

Abstract— Time-driven Switching (TDS) networks with

non-immediate forwarding (NIF) provides scheduling

flexibility and consequently, reduces the blocking

probability (blocking is defined to take place when

transmission capacity is available, but without a feasible

schedule). However, it has been shown that with NIF

scheduling complexity may grow exponentially. Efficiently

finding a schedule from an exponential set of potential

schedules is the focus of this paper. The work first presents

the mathematical formulation of the NIF scheduling

problem, under a wide variety of networking

requirements, then introduces an efficient (i.e., having at

most polynomial complexity) search algorithm that

guarantees to find at least one schedule whenever such a

schedule exists. The novel algorithm uses ‘trellis’

representations and the well-known survivor-based

searching principle.

Index Terms— scheduling, search algorithms, time-driven

switching, pipeline forwarding, optical networks

I. INTRODUCTION

cheduling for flexible bandwidth provisioning in

heterogeneous networks while satisfying various service

requirements is critical in next generation networking. The

main context of this work is time-driven Switching (TDS), see

[1]-[6], which is a scalable switching design based on UTC

(Coordinated universal time) with pipeline forwarding. Under

the pipeline forwarding principle packets are forwarded in

time frames (TFs) in a “lock-step” manner across the route.

TDS enables deterministic performance guarantees, flexible

bandwidth provisioning, and low cost switching scalability.

Pipeline forwarding at a TDS switch can be performed in

two manners (1) immediate forwarding (IF) and (2) non-

immediate forwarding (NIF). IF is simple but provides a

smaller number of different pipeline forwarding schedules, and

consequently, may result in high blocking probability

(blocking is defined as an event in which transmission capacity

is available without a feasible schedule). On the other hand,

NIF provides higher scheduling flexibility as the number of

possible schedules growing exponentially with the number of

hops, and consequently, significantly reducing the blocking

probability. The complexity of TDS scheduling problem

depends on various factors, such as, the forwarding schemes

(IF, NIF), the network dimension (the number of switches, the

number of wavelengths per optical fiber), the predefined

technology parameters (link bandwidth, the duration of time

frames and time cycles).

The schedule search algorithm presented in [2] is suitable

only for the simple IF case of single channel per link, not

dealing with the complexity introduced by WDM and NIF,

which is the focus of this paper. The work [7] addresses the

RWTA (Route, Wavelength, Time slot Assignment) problem

in time-shared wavelength-routed WDM networks. Although

this has similarities with the scheduling task in TDS networks,

[7] only deals with a scenario that is comparable to the IF case.

Scheduling a scenario featuring IF and no wavelength

conversion has lower complexity (time slot and wavelength

assignment) but less scheduling/provision flexibility.

Within the scope of this paper, we will present an efficient

algorithm for the NIF problem of time frame scheduling over a

predefined route with extensions to multiple-wavelength. The

paper is organized as follows: Section II formulates our

problem and shows the way that led to our proposed solution.

In Section III, we first present an algorithm for the

fundamental case of single-TF request in a single-channel,

homogeneous network (all links have the same capacity). A

special graph, i.e. a trellis, is constructed and used by the per-

request search algorithm that is motivated by the Viterbi

algorithm [10] and compared with the well known Dijkstra

algorithm [11][12]. Section IV extends the solution to the

more complicated case of WDM homogeneous networks.

Finally, we discuss extensions of this work in Section V.

II. SCHEDULING PROBLEM FORMULATION AND SCOPE

This work focuses on a time-driven switching (TDS) network

with an arbitrary topology, where each optical link transports

one or more optical channels (lambdas) with defined

transmission bit rates. The TDS network operation principles

were described in depth in [2]. The following is a brief

summary that is needed for understanding of our scheduling

search design and analysis.

An Efficient Scheduling Algorithm for

Time-Driven Switching Networks

Thu-Huong Truong
♦
 , Mario Baldi

∗
, Yoram Ofek

♦

♦
Department of Information and Communication Technology

University of Trento, Italy

Email: (huong.truong, ofek)@dit.unitn.it
∗
Control and Computer Engineering Department

Politechnico di Torino, Italy

Email: mario.baldi@polito.it

S

A. TDS Network principle

Time Structure: TDS network uses common time reference

(CTR) that is commonly realized by using UTC (coordinated

universal time). UTC is available everywhere through GPS

and Galileo in the near future with accuracy that is well below

1µs. As Figure 1 depicts, one standard UTC second is divided

into equal duration time frames (TFs), which are grouped into

time cycles (TCs), such that, multiple contiguous TCs are

equal to one UTC second. TFs are used to align and pipeline-

forward multi-protocol packets between switches. The TF

capacity is calculated according to its duration and the link

bandwidth. In our assumption there are K TFs per TC and all

links are having the same TC duration.

Figure 1- Time structure and pipeline forwarding

Pipeline Forwarding: The basic principle of TDS network

operation is pipeline forwarding (PF), in which packets are

forwarded in TFs with a predefined forwarding schedule that is

responsive to UTC and without header processing.

Consequently, TFs can be viewed as virtual containers of

packets. The necessary condition for pipeline forwarding is

having delay between inputs of TDS switches to be an integer

number of TFs. In order to realize this all incoming TFs should

be aligned with UTC. However, without loss of generality,

in this work we presume the availability of this alignment

operation and ignore the propagation delay.

Pipeline forwarding delay is the delay, measured in TFs, of

one hop between the inputs of two neighboring switches on a

route. In fact, the forwarding delay comprises of the

propagation delay and the necessary UTC alignment delay

(which we assume to be zero in the following analysis) and the

Z-forwarding delay, which is the scheduling delay due to

holding the incoming TF (with its packets) for a duration

between 0 and Z TFs before forwarding to the next TDS

switch on the route.

The Z-forwarding has two basic cases, as shown in Figure 1:

1. Z=0 – Immediate Forwarding (IF): incoming TFs are

forwarded with zero delay to the next switch.

2. K>Z>0 – Non-Immediate Forwarding (NIF): incoming

TFs can be forwarded to the next TDS switch with delay

being any from 0 to Z TFs.

The case of Z=K is called full forwarding (FF) since the

incoming TF can be forwarded in any TF in one TC span. IF

provides no freedom in selecting TF sequence at every switch

along the route. Once a TF is selected at the first switch on the

route all subsequent TFs are determined. Meanwhile, the case

of FF is trivial for scheduling since it always brings valid

schedules as long as resource is still available. Therefore, this

work focuses on NIF, since it brings more scheduling

flexibility and scalability, reducing blocking probability and

increasing network utilization. However, the result of this

work can also be easily applied for FF and IF cases.

B. TDS scheduling problem

Definitions:

Available TF - a TF at an output of a switch that have resource

to carry packets of a requested flow.

Choice - a choice is an available output TF selected for a

given flow for which a set-up request arrives at a switch. A

choice is limited by the constraint: if at switch j, TF i (0 ≤ i ≤

K-1) is assigned, then at switch j+1, a TF in the range of [i,

(i+Z)mod K] (in the same or next TC) can be a choice.

Schedule - a schedule is a sequence of choices over a

predefined route of multiple switches.

Blocking of a schedule - a schedule is blocked at switch j

when no choice is possible on that switch to advance the

schedule to the next switch.

1. Network model: In TDS, routes are determined for any

flow using existing routing protocols. TDS then focuses on the

manner of (pipeline) forwarding the packets on that route.

Hence, we will only study here the TDS problem: (1) on one

predefined route (i.e, without route selection) with a

predefined number of TDS switches as in Figure 2, (2) without

propagation delay and alignment delay.

Figure 2 – Network model with Z=2-forwarding

The route is to carry traffic of the flow from Source to

Destination (non-TDS points in our model), via h TDS

switches.

2. Scheduling problem formulation: For NIF, sufficient

bandwidth (available TFs) on every switch does not guarantee

a non-blocking schedule to setup a flow, due to the mapping

range restricted within Z TFs forwarding. TFs on a switch in

general are assumed to be randomly available since the flows

are stochastically created and released; thus all its available

TFs may happen to be out of the Z-range for the considered

request from the previous switch. Moreover, scheduling for

NIF is a complicated task due to the larger size of the possible

solution space, i.e., the large number of possible schedules as

described below.

Observation 1: For Z-forwarding (0 ≤ Z ≤ K-1), (i.e., also IF

and FF), with a single-channel, the total number of possible

schedules for a h-switch route is: K ⋅ (Z+1)h-1

Proof: There are K choices for the 0
th
 hop to forward a TF to

the 1
st
 hop of the route. At the consecutive (h-1) hops, a TF

can be buffered from 0 up to Z TFs before being switched.

Thus for all hop except the 0
th
 one, there are (Z+1) choices to

schedule a TF. Since scheduling at all hops is independent

(within the choice constraints), the total schedules are given by

combination of all the possible single hop schedules:

 (K)0th ⋅ (Z+1)1th…(Z+1)h-1th = K ⋅ (Z+1)
h-1

There is a big difference in complexity between NIF and IF

which has only K possible schedules with K TFs per TC. For

one flow, finding a proper schedule from a space of

() 1
1

−+⋅ h
ZK possibilities is a potentially complex problem due

to the exponential boom of computations. A simple search for

each request may take a long duration. Since we need to setup

the flow (i.e., “virtual circuit”) before the data transfer, the

search time could restrict the reduction of the TF duration, and

reduce the scalability of the TDS network (as the optical

channel capacity increases, K and Z tend to increase as well).

Moreover, with h in the exponent, the number of schedules

grows exponentially with the size of the network.

Observation 2: For Z-forwarding (0 ≤ Z ≤ K-1), with C

optical channels, the total number of possible schedules along

a h-switch route is: K ⋅ (Z+1)h-1 · Ch

Proof: the result is easily derived from the Observation 1

 (K · C)0th⋅ [(Z+1) · C]1th…[(Z+1) · C]h-1th = K ⋅ (Z+1)
h-1
 · C

h

Observation 1 and 2 show the exponential growth in the

number of possible schedules. Thus, our objective is to design

a scheduling algorithm that is efficient (low complexity) and

robust, such that, it guarantees to find a schedule even if only

one such schedule exists. Moreover, it may be important to

minimize end-to-end delay. This, in turn, will lead to

minimizing the required buffer size.

In general, a flow may be allocated a bandwidth of: (i) one

TF, (ii) multiple TFs or (iii) a fraction of TF, thus the

scheduling algorithm should be able to allocate such the

schedules, accordingly. As a start point, in this work we focus

on the one-TF scheduling case. We propose an algorithm

based on the concepts from Viterbi algorithm [10], exploiting

trellis diagrams. Thanks to their deterministic attributes, TDS

resources on the route can be mapped to a suitable trellis

structure to enable the search in dynamic stages. Also, from

the analysis of different scenarios, the trellis will be adapted to

each scenario with reasonable modifications. The scheduling

algorithm is called eSS algorithm (efficient-Survivor-based-

Search) which finds the same best schedule returned by

exhaustive search, while not suffering from the exponential

growth in schedule options due to the deployment of a

survivor-based mechanism. Within the scope of this paper, we

address to the scenario of scheduling for a Single TF request in

Single/Multiple-Wavelength Homogeneous TDS networks.

III. ESS - EFFICIENT-SURVIVOR-BASED-SEARCH

A. Underlying principles

A trellis diagram is used to describe all possible schedules set

up in the TDS network for a given requested flow. The eSS

algorithm then searches for the best schedule selection.

Shortest delay will be used as the optimality criterion for

schedule selection.

The trellis state diagram is constructed as follows (Figure 3):

- h stages present h switches.

- K states represent K TFs per TC of the output link of a

switch on the route. Each j

iT represents the binary status

of state j

iTF (TF i at switch j) to be considered for

scheduling, where j

iT is 0 for being Reserved or 1 for

being Available. The states of the K TFs at each switch

form a hop_availability_vector: { }jiT =
jj

VS × (described

in [2]), where:
j

S : Switch availability vector: availability of each

output of the switches along the route.
j

V : Link availability vector: availability of each link

along the route

- Each transition presents a feasible Z-forwarding between 2

states of 2 consecutive trellis stages, with its metric being

the packet delay.

- Every trellis path is a sequence of trellis states on

consecutive stages. A path represents a TF schedule for the

flow. A path metric is the sum of all transition metrics on

that path, which is the end-to-end delay of the flow.

The scheduling computation with the eSS algorithm is

performed in a memoryless process: the computation at phase j

is built up only on the computation result of the previous phase

(j-1), without the necessity of referring to (j-2) and backward.

This property is presented in our algorithm: Given the path

metric (accumulated delay) up to an available state of the stage

(j-1), the searching algorithm works on stage j based on

joining the path metrics until j-1 and the transition metric from

j-1 to j, then comparing metrics of all paths converging to a

same state.

Only one best accumulated path, namely the “survivor”, is

kept per each state. This reflects the idea of searching for the

best end-to-end forwarding delay schedule. The computation

process is then progressed stage by stage until the destination

stage is reached. At the last stage, at most K survivor paths, for

K states respectively, would be available. The last comparison

now among those K survivors yields the final selected

schedule. Due to the memoryless searching property, the huge

computational processing is avoided since the computation

does not store and grow exponentially with the number of

stages h.

Figure 3 - An Example of Z= 2 (NIF), K= 8TFs per TC

The implementation can be done (i) in a distributed manner,

with each switch computing its own result (for its trellis stage)

and then passing the result to the next one; or (ii) in a

centralized manner: one switch (or scheduling server) will take

care of all the computations based on the information from all

the other switches. Realizing the eSS algorithm needs some

preliminary design settings: the availability of routing

information and a signaling structure to transport the set-up

messages.

B. Scheduling algorithm

The eSS scheduling algorithm can be formalized as follows:

Definitions:

- Path: a trellis curve from S to any state j

iTF : Pi =

{p0,…,pj} with p0 ,…, pj are state indices at stage 0,..,j and

pj = i

- Accumulated path metric (e.g., total accumulated delay)

from S to j

iTF : µ(Pi)

A route of switches {S0,…,Sh-1} is pre-determined by a routing

algorithm.

Step 1: # With hop_availability_vector { }0iT of switch 0:

1. For each TF i: i=0 to K-1

2. Initialize ∅=iP

3. If 10 =iT , put it to a new path Pi ={i}, µ(Pi)=0

Step 2: # For each state i at stage (switch) j, select a survivor

path that has the minimum accumulated path metric µ(Pi)

4. For { }jiT of each switch j: j=1 to h-1

5. For each TF i: i=0 to K-1

6. ∅='iP ; () ∞='

iPµ

7. If 1=j

iT

8. For Db = Z to 0

9. With TF m: m=(i−Db+K)modK

 10. If 11 =−j
mT AND ∅≠mP

11. If () ()'ibm PDP µµ ≤+

12. () () bmi DPP += µµ ' ;
mi PP ='

 # Store the path to prepare for the next iteration:

13. For each TF i: i=0 to K-1

14. If ∅≠'

iP

15. { }iPP ii ,'= ; () ()'ii PP µµ =

16. If ∅='

iP , then '

ii PP =

Step 3:

17. After switch (h-1) finishes in step 2, find Pn (0≤ n ≤K-1):

 () ()i
Ki

n PP µµ
10

min
−≤≤

= . Pn is the best schedule.

Notice that the eSS algorithm minimizes the maximum

buffering used at each switch by searching the survivor from

“far” to “near” states (line 8-9), eSS replaces the current

candidate with the path having smaller or equal metric. Hence,

the final survivor (minimum-cost path) for each state contains

the closest state from the previous stage, which results in

minimum delay, hence buffering at that switch (stage).

In fact, the eSS algorithm is transparent to the bandwidth

management of flows since the scheduling is per-request

based. It means that the flow controller has freedom to decide

if a schedule is per-flow, per-TF or even per TF-group basis by

varying request rates to the source’s scheduler. Hence eSS is

flexible for any scheduling strategy: If scheduling is per-TF,

the request is repeated for every TF of the flow. If per-flow

scheduling is used, data of a flow follows the same scheduling

after the first request during its whole span. The latter case has

a lower computation compared to the former one; but

bandwidth utilization might be lower if flows do not have

continuous packets.

C. Proof of Integrity

Theorem

Let P̂ be the best path from S to D found by eSS, and *P the

best path from S to D found by the exhaustive search for the

same network, then *ˆ PP ≡

Definition:

The set “All” of all possible paths from S to D can be divided

into two sets:

- “Discarded”: all the paths discarded during eSS

- “Survived” all survived paths up to D kept by eSS

Survived path at state j

iTF : ()jiTFsv

Proof By definition of P̂ and *P

:P∀ ∈P “Survived” : () ()PP ˆµµ ≥ (i)

:P∀ ∈P “All” : () ()*PP µµ ≥ (ii)

If ∈*P “Survived, (i) & (ii) can be merged and P̂ means *P .

Proof by contradiction: let’s assume: ∈*P “Discarded”, i.e.,

is discarded by eSS at state *

*

j

iTF . Hence *P consists of 2

paths: from S to *

*

j

iTF (
1β) and from *

*

j

iTF to D (
2β).

According to the eSS discarding rule:

 ∃ ()**jiTFsv : ()() ()1*

* βµµ <j

iTFsv (iii)

Therefore,

 ∃ :'P ∈'P “All” and ='P (){ }2*

* ,βj

iTFsv (iv)

From (iii) and (iv) we can derive:

 ()'Pµ = ()()*

*

i

jTFsvµ + ()2βµ () ()21 βµβµ +< ()*Pµ=

 ()'Pµ→ ()*Pµ< that contradicts to the definition of *P .

Therefore, the Assumption is wrong, i.e., ∈*P “Survived”,

and (i) & (ii) are then merged to say *ˆ PP ≡

It is proved that the best-schedule resulting from the eSS

algorithm (with discarding some paths on the way of forward

dynamic programming searching) is the same as the one of the

exhaustive search, yet avoiding the impractically exponential

complexity as it has a linear complexity as shown in the

following section.

D. Worst Case Complexity Analysis

1) Exhaustive search: Computation at each stage must

take into account all the intermediate solutions produced by

the computations at the previous stage. Thus, the computation

cost is given:

()
11

11
),,(≥

−

−+
⋅= h

Z

Z
KZKhX

h

 (1)

Obviously, the complexity of this O(Z
h
)- algorithm grows

exponentially with the size of the problem h, i.e., with the

number of switches on a path.

2) eSS algorithm:

X(h,K,Z) = (h-1) ⋅ K · (Z+1) h≥1 (2)

The maximum number of computation steps to obtain an

optimal solution is linear in the size h of the problem. Thus,

the complexity shows the eSS algorithm to be efficient to find

out an optimal solution alike exhaustive approach, but with

acceptable complexity.

Proof:

Stage 0: there is no transition metric computation: C0 =0

Stage 1: (Z+1) transitions are built for each of the K available

states at stage 0; only the best path is kept for each state at

stage 1: C1 =K ⋅ (Z+1) and S1 = K paths.
Stage j: for each of the Sj-1 paths retained at stage (j-1), (Z+1)

possible transitions, hence new paths, can be created i.e.,

Cj=Sj-1 ⋅ (Z+1) = K ⋅ (Z+1), but only the best path is kept for
each state at stage j, i.e., Sj =K. Considering a path of h

switches, the scheduling complexity is:

()1)1(),,(
1

1

0

1

0

+⋅⋅−=+== ∑∑
−

=

−

=

ZKhCCCZKhX
h

j

j

h

j

j

E. eSS vs. Dijkstra algorithm

Starting from a list of vertices
1
 (or states in the trellis

diagram) for which the shortest path have been found, the well

known Dijkstra algorithm [11][12] greedily considers all their

neighbors (traditionally in the space domain) to add to the list

the neighboring vertex reachable through the shortest path.

This list updating is repeated until all vertices of the graph

have been included, i.e., the shortest path to each of them has

been found. Although the Dijkstra algorithm could in

principle be deployed for the TDS scheduling, its execution

cannot be easily performed cooperatively by the switches in a

distributed manner. The Dijkstra best-fit approach could try to

include in the above mentioned list a vertex corresponding to a

TF in another switch. Hence, each step of the algorithm would

require state information from various switches. The eSS

algorithm, instead, by exploiting the topological structure of

the trellis (in the time-space domain), carries out the search

stage by stage (or, physically, switch by switch), keeping one

path for each vertex (TF/state) in a stage. Consequently, the

eSS algorithm can be naturally implemented in distributed

manners over a route of TDS switches. Moreover, the eSS

solution enables dynamic programming with less complexity.

In the general implementation (linear search), the Dijkstra

algorithm takes up to steps O(V
2
) for a graph {V,E}.Even for a

sparse graph (e.g: not a full trellis, with small Z, making the

number of edges small) in which the Dijkstra algorithm can

utilize a priority queue with a binary heap, its complexity is

O((V+E)logV) [12]. Both complexity figures are considerably

greater than our solution’s O(E).

1 The list originally includes only the vertex from which the shortest path

tree is to be calculated.

(In our full trellis: the number of vertices is V= h⋅K, and
number of edges is E ~ h⋅K⋅Z).

IV. EXTENDING ESS TO WDM

TDS is working towards ultra-scalable switching and efficient

bandwidth provisioning via being well coupled with WDM.

The following extends the eSS scheduling algorithm to

wavelength division multiplexing (WDM) in homogeneous

TDS networks (i.e., where all optical channels have the same

capacity). The scheduling algorithm in this case deals with the

issue of wavelength and time frame assignment (WTA), which

is related to wavelength and time-slot assignment with the

major difference stemming from the nature of NIF (as

specified using the parameter Z).

Assumptions and Definitions:

- C: WDM link capacity expressed as the number of optical

 wavelengths per optical fiber (λ1,…,λC).

- R: wavelength conversion range.

The scheduling feasibility in this case is related to the

availability of capacity on a wavelength during a given time

frame. Therefore, the objects dealt with by our scheduling

algorithm here are a bi-dimensional resource, given by pairs of

(TFi,λm). In this context, the definitions of choice and schedule

given in Section II.B and state given in Section III can be

extended as follows:

State -)(m

j

iTF λ is TF i on λm at stage j

Choice - a choice is an available output TF on a wavelength

selected for a packet flow for which a set-up request arrived at

a switch. A choice is limited by the constraint: if at switch j ,

TF i is assigned (0 ≤ i ≤ K-1), then at switch j+1, a TF in the

range of [i,(i+Z) mod K] (in the same or the next TC) on can

be used.

Schedule - a schedule is a sequence of choices of a specific

wavelength and a TF at each network switch, on a predefined

route of multiple switches.

Figure 4 - Scheduling with a) no-wavelength-conversion, b)

full wavelength conversion

Instead of the bi-dimensional trellis deployed in the previous

basic case, a tri-dimensional one is required for the WDM

case, as shown in Figure 4, features C planes, each

representing one optical channel λm. Hence, the number of

states N at each stage has grown C times with respect to the

single-wavelength case, i.e., N=C · K.

Applying the eSS algorithm to the WDM network, there is a

usual but simple case in which no wavelength conversion is

used just to extend the bandwidth by linear lambda allocation.

The scheduling problem can be seen as the combination of a

wavelength assignment (WA) and time frame assignment (TA)

sub-problem. Thus, we can run a known WA algorithm (first-

fit, least-loaded etc.) [8] to select a wavelength first then TF

searching on that lambda (disjoint approach). Another option

(joint approach) is to select a wavelength based on specific

information from the eSS algorithm, i.e., for the delay of the

best schedule among the ones found previously on each

lambda. With the joint solution, the eSS algorithm is to run C

times in the worst case. With the disjoint solution in the worst

case the algorithm must check all C planes before finding a

schedulable one. Hence, in both cases the (worst case)

complexity is C times the one of the eSS algorithm given by:

X(h,K,Z,C) = (h-1) ⋅ K ⋅ (Z+1) ⋅ C (3)

In the case in which network switches have only limited

wavelength conversion capabilities, by using tunable lasers

[5], each wavelength can be converted to any wavelength in

the range of R adjacent wavelengths, R≤C, in a contiguous

wavelength selection fashion (R=C - full wavelength

conversion).

1. Each state TF i is marked Available if the TF i is available

on λm.

2. A valid transition exists between two available states

)(n

j

iTF λ and)(1 m

j

kTF λ+ iff:

(1) Db= (k - i +K)mod K ≤ Z

(2) Wb=|λm - λn| ≤ R

3. Perform searching as described in section III with forward-

keeping at each state the path with minimum µb.

Metric µb can be constructed as a weighted sum of the multiple

submetrics (i.e., delay, distance, and load). If the weight

selected for one submetric, say delay, is much larger than the

others, the schedule is selected according to the delay and the

others are used only to select among equal-delay paths.

X(h,K,Z,R,C) = (h-1) ⋅ K ⋅ (Z+1) ⋅ C ⋅ R (4)

Proof: For each state, there are (Z+1)·R transitions to it from

states of R planes, (Z+1) states in each of R planes. So for

(C⋅K) states, there are (C⋅K)⋅[(Z+1)·R] transitions at each
stage. Thus, for h stages, the complexity is given:

 X(h,K,Z,R,C) = (h-1) ⋅ K⋅ (Z+1) ⋅ C ⋅ R

The algorithm is linear in size of h, K and Z. If R~C, we have

quadratic complexity in the size of C since O(C·R)∼O(C2
) is a

polynomial complexity according to [9].

V. DISCUSSION

This work focused on the scenario of finding a schedule for a

single TF requests in TDS networks. The proposed eSS

(efficient-Survivor-based-Search) scheduling algorithm is

proven to be an efficient scheme that avoids the need to use

either an exponential-complexity search or a heuristic

algorithm. Furthermore, the eSS algorithm provides schedules

with minimum delay.

Future works will include further algorithmic search design

and analysis in various scenarios not considered in this work.

In fact, different scheduling scenarios, as summarized in Table

1, can be formulated, depending on parameters such as:

Requested bandwidth per flow in TFs: a flow request may

require bandwidth of a Single TF, Multiple TFs, or Fraction of

one or more TFs to transport its traffic.

Number of optical channels: a link can contain a single-

channel (SW) multiple channels (i.e. WDM with C lambdas

multiplexed on one fiber on a link).

Network Type: when all links have the same capacity, having

the same number K of TFs per TC, the TDS route is

considered homogenous. Otherwise a TDS route is

heterogeneous, with grooming and degrooming points.

Table 1 – roadmap table

In Table 1, case 1 and case 2 are the two addressed scenarios

of this paper. The primary challenge in our future work is to

maintain the same level of search complexity for the remaining

cases as the obtained result of the first two cases.

REFERENCES

[1] M. Baldi, Y. Ofek, “Fractional Lambda Switching,” Proc. of

ICC 2002, New York, vol.5.

[2] M. Baldi and Y. Ofek, "Fractional Lambda Switching -

Principles of Operation and Performance Issues",

SIMULATION: Transactions of The Society for Modeling and

Simulation International, Vol. 80, No. 10, Oct. 2004.

[3] D. Grieco, A. Pattavina and Y. Ofek, “Flexible Bandwidth

Provisioning in WDM Networks by Fractional Lambda

Switching”, GlobeComm 2003

[4] D. Grieco, A. Pattavina and Y. Ofek, "Fractional Lambda

Switching for Flexible Bandwidth Provisioning in WDM

Networks: Principles and Performance", Photonic Network

Communications, Issue: Volume 9, Number 3, May 2005.

[5] V. T. Nguyen, R. Lo Cigno , Y. Ofek, "Design and Analysis of

Tunable Laser-based Fractional Lambda Switching," IEEE

INFOCOM 2006.

[6] M.Baldi, Yoram Ofek, ”Grooming and Degrooming with

Coordinated Universal Time (UTC)”, SoftCOM 2003.

[7] N.F. Huang, G.H Liaw, C.P Wang, “A Novel All Optical

Transport Network with Time Shared Wavelength Channels”,

IEEE Journals on selected areas in communications, Vol.18,

No.10, October 2000.

[8] E. Karasan and E. Ayanoglu, “Effects of wavelength routing

and selection algorithms on wavelength conversion gain in

WDM networks”, IEEE/ACM Transactions on Networking,

vol. 6, no. 2, pp. 186-196, Apr.1998.

[9] Michael Pinedo, “Scheduling – Theory, Algorithms and

Systems”, 2nd Edition, 2002, Prentice Hall Inc.

[10] Andrew J. Viterbi, “Error bound for convolutional codes and

an Asymptotically Optimum Decoding Algorithm”, IEEE

Transactions on Information Theory 13(2):260: April 1967.

[11] E. W. Dijkstra: “A note on two problems in connexion with

graphs”. In: Numerische Mathematik. 1 (1959).
[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

and Clifford Stein. Introduction to Algorithms, Second

Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-

03293-7. Section 24.3: Dijkstra's algorithm, pp.595–601.

