or PR. This is why we divide CC and 
PR axis in bands. 

Ideally we would have to split the axes into 10 (or 100) bands. We put in the first 
band the top 10% (top 1%) of the papers based on the metric, to give qualitative 
indications so that the presence of many papers in the corners of the chart would 
denote a high divergence. However, the overlap problem would remain, and it would 
distort the charts in a significant way since the measures are discrete. For example, 
the number of papers with 0 citations is well above 10%. If we neglect this issue and 
still divide in bands of equal size (number of papers), papers with the same measure 
would end up in different bands.  

Finally, the approach we took (Fig. 1, Fig. 2) is to divide the X-axis in bands where 
each band corresponds to a different - discrete - citation count. With this separation 
we built 290 different bands, since there are 290 different values for CC (even if there 
are papers with much higher CC, there are only 290 different CC values in the set). 
For the Y-axis we leverage mirrored banding, i.e., the Y-axis is divided into as many 
bands as the X-axis, also in growing values of PR. Each Y band contains the same 
number of papers as X. In other words, the vertical rectangle corresponding to band i 
in the X axis contains the same number of papers qi as the horizontal rectangle 

                                                           
2 http://portal.acm.org/ 
3 http://citeseer.ist.psu.edu/ 

http://portal.acm.org/
http://citeseer.ist.psu.edu/


corresponding to band i of the Y-axis. We call a point in this chart as a square, and 
each square can contain zero, one, or many papers (not ranks, because the zone 
number represents the actual PR or CC). 

The reasoning behind the use of mirrored banding is that this chart emphasizes 
divergence as distance from the diagonal. At an extreme, plotting a metric against 
itself with mirrored banding would only put papers in the diagonal. Since the overlap 
in PR values is minimal (there are thousands of different values of PR and very few 
papers with the same PR values, most of which having very low CC and very low PR, 
and hence uninteresting), it does not affect in any qualitatively meaningful way the 
banding of the Y-axis. To realize what are the real value of PR and CC is behind of 
each zone please take a look at the Table 1. 

Table 1. The mapping between real CC and PR and the band number. 

Number of band both for CC and PR CC PR 
50 50 6.23 
100 100 14.74 
150 151 26.57 
200 213 38.82 
250 326 58.86 
280 632 113.09 
290 1736 224.12 

3.2   Evaluation 

The described analysis and visualization methodology gives the overall picture for all 
266788 papers on one chart (Fig. 1). The points are strongly biased around the main 
diagonal. This biasing shows the diversity, or difference between PR and CC. There 
are some papers with extremely low citation count but very significant Page Rank, or 
“scientific gems” following Chen et al. [3]. They are the papers cited by several 
heavily cited papers. Being cited by just one extremely high ranked paper may be 
enough to improve PageRank drastically. Fig. 3 represents a piece of full citation 
graph, where there is a real paper with PR>>CC and just 14 citations from other 
papers in the graph. 

In contrast to “scientific gems” there are some other papers below the main 
diagonal, located in the bottom-left part of Fig. 1 and Fig. 2, when CC band is greater 
than 50. Papers in that region have significantly high CC and small PageRank. This is 
caused by “outgoing links effect”. To understand the nature of this effect let us see the 
formula (1). Denominator S in (1) represents the probability to follow the link, and 
being a big number it reduces the Page Rank of a paper. This denominator S is the 
corner-stone of Random Surfer model, and it reflects the fact that all references are 
completely equal from probabilistic point of view. Thus if a paper is cited many times 
by papers with large quantity of outgoing links (papers with long “references” 
section) it may have much lower PageRank than the other papers with the same 
citation count. The example of such a paper is plotted in the middle of Fig. 4, this 
paper has 55 citations and more than 100 times lower PR than “scientific gem” 
plotted in Fig. 3. 



 
Fig. 1. Diversity of Page Rank (PR) and Citation Count (CC). White and black points in the 

bottom-left corner does not mean absence of papers. This is a grayscale of colored map, where 
the major quantity of papers has small number of CC, and since lie exactly in the bottom-left 

corner and it is nearly the same for the both plots. The plot is mirror-like banded. 

 
Fig. 2. Diversity of Focused Page Rank (FPR) and Citation Count (CC). Bottom-left corner 
distribution explained on the Fig. 1 description. Again the plot is mirror-like banded. 



Fig. 2 illustrates the Focused Surfer model and FPR algorithm instead of PR. Focused 
Surfer model gives better chances to more cited papers, at the same time stealing the 
part of the weight from their poorly cited neighbors. This idea leads us to the 
conclusion that in general total FPR rank remains the same as PR, it just gets re-
distributed. This idea is supported by computation of average FPR and PR which are 
nearly the same: <FPR>=0.603 and <PR>=0.602.  

Now let us observe effects present on Fig. 2. The points are located closer to the 
main diagonal4 (comparing with Fig. 1) and there is significantly less papers with big 
CC and small PR (reducing of the effect of outbound links). On the other hand we see 
that “gems”-effect is still noticeable.  

 
Fig. 3 “Scientific gem” in the center. Cited by heavily cited paper (in the bottom). 

 
Fig. 4. The opposite to “scientific gem” paper (in the middle). 
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This means that FPR tends to reduce “outgoing links” effect and tends to make FPR 
closer to the CC. Or in other words it tends to shift the points in Fig. 2 towards the 
main diagonal. This effect of shifting the points towards the main diagonal may be 
numerically evaluated. We compute the difference Δgems=PR-FPR for each square in 
the “gems zone”, where CC band<10 and PR band >10. Then we do the same for the 
opposite “popular papers” zone where CC band>10 and PR band<10. It would be 
Δpopular papers=PR-FPR. We notice that Δgems=3 Δpopular papers, which means that focusing 
eliminates “popular papers” 3 times greater than “gems”. So Focused Page Rank 
tends to keep “gems” while correcting “popular papers” ranks. 

The last plot in Fig. 5 shows the top 100 papers with the biggest CC. There are 3 
curves there: PR, CC and FPR. It is clear from Fig. 5 that FPR is a tradeoff between 
PR and CC in highly cited region. 

 
Fig. 5. Top 100 papers with the highest CC. Bold line is the Focused Page Rank. All ranks 

are normalized by their maximum value, and thus comparable. 

4. Conclusion 

Focused Page Rank has been proposed for the problem of scientific citing. Our major 
strong points are: 
1. It is the tradeoff between Page Rank and Citation Count. So it may serve as an 

agreement between the followers of pure citation count and Page Rank followers. 
2. The proposed Focused Page Rank suffers less from the effect of outbound links. 

Therefore, it is capable to better capture one of the fundamental principles of 
Scientometrics, first time formulated by de Solla Price in 1976 [11]: 

“Success seems to breed success. A paper which has been cited many 
times is more likely to be cited again than one which has been little 



cited. An author of many papers is more likely to publish again than 
one who has been less prolific. A journal which has been frequently 
consulted for some purpose is more likely to be turned to again than 
one of previously infrequent use”. 

3. It captures the power of Page Rank, where not only the quantity of citations, but 
also the quality of ones counts. 
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