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This paper explores citation-based metrics, how they differ in ranking papers and au-
thors, and why. We initially take as example three main metrics that we believe signifi-
cant; the standard citation count, the more and more popular h-index, and a variation we
propose of PageRank applied to papers (called PaperRank), that is appealing as it mir-
rors proven and successful algorithms for ranking web pages. As part of analyzing them,
we develop generally applicable techniques and metrics for qualitatively and quantita-
tively analyzing indexes that evaluate content and people, as well as for understanding
the causes of their different behaviors. Finally, we extend the analysis to other popular
indexes, to show whether the choice of the index has a significant effect in how papers
and authors are ranked. We put the techniques at work on a dataset of over 260K ACM
papers, and discovered that the difference in ranking results is indeed very significant
(even when restricting to citation-based indexes), with half of the top-ranked papers
differing in a typical 20-element long search result page for papers on a given topic, and
with the top researcher being ranked differently over half of the times in an average job
posting with 100 applicants.

Keywords: PageRank; Scientometrics; Citation analyses.

1. Introduction

The area of scientific metrics (metrics that assess the quality and quantity of sci-
entific productions) is an emerging area of research aiming at the following two
objectives: 1) measuring scientific papers, so that ”good” papers can be identified
and so that researchers can quickly find useful contributions when studying a given
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field, as opposed to browsing a sea of papers, and 2) measuring individual con-
tributions, to determine the impact of a scientist and to help screen and identify
candidates for hiring and promotions in industry and academia.

Until only 20 years ago, the number of researchers and of conferences was rel-
atively small, and it was relatively easy to assess papers and people by looking
at papers published in international journals. With small numbers, the evaluation
was essentially based on looking at the paper themselves. In terms of quantitative
and measurable indexes, the number of publication was the key metric (if used at
all). With the explosion of the number of researchers, journals, and conferences, the
”number of publications” metric progressively lost meaning. On the other hand,
this same explosion increased the need for quantitative metrics at least to ”filter
the noise”. For example, a detailed, individual, qualitative analysis of hundreds of
applications typically received today for any job postings becomes hard without
quantitative measures for at least a significant preliminary filtering. Recently, the
availability of online databases and Web crawling made it possible to introduce and
compute indexes based on the number of citations of papers (citation count and its
variations or aggregations, such as the impact factor and the h and g indexes [9]) to
understand the impact of papers and scientists on the scientific community. More
and more, Universities (including ours) are using these indexes as a way to filter or
even decide how to fill positions by ”plotting” candidates on charts based on several
such indexes. This paper performs an experimental study of scientific metrics (and,
in particular, citation-based metrics) with the goal of 1) assessing the extent of
differences and variations on the evaluation results when choosing a certain metric
over another, and 2) understanding the reasons behind these differences. Besides
”traditional” metrics, we also present and discuss metrics for papers and authors
inspired at how the significance of Web pages is computed (essentially by consider-
ing papers as web pages, citations as links, and applying a variation of PageRank).
PageRank-based metrics are emerging as important complement to citation counts
as they incorporate the ”weight” (the reputation or authority) of the citing paper
and its density of citations (how many other papers it references) in the metric. In
addition, the fact that they have been working very well for the Web suggests that
they may be insightful for papers as well. Besides the introduction of the PageRank-
based index and its computation algorithm, the main contributions of this paper lie
1) in the experimental analysis of metrics, so that people and developers in ”rank-
ing” papers and people are aware of how much choosing different indexes results in
different versions of the truth, and why this is the case, and 2) in the identification
of a generally applicable analysis method and of a set of indicators to assess the
difference between ranking algorithms for papers and people. We performed the
analysis on a dataset consisting of over 260K ACM publications. The analysis was
conducted by 1) computing the various citation-based indexes; 2) analyzing the ex-
tent of the differences in ranking of papers and people depending on the metric, 3)
developing ”meta-indexes” whose purpose is to help explore the reasons for these
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differences, and 4) using these exploration indexes to derive conclusions of when
and why page rank and citation measures differ and what to make of this differ-
ence. The results of the analysis are rather surprising, in that even if we restrict to
citation-based indexes, the choice of the specific index rather than another changes
the result of filtering and selection of papers and people about half of the times.
The structure of the paper is as follows. Related work is presented in Section 2.
In section 3 we describe the dataset and in Section 4 we focus on the presentation
of the main indexes for papers and for authors and on their computation for the
particular dataset. The in-depth exploration of the indexes is provided in Section 5
(for papers) and section 6 (for authors), along with comments and discussions on
the results and with the introduction of the appropriate meta-indexes. Finally, the
major findings of the present work are summarized in Section 7. On viewing the
charts and exploring the dataset: we remark that charts need to be seen/printed
in color. The charts in this paper as well as a set of additional plots are available
at the companion web page . We can prepare versions readable in grayscale but
they are much less effective. Furthermore, we can make the dataset available to the
review committee. We did not yet get the permission to make it publicly available
to the scientific community at large.

2. State-of-the-art

After the Second World War, with the increase in funding of Science and Technol-
ogy (S&T) initiatives (especially by public institutions), the need for supervising
and measuring the productivity of research projects, institutions, and researcher
themselves became apparent [7, 8]. Scientometrics was then born as a science for
measuring and analysing quantitatively science itself [6]. Nowadays, the quantitative
study of S&T is a rapidly developing field, also thanks to a greater availability of
information about publications in a manner that is easy to process (query, analyze).
The easiest measure to show any individual scientist’s output is the total number
of publications. However, this index does not express the quality or impact of the
work, as the high number of conferences and journals make it easy to publish even
low quality papers. To take quality and impact into account, the citations that a pa-
per receives emerged, in various forms, as a leading indicator. The citation concept
for academic journals was proposed in the fifties by Eugene Garfield, but received
the deserved attention in 1963 with the birth of the Science Citation Index (SCI)
[7]. SCI was published by the Institute for Scientific Information (ISI) founded by
Garfield himself in 1960 and currently known as Thomson Scientific that provides
the Web of Science on-line commercial database. The most studied and commonly
used indexes (related to SCI) are, among others [13]:

(i) P-index: or just number of articles of author.
(ii) CC-index: number of citations excluding self-citations.
(iii) CPP: or average number of citations per article.
(iv) Top 10% index: the number of papers of a person that are in the top 10% most
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frequently cited papers in the domain during the past 4 years.
(v) Self-citation percentage.
(vi) Career length in years.
(vii) Productivity: quantity of papers per time-unit.

Although most of the indexes are related mainly to authors, they can also be
applied to measuring communities, institutions or journal, using various forms of
aggregation. In the last decade new indexes have been proposed. These indexes
are rapidly gaining popularity over the more traditional citation metrics described
above:

(i) H-index, proposed by Hirsh in [9]. The H-index for an author is the maximum
number h such that the author has at least h articles with h citations each.
This index is widely used (including in our University), and comes in different
flavors (e.g., normalized based on average number of authors of papers, on the
average citations in a community, etc).

(ii) The G-index for an author is the maximum number g such that the most cited
g papers of an author collectively received g2 citations. The g index takes into
account papers with very high citations, which is something that is smoothed
out by the h-index.

In addition, we mention below some algorithm for ranking Web pages. They are
relevant as many of them have been very successful for ranking web content, and
papers share some similarities with Web sites, as they can be seen as a sort of
hypertext structure is papers are seen as web pages and citations are seen as links.

(i) Hypertext-Induced Topic Selection (HITS) [11]: based on graph linkage inves-
tigation, it operates with two notions: ”authority” and ”hub”, where authority
represents relevance of the page (graph node) to query and hub estimates the
value of the node’s links to other pages.

(ii) PageRank (described in more detailed in the following): a well-known and suc-
cessful ranking algorithm for Web pages [3], based on net random walking
probabilistic model. When modified for ranking scientific papers, it has been
shown to give interesting results [4].

(iii) Hilltop [1]. This algorithm is based on the detection of ”expert pages”, i.e.,
pages that have many outgoing links (citations) and are relevant to a topic.
Pages that are linked by expert ones have better rank.

In our work we adopt a variation of PageRank as one of the main indexes used
for the analysis of differences among indexes. The intuition behind PageRank is
that a web page is important if several other important web pages point to it.
Correspondingly, PageRank is based on a mutual reinforcement between pages: the
importance of a certain page influences and is being influenced by the importance
of some other pages. From a computational point of view, PageRank is a statistical
algorithm: it uses a relatively simple model of ”Random Surfer” [3] to determine
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the probability to visit a particular web page. Since random browsing through
a graph is a stochastic Markov process, the model is fully described by Markov
chain stochastic matrix. The most intriguing question about PageRank is how to
compute one for a dataset as huge as the web. The inventors of PageRank, Brin and
Page, proposed a quite effective polynomial convergence method [3], similar to the
Jacobi methods. Since then, a significant amount of research has been done in the
exploration of the meaning of PageRank and proposals for different computation
procedures [2, 5, 4]. When the attention is shifted from web pages to scientific
citations, the properties of the citation graph - mainly its sparseness - has been
used to simplify the computational problem [15]. In our work, we have based our
computations on a variation of Page Rank (called Paper Rank) for ranking scholarly
documents explained in detail in Section 4. From a computational perspective, the
difference is that the algorithm we propose exploits the fact that in citations, unlike
in web links, cycles are very rare. In terms of comparison among scientific metrics
for determining the difference in the ranking results they generate (and methods
for evaluating such differences), there is no prior art to the best of our knowledge.

3. Data set description and data preprocessing

The starting point for our analysis is a dataset of 266788 papers published in ACM
conferences or journals, and authored by 244782 different authors. The dataset was
available as XML documents that for each paper describes information such as au-
thors, title, year of publication, journal, classification and keywords (for some of the
papers), journal volume and pages, and citations. A sample of the dataset format is
available at the companion web page mentioned earlier. The set is biased in terms
of citation information. For any given paper in the set, we have all its references
(outgoing citations), but we only have citations to it (incoming citations) from other
papers in the dataset, and hence from ACM papers. To remove the bias (to the possi-
ble extent), we disregard references to non-ACM papers. In other words, we assume
that the world, for our citation analysis, only consists of ACM papers. Although we
have no measurable evidence, given that we are comparing citation-based metrics
we believe that the restriction to an ”ACM world” does not change the qualita-
tive results of the analysis. Including references to non-ACM papers would instead
unfairly lower the measure for Paper Rank since, as we will show, Paper Rank is
based on both incoming and outgoing citations. This being said, we also observe
that the quality of the chosen dataset is very high. The majority of papers have
been processed manually during the publishing process and all author’s names have
been disambiguated by humans. This is crucial since systems like Google Scholar
or Citeseer contain errors in the disambiguation of authors names and citations.
In fact, both Goodle Scholar or other autonomous digital libraries like Citeseer or
Rexa use machine learning-based unsupervised techniques to disambiguate the in-
formation and are prone to introduce mistakes. A preliminary study of these errors
in Google Scholar is presented in [14]. Besides disambiguation errors, crawled in-
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formation may include spurious types of documents like deliverables, reports, white
papers, etc. Indeed, Scholar includes in its statistics the citations coming from
project deliverables or even curricula vitae, which are not commonly considered to
be academically meaningful citations. Thus, although incomplete, the ACM dataset
has a high level of quality in particular in respect to authors and citations. The full
citation graph of the ACM dataset has 951961 citations, with an average of 3.6 out-
going citations per paper (references to other ACM papers). Figure 1 shows instead
how many papers have a given (incoming) citation count (hereafter called CC). As
expected, there is a very large number of papers with low, near-zero citations and
a few papers with a high number of citations.

Fig. 1. Distribution of papers by Citation Count.

The years of publication of the papers in the dataset vary from 1950 to 2005
with most emphasis on the recent two decades due to the increase in the number
of publications.

4. Paper Rank and PR-Hirch

This section describes the Paper Rank (PR) algorithm for ranking papers and the
corresponding measure (PR-Hirsch) for ranking authors.
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4.1. Page Rank outline

The original Page Rank algorithm [3] ranks the nodes of a directed graph with N

vertices. The rank of a node is determined by the following recursive formula, where
S(j) is the quantity of outgoing links from a node Pj . are just sequence numbers
and D is the set of nodes such that there is a path in the graph from them to node
i.

Pi =
j∈D∑

i 6=j

Pj

S(j)
(1)

The formula can be seen in matrix form and the computation can be rewritten
as an eigenvector problem:

~r = A~r (2)

where A is the transition matrix, or stochastic Markov matrix. This considera-
tion exposes several potential problems in rank computation as discussed in [2, 12].
One of them is the presence of the nodes which link to other nodes but are not
linked by other nodes, called dangling nodes. In this case, equation 2 may have no
unique solution, or it may have no solution at all (it will lead to zero-rows occur-
rence in the transition matrix and uncertainty of the rank of the dangling nodes).
Such problem may be resolved with the introduction of a dump-factor d. The dump
(or decay) factor is a positive double number 0 < d < 1:

Pi = (1− d)
j∈D∑

i 6=j

Pj

S(j)
+

d

N
(3)

The damp factor was proposed by the PageRank inventors, Page and Brin. In
their publication [3], Page and Brin give a very simple intuitive justification for
the PageRank algorithm: they introduce the notion of ’random surfer’. Since in
the specific case of web pages graph, the equivalent stochastic Markov matrix can
be described as browsing through the links, we may imagine a ’surfer’ who makes
random paths through the links. When the surfer has a choice of where to go, it
chooses randomly the next page to visit among the possible linked pages The damp
factor models the fact that surfers at some point get bored of following links and
stop (or begin another surf session). The damp factor therefore also reduces the
probability of surfers ending up in dangling nodes, especially if the graph is densely
connected and dangling nodes are few. The damp factor helps to achieve two goals
at once: 1) faster convergence using iterative computational methods, 2) ability to
solve the equation, since all the nodes must have al least d/N Page Rank even if
they are not cited at all.
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4.2. Paper Rank

PageRank has been very successful in ranking web pages, essentially considering
the reputation of the web page referring to a given page, and the outgoing link
density (pages P linked by pages L where L has few outgoing links are considered
more important than pages P cited by pages L where L has many outgoing links).
Paper Rank (PR) applies page rank to papers by considering papers as web pages
and citations as links, and hence trying to consider not only citations when ranking
papers, but also taking into account the rank of the citing paper and the density
of outgoing citations from the citing paper. From a computation perspective, PR is
different from Page Rank in that loops are very rare, almost inexistent. Situations
with loop where a paper A cites a paper B and B cites A are possible when authors
exchange their working versions and cite papers not yet published but accepted for
publication. In our dataset, we have removed these few loops (around 200 loops
in our set). This means that the damp factor is no longer needed to calculate PR.
Because of the above analysis, we can compute PR directly according to the formula
1. Furthermore, considering that a citation graph has N¿¿1 nodes (papers), each
paper may potentially have from 1 to N-1 inbound links and the same quantity of
outgoing ones. However, in practice citation graphs are extremely sparse, (articles
normally have from 5 to 20 references) and this impact the speed of the computation
of PR. However, also in this case the matrix form of the problem (i.e. formula 2 may
have no solution, now because of initial nodes (nodes who are cited but do not cite).
To avoid this problem we slightly transform initial problem assigning a rank value
equal to 1 to all initial nodes, and resetting it to zero at the end of the computation
(as we want to emphasize that papers who are never cited have a null paper rank).
Now the problem became solvable and the Markov matrix may be easily brought
to the diagonal form. We used fast and scalable recursive algorithm for calculating
Paper Rank, which corresponds to the slightly different equation:

~r = A~r + ~r0 (4)

4.3. PR-Hirsch

One of the most widely used indexes related to author is the H-index proposed by
Jorge Hirsch in 2004 [9] and presented earlier. The H-index tries to value consistency
in reputation: it is not important to have many papers, or many citations, but many
papers with many citations. We propose to apply a similar concept to measure
authors based on PR. However, we cannot just say that PRH is the maximum
number q such that an author has q papers with rank q or greater. This is because
while for H-index it may be reasonable to compare number of papers with number
of citations the papers have, for PRH this may not make sense as PR is for ranking,
not to assign a meaningful absolute number to a paper. The fact that a paper has
a CC of 45 is telling us something we can easily understand (and correspondingly
we can understand the H-index), while the fact that a paper has a PR of 6.34 or
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0.55 has little ”physical meaning”. In order to define a PR-based Hirsh index, we
therefore rescale PR so that it gets to a value that can be meaningfully compared
with the number of papers. Let’s consider in some detail our set: we have a graph
with N nodes (vertices) and n citations (edges). Each i-th node has PR equal to
Pi, that expresses the probability for a random surfer to visit a node, as in the Page
Rank algorithm. So let’s assume that we run exactly n surfers (equal to quantity of
citations), and calculate the most probable quantity of surfers who visited node i.
If the probability to visit the node i for one surfer is pi, expectation value Qi for n

surfers to visit the node i will be pi · n, which is most probable quantity of surfers,
who visited node i. We multiply probabilities since all surfers are independent. To
be precise we should first normalize PR for each node according to full probability
condition:

∑
i pi = 1. If the total sum of all PRs equals to M , the expected value

for n surfers is as follows:

Qi = Pi
n

M
(5)

Where Pi is a Paper Rank of the paper i, n/M is the constant ≈ 5.9169 for our
citation graph. So in other words we rescale PR to make it comparable with the
quantity of citations. Indeed, Qi is the most probable quantity of surfers who visited
a specific paper i, whereas to compute Hirsch index we use quantity of citations
for the paper i. It is interesting to compare the ranges of Q and citation count
(see 4.3). Following the definition of H-index and the previous discussion, we define
PR-Hirsch as the maximum integer number h such that an author has at least h

papers with Q value (i.e. rescaled PR following equation 5) equal or greater than
h.

Table 1. Comparison of citation count and random surfers
count mathematical expectation values for all papers in
graph.

Average Q Maximum Q Average CC Maximum CC

3.57 1326.77 3.57 1736

5. Exploring Paper Metrics

This section explores the extent of the differences between paper metrics PR and
CC when ranking papers, and their causes. As part of the analysis we introduce
concepts and indexes that go beyond the PR vs CC analysis, and that are generally
applicable to understanding the effects and implications of using a certain index
rather than another for assessing papers’ value.
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5.1. Plotting the difference

The obvious approach to exploring the effect of using PR vs CC in evaluating papers
would consist in plotting these values for the different papers. Then, the density of
points that have a high CC and low PR (or vice versa) would provide an indication
of how often these measures can give different quality indication for a paper. This
leads however to charts difficult to read in many ways: first, points overlap (many
papers have the same CC, or the same PR, or both). Second, it is hard to get a
qualitative indication of what is ”high” and ”low” CC or PR. Hence, we took the
approach of dividing the CC and PR axis in bands. Banding is also non-trivial.
Ideally we would have split the axes into 10 (or 100) bands, e.g., putting in the first
band the top 10% (top 1%) of the papers based on the metric, to give qualitative
indications so that the presence of many papers in the corners of the chart would
denote a high divergence. However the overlap problem would remain, and it would
distort the charts in a significant way since the measures are discrete. For example
the number of papers with 0 citations is well above 10%. If we neglect this issue
and still divide in bands of equal size (number of papers), papers with the same
measure would end up in different bands. This gives a very strong biasing in the
chart (examples are provided in the companion page). Finally, the approach we
took (Figure 2) is to divide the X-axis in bands where each band corresponds to a
different citation count measure. With this separation we built 290 different bands,
since there are 290 different values for CC (even if there are papers with much higher
CC, there are only 290 different CC values in the set). For the Y-axis we leverage
mirrored banding, i.e., the Y-axis is divided into as many bands as the X-axis, also
in growing values of PR. Each Y band contains the same number of papers as X (in
other words, the vertical rectangle corresponding to band i in the X axis contains
the same number of papers qi as the horizontal rectangle corresponding to band i of
the Y-axis). We call a point in this chart as a square, and each square can contain
zero, one, or many papers. The reasoning behind the use of mirrored banding is
that this chart emphasizes divergence as distance from the diagonal (at an extreme,
plotting a metric against itself with mirrored banding would only put papers in
the diagonal). Since the overlap in PR values is minimal (there are thousands of
different values of PR and very few papers with the same PR values, most of which
having very low CC and very low PR, and hence uninteresting), it does not affect
in any qualitatively meaningful way the banding of the Y-axis.

Table 2 gives an indication of the actual citation and PR values for the different
bands.

The chart in Figure 2 shows a very significant number of papers with a low CC
but a very high PR. These are the white dots (a white color corresponds to one
paper). Notice that while for some papers the divergence is extreme (top left) and
immediately noticeable, there is a broad range of papers for which the difference
is still very significant from a practical perspective. Indeed, the very dense area
(bands 1-50) includes many excellent papers (CC numbers of around 40 are high,
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Fig. 2. CC vs PR. X axis plots CC bands, Y axis plots PR mirror-banded by CC. The color
corresponds to the number of papers within a band. (For actual values of PR and CC for each
band see Table 5.1).

Table 2. Mapping of band number to the actual value
of CC or average actual value for PR.

Number of band both for CC and PR CC PR

50 50 6.23
100 100 14.74
150 151 26.57
200 213 38.82
250 326 58.86
280 632 113.09
290 1736 224.12

and even more considering that we only have citations from ACM papers). Even in
that area, there are many papers for which the band numbers differ significantly if
they are ranked by CC or PR.

To give a quantitative indication of the difference, Table 5.1 below shows how
far apart are the papers from the diagonal. The farther away the papers, the more
the impact of choosing an index over another for the evaluation of that paper.

The mean value for the distance from the main diagonal is 3.0 bands, while the
standard deviation is 3.4. This deviation from the average is rather significant, i.e.
in average the papers are dispersed through 3 bands around main diagonal. In the
subsequent discussion, we will qualitatively refer to papers with high PR and high
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Table 3. Deviation of papers around main diagonal.

Distance in bands from the diagonal % of papers with this distance

0 36.83
1 24.30
2 13.02
3 5.76
4 5.43
5 2.50
6 1.70
7 1.34
8 1.86
9 1.57
10 0.79
≥11 4.89

CC as popular gems, to paper with high PR and low CC as hidden gems, to papers
with low PR and high CC as popular papers, and to papers with low CC and PR
as dormant papers (which is an optimistic term, on the assumption that they are
going to be noticed sometime in the future).

5.2. Divergence

The plots and table above are an attempt to see the difference among metrics,
but it is hard from them to understand what this practically means. We next try to
quantitatively assess the difference in terms of concrete effects of using a metric over
another for what metrics are effectively used, that is, ranking and selection. Assume
we are searching the Web for papers on a certain topic or containing certain words
in the title or text. We need a way to sort results, and typically people would look
at the top result, or at the top 10 or 20 results, disregarding the rest. Hence, the key
metric to understand divergence of the two indexes is how often, on average, the top
t results would contain different papers, with significant values for t = 1, 10, 20. In
the literature, the typical metric for measuring a difference between two rankings
is the Kendall τ distance [10], measured as the number of steps needed to sort
bi-ranked items so that any pair A and B in the two rankings will satisfy to the
condition

sign(R1(A)−R1(B)) = sign(R2(A)−R2(B)) (6)

where R1 and R2 are two different rankings. However, this measure does not give us
an indication of the practical impact of using different rankings, both for searching
papers and, as we will see later, for authors. What we really want to understand is
to see the distance between two rankings based on the actual paper search patterns.
Assume we are searching the Web for papers on a certain topic or containing certain
words in the title or text. We need a way to sort results, and typically people will
look at the top result, or at the top 10 or 20 results, disregarding the rest. Hence, the
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Table 4. Experimentally measured divergence for the set of
ACM papers.

t DivPR,CC(t, 1000, S), in % DivPR,CC(t, 1000, S)

1 62.40 0.62
10 49.94 4.99
20 46.42 9.28
40 43.29 17.31
60 42.51 25.5
80 41.75 33.39
100 40.52 40.52

key metric to understand divergence of the two indexes is how often, on average, the
top t results would contain different papers, with significant values for t = 1, 10, 20.

For example, the fact that the papers ranked 16 and 17 are swapped in two different
rankings is considered by the Kendall distance, but is in fact irrelevant from our
perspective. To capture this aspect, we propose a metric called divergence, which
quantitatively measures the impact of using one scientometric index versus the
other. Consider two metrics M1 and M2 and a set of elements (e.g., of papers) S.
From this set S, we take a subset n of elements, randomly selected. For example, we
take the papers related to a certain topic. These n papers are ranked, in two different
rankings, according to two metrics M1 and M2, and we consider the top t elements.
We call divergence of the two metrics, DivM1,M2(t, n, S), the average number of
elements that differ between the two sets (or, t minus the number of elements that
are equal). For example, if S is our set of ACM papers, and n are 1000 randomly
selected papers (say, the papers related to a certain topic or satisfying certain search
criteria), DivCC,PR(20, 1000, S) measures the average number of different papers
that we would get in the typical 20-item long search results page. We measured
the divergence experimentally for CC and PR, obtaining the results in the table
below. As a particular case, DivM1,M2(1, n, S) measures how often does the top
paper differs with the two indexes.

The table is quite indicative of the difference, and much more explicit than the
plots or other evaluation measures described above. In particular, the table shows
that more than almost 2/3 of the times, the top ranked paper differs with the two
metrics. Furthermore, and perhaps even more significantly, for the traditional 20-
element search result page, nearly half of the paper would be different based on
the metric used. This means that the choice of metric is very significant for any
practical purposes, and that a complete search approach should use both metrics
(provided that they are both considered meaningful ways to measure a paper). In
general we believe that divergence is a very effective way to assess the difference
of indexes, besides the specifics of CC and PR. We will also see the same index on
authors, and the impact that index selection can therefore have on people’s careers.
Details on the experiments for producing these results and the number of measures
executed are reported in the companion web page.
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5.3. Understanding the difference

We now try to understand why the two metrics differ. To this end, we separate the
two factors that contribute to PR, see equation 1: the PR measure of the citing
papers and the number of outgoing links of the citing papers. To understand the
impact of the weight, we consider for each paper P the weight of the papers citing
it (we call this the potential weight, as it is the PR that the paper would have if
all the citing papers P only cited P ). We then plot (Figure 3) the average potential
weight for the papers in a given square (intersection of a CC and a PR band) in the
banded chart. The estimation of the impact of outgoing links can be done in various
ways. For example, we can take the same approach as for the weight and compute
a double average over the outgoing links (for each paper P , compute the average
number of outgoing links of the set S(P ) of papers citing P , and then average them
for all papers of a square in the CC vs PR chart). This is useful but suffers from
the problem that if some papers (maybe ”meaningless” paper with very low PR,
possibly zero) have a very high number of outgoing links, they may lead us to believe
that such high number of links may be the cause for a low PR value for a paper,
but this is not the case (the paper is only loosing very few PR points, possibly even
zero, due to these outgoing links). A high value of this measure therefore is not
necessarily indicative of the number of outgoing links being a factor in low values
of PR.

Fig. 3. Average potential weight for all papers in a square The color in the Z-axis denotes the
weight X axis plots CC bands, Y axis plots PR mirror-banded by CC.
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A more meaningful approach is to measure the HOC index for each paper P,
defined as the maximum number h such that P is cited by at least h papers, each
having at least h outgoing links. HOC stands for Hirsch for outgoing citation, where
the reference to Hirsch is because the way it is defined resembles the Hirsch index
for papers. Plotting the average HOC for all papers in a square gives us a better
indication of the overall impact of outgoing links on a paper PR because it smoothes
the effect of a few papers having a very high number of outgoing links. Again,
examples of these plots can be found in the companion web page. This measure is
useful but does not take into account the fact that what we really want to see when
examining the effect of outgoing links from citing paper is the ”weight dispersion”,
that is, how much weight of the incoming papers (i.e., how much potential weight)
is dispersed through other papers as opposed to being transmitted to P. This is
really the measure of the ”damage” that outgoing links do to a Paper Rank. We
compute the dispersed weight index for a paper P (DW(P)) as the sum of the PR
of the citing papers C(P) (that is, the potential weight of P) divided by the PR of
P (the actual weight). Figure 4 plots the average dispersed weight for each square,
as usual by CC and PR. The dark area in the bottom right corner is because there
are no papers there.

These two charts very clearly tell us that outgoing links are the dominant effect
for the divergence between CC and PR. Papers having a high CC and low PR have a
very high weight dispersion, while papers with high PR and low CC are very focused
and able to capture nearly all potential weight. The potential weight chart (Figure
3) also tends to give higher numbers for higher PR papers but the distribution is
much more uniform in the sense that there are papers in the diagonal or even below
the diagonal and going from the top left to the bottom right the values do changes
but not in a significant way (especially when compared to the weight dispersion
chart). To see the difference concretely on a couple of example, we take a ”hidden
gem” and a ”popular paper”, see Figure 5.

The specific gem is the paper Computer system for inference execution and data
retrieval, by R. E. Levien and M. E. Maron, 1967. This paper has 14 citations in
our ACM-only dataset (Google Scholar shows 24 citations for the same paper). The
PR of this ”hidden gem” is 116.1, which is a very high result: only 9 papers have a
greater rank. Let’s go deep inside the graph to see how this could happen. Figure
6 shows all the incoming citations for this paper up to two levels in the citation
graph. The paper in the center is our ”gem”, and this is because it is cited by
an heavyweight paper that also has little dispersion: it cites only two papers. We
observe that this also means that in some cases a pure PR may not be robust,
meaning, the fact that our gem is cited by a heavyweight paper may be considered
a matter of ”luck” or a matter of great merit, as a highly respected ”giant” is citing
it. Again, discussing quality of indexes and which is ”better” or ”worse” is outside
our analysis scope, as is the suggestion for the many variations of PR that could
make it robust.

We now consider a paper in the bottom of the CC vs PR plot, a paper with
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Fig. 4. Average dispersed weight for all papers in a square The color in the Z-axis denotes the
weight X axis plots CC bands, Y axis plots PR mirror-banded by CC.

high number of citations but relatively low PR. The corresponding citation graph is
shown in Figure 7. This paper has 55 citations in our ACM dataset (158 citations in
Google Scholar) and a relatively poor PR of 1.07. This result is not particularly bad,
but it is much worse than other papers with similar number of citations. There are
17143 papers in the dataset that have grater Paper Rank and just 1394 papers with
better citation count. Comparing with papers in the same CC and PR band, this
paper has a weight dispersion factor that is over twice that of papers in the same
CC band and three times the one of papers in the same PR band, which explain
why the increased popularity with respect to papers in the same PR band did not
correspond to a higher PR. As a final comment, we observe that very interestingly
there are papers with very low CC and very high PR, but much less papers - almost
none - with very high CC and very low PR. If we follow the dispersion plot this is
natural, as it would assume that the dispersed weight should be unrealistically high
(many papers with hundreds of citations) which does not happen in practice, while
it is possible to have ”heavyweight” papers with very few citations that make the
presence of paper gems (papers in the top left part) possible. However, we believe
that the absence of papers in the bottom right part and, more in general, the skew
of the plot in Figure 2 towards the upper left is indicative of a ”popularity bias”.
In the ideal case, an author A would read all work related to a certain paper P and
then decide which papers to reference. In this case, citations are a very meaningful
measure (especially if they are positive citations, as in the motto ”standing on
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Fig. 5. ”Gem” and ”popular paper” (or ”stone”) relative positions.

the shoulders of giants”). However this is impossible in practice, as nobody can
read such a vast amount of papers. What happens instead is that author A can
only select among the papers she ”stumbles upon”, either because they are cited
by other papers or because they are returned first in search results (again often a
result of high citation count) or because they are published in important venues.
In any event, it is reasonable to assume that authors tend to stumble upon papers
that are cited more often, and therefore these papers have a higher chance of being
cited than the ”hidden gems”, even if maybe they do not necessarily have the same
quality. We believe that it is for this reason that over time, once a paper increases
with citation count, it necessarily increases with the weight, while gems may remain
”hidden” over time. A detailed study of this aspect (and of the proper techniques
for studying it) is part of our future work.

6. Exploring Author Metrics

6.1. Plotting the difference

We now perform a similar analysis on authors rather than papers. For this, we
initially consider PRH and Hirsch as main metrics, and then extend to other metrics.



May 11, 2009 20:0 WSPC/INSTRUCTION FILE acs-2009-metrics

18 Mikalai Krapivin, Maurizio Marchese, Fabio Casati

Fig. 6. One of the ”hidden gem” in the dataset, paper of E. Levien and M. E. Maron (in the
center). Arrows refer to incoming citations. The digits near the papers refer to the quantity of
outgoing links.

The plot to visualize the differences (Figure 8) is similar in spirit to the one for CC
vs PR. The X-axis has Hirsch values, while the Y-axis has PRH values. A first
observation is that applying ”Hirshing” to CC and PR to get H-index and PRH
smoothes the differences, so we do not have points that are closer to the top left
and bottom right corners. This could only happen, for example, if one author had
many papers that are hidden gems.

Since the authors with low Hirsch and PRH are dominant, a log scale was used
plotting Figure 6. This increased similarity is also shown in Table 5, where many
papers are on the diagonal (this is also due to the fact that we have a much smaller
number of squares in this chart). The mean distance from the diagonal is 0.25 bands,
while the standard deviation is 0.42 bands. Interestingly, as we will see, though at
first look the differences seem less significant, the impact of using one rather than
the other index is major.
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Fig. 7. ”Popular paper” (in the center): relatively highly cited but not very well-ranked.

Fig. 8. The gradient of Hirch and PRHirch in log scale. Author’s density is plotted with colors:
authors’ number goes from 1 to 149170 of authors per square. PR-Hirch has been rounded.

6.2. Divergence

The same measure of divergence described for papers can be computed for authors.
The only difference is that now the set S is a set of authors, and that the indexes
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Table 5. Deviation of authors around main diagonal.

Distance in bands from the main diagonal Percent of authors with this distance

0 83.07%
1 12.23%
2 2.90%
3 0.99%
4 0.40%
5 0.19%
6 0.09%
7 0.05%
8 0.03%
9 0.02%
10 0.01%
≥11 0.01%

Table 6. Divergence between PRH and H, n = 100.

t DivPRH,H(t) divergence for PR-Hirsch and Hirsch

1 59.3%
5 50.04%
10 46.13%
20 43.47%

are H-index and PRH instead of CC and PR. We also compute it for n=100, as
the experiment we believe it is meaningful here is to consider replies to a typical
job posting for academia or a research lab, generating, we assume, around 100
applications. (Statistics for other values of n are reported in the companion web
page).

Although nobody would only make a decision based on indexes, they are used
more and more to filter applications and to make a decision in case of close calls
or disagreements in the interview committees. The table tells us that almost two
third of the times, the top candidate would differ. Furthermore, if we were to filter
candidates (e.g., restrict to the top 20), nearly half of the candidates passing the
cutoff would be different based on the index used. This fact emphasizes once again
that index selection, even in the case of both indexes based on citations, is key to
determining the result obtained, be them searching for papers or hiring/promotion
of employees. Notice also that we have been only looking at differences in the el-
ements in the result set. Even more are the cases where the ranking of elements
differ, even when the t elements are the same. Another interesting aspect is that the
divergence is so high even if the plot and Table 5 show values around the diagonal.
This is because most of the authors have a very low H and PRH (these accounts for
most of the reasons why authors are on average on the diagonal). However, and this
can also be seen in the plot, when we go to higher value of H and PRH, numbers
are lower and the distribution is more uniform, in the sense that there are authors
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Table 7. Divergence for the different indexes in %, n = 100 (for simplicity
the Div() notation is omitted).

t PRH vs G PRH vs TCC H vs TCC H vs G G vs TCC

1 56.3 56.4 38.2 34.6 29.9
5 45.66 46.38 29.48 25.58 23.84
10 43.05 43.03 27.9 22.94 22.95
20 41.3 41.66 27.63 21.70 22.62

also relatively far away from the diagonal (see the softer colors and the distributions
also far from the diagonal towards the top-right quadrant of Figure 8). Incidentally,
we believe that this confirms the quality of divergence as a metric in terms of con-
cretely emphasizing the fact that the choice of index, even among citation-based
ones, has a decisive effect on the result. We omit here the section on ”understanding
the difference” as here it is obvious and descends from the difference between CC
and PR, described earlier and used as the basis for PRH and Hirsch respectively.

6.3. Divergence between other indexes

The discussion above has focused on PRH vs H. We now extend the same analysis
to other indexes. The table below shows a comparison for PRH, H, G index, and
the total citation count for an author (the sum of all citations for the paper by an
author, denoted as TCC in the table).

The first lesson we learn from the table is that no two indexes are strongly
correlated. The higher correlation is between G and the total citation count, and
we still get the top choice different in one out of four cases. The other interesting
aspect is that PRH and H are the pair with the highest divergence, which makes
them the two ideal indexes to be used (in case one decides to adopt only two
indexes).

7. Conclusions and future work

This paper has explored and tried to understand and explain the differences among
citation-based indexes. In particular, we have focused on a variation of Page Rank
algorithm specifically design for ranking papers - that we have named Paper Rank
- and compared it to the standard citation count index. Moreover, we have ana-
lyzed related indexes for authors, in particular the Paper Rank Hirsh-index and the
commonly-used H-index. We have explored in details the impact they can have in
ranking and selecting both papers and authors. The following are the main findings
of this paper:

• PR and CC are quite different metrics for ranking papers. A typical search would
return half of the times different results.

• The main factor contributing to the difference is weight dispersion, that is, how
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much weight of incoming papers is dispersed through other papers as opposed to
being transmitted to a particular paper.

• For authors, the difference between PRH and H is again very significant, and
index selection is likely to have a strong impact on how people are ranked based
on the different indexes. Two thirds of the times the top candidate is different,
in an average application/selection process as estimated by the divergence.

• An analogous exploration of divergence between several citation-based indexes
reveal that all of them are different in ranking papers, with g-index and total
citation count being the most similar.

In addition to the findings, we believe that:

• Divergence can be a very useful and generally applicable metric, not only for com-
paring citation-based indexes, but also for comparing any two ranking algorithms
based on practical impact (results).

• There are a significant number of ”hidden gems” while there are very few ”popular
papers” (non gem). The working hypothesis for this fact (to be verified) is that
this is due to citation bias driven by a ”popularity bias” embedded in the author’s
citation practices, i.e. authors tend to stumble upon papers that are cited more
often, and therefore these papers have a higher chance of being cited.

The exploration of the citation bias hypothesis is our immediate future research,
along with the extension of our dataset to a more complete coverage of the citation
graph, to analyze the its possible influence on the different indexes.
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