
 

 

Abstract— Time-driven Switching (TDS) networks with 

non-immediate forwarding (NIF) provides scheduling 

flexibility and consequently, reduces the blocking 

probability (blocking is defined to take place when 

transmission capacity is available, but without a feasible 

schedule). However, it has been shown that with NIF 

scheduling complexity may grow exponentially. Efficiently 

finding a schedule from an exponential set of potential 

schedules is the focus of this paper. The work first presents 

the mathematical formulation of the NIF scheduling 

problem, under a wide variety of networking 

requirements, then introduces an efficient (i.e., having at 

most polynomial complexity) search algorithm that 

guarantees to find at least one schedule whenever such a 

schedule exists. The novel algorithm uses ‘trellis’ 

representations and the well-known survivor-based 

searching principle.   

 
Index Terms— scheduling, search algorithms, time-driven 

switching, pipeline forwarding, optical networks  

I. INTRODUCTION 

cheduling for flexible bandwidth provisioning in 

heterogeneous networks while satisfying various service 

requirements is critical in next generation networking. The 

main context of this work is time-driven Switching (TDS), see 

[1]-[6], which is a scalable switching design based on UTC 

(Coordinated universal time) with pipeline forwarding. Under 

the pipeline forwarding principle packets are forwarded in 

time frames (TFs) in a “lock-step” manner across the route. 

TDS enables deterministic performance guarantees, flexible 

bandwidth provisioning, and low cost switching scalability.  

Pipeline forwarding at a TDS switch can be performed in 

two manners (1) immediate forwarding (IF) and (2) non-

immediate forwarding (NIF). IF is simple but provides a 

smaller number of different pipeline forwarding schedules, and 

consequently, may result in high blocking probability 

(blocking is defined as an event in which transmission capacity 

is available without a feasible schedule). On the other hand, 

NIF provides higher scheduling flexibility as the number of 

possible schedules growing exponentially with the number of 

hops, and consequently, significantly reducing the blocking 

probability. The complexity of TDS scheduling problem 

depends on various factors, such as, the forwarding schemes 

(IF, NIF), the network dimension (the number of switches, the 

number of wavelengths per optical fiber), the predefined 

technology parameters (link bandwidth, the duration of time 

frames and time cycles).  

The schedule search algorithm presented in [2] is suitable 

only for the simple IF case of single channel per link, not 

dealing with the complexity introduced by WDM and NIF, 

which is the focus of this paper. The work [7] addresses the 

RWTA (Route, Wavelength, Time slot Assignment) problem 

in time-shared wavelength-routed WDM networks. Although 

this has similarities with the scheduling task in TDS networks, 

[7] only deals with a scenario that is comparable to the IF case. 

Scheduling a scenario featuring IF and no wavelength 

conversion has lower complexity (time slot and wavelength 

assignment) but less scheduling/provision flexibility.  

Within the scope of this paper, we will present an efficient 

algorithm for the NIF problem of time frame scheduling over a 

predefined route with extensions to multiple-wavelength. The 

paper is organized as follows: Section II formulates our 

problem and shows the way that led to our proposed solution. 

In Section III, we first present an algorithm for the 

fundamental case of single-TF request in a single-channel, 

homogeneous network (all links have the same capacity). A 

special graph, i.e. a trellis, is constructed and used by the per-

request search algorithm that is motivated by the Viterbi 

algorithm [10] and compared with the well known Dijkstra 

algorithm [11][12]. Section IV extends the solution to the 

more complicated case of WDM homogeneous networks. 

Finally, we discuss extensions of this work in Section V.  

II. SCHEDULING PROBLEM FORMULATION AND SCOPE 

This work focuses on a time-driven switching (TDS) network 

with an arbitrary topology, where each optical link transports 

one or more optical channels (lambdas) with defined 

transmission bit rates. The TDS network operation principles 

were described in depth in [2]. The following is a brief 

summary that is needed for understanding of our scheduling 

search design and analysis. 
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A. TDS Network principle 

Time Structure: TDS network uses common time reference 

(CTR) that is commonly realized by using UTC (coordinated 

universal time). UTC is available everywhere through GPS 

and Galileo in the near future with accuracy that is well below 

1µs. As Figure 1 depicts, one standard UTC second is divided 

into equal duration time frames (TFs), which are grouped into 

time cycles (TCs), such that, multiple contiguous TCs are 

equal to one UTC second. TFs are used to align and pipeline-

forward multi-protocol packets between switches. The TF 

capacity is calculated according to its duration and the link 

bandwidth. In our assumption there are K TFs per TC and all 

links are having the same TC duration. 

 

Figure 1- Time structure and pipeline forwarding 

Pipeline Forwarding: The basic principle of TDS network 

operation is pipeline forwarding (PF), in which packets are 

forwarded in TFs with a predefined forwarding schedule that is 

responsive to UTC and without header processing. 

Consequently, TFs can be viewed as virtual containers of 

packets. The necessary condition for pipeline forwarding is 

having delay between inputs of TDS switches to be an integer 

number of TFs. In order to realize this all incoming TFs should 

be aligned with UTC. However, without loss of generality, 

in this work we presume the availability of this alignment 

operation and ignore the propagation delay.  

Pipeline forwarding delay is the delay, measured in TFs, of 

one hop between the inputs of two neighboring switches on a 

route. In fact, the forwarding delay comprises of the 

propagation delay and the necessary UTC alignment delay 

(which we assume to be zero in the following analysis) and the 

Z-forwarding delay, which is the scheduling delay due to 

holding the incoming TF (with its packets) for a duration 

between 0 and Z TFs before forwarding to the next TDS 

switch on the route.  

The Z-forwarding has two basic cases, as shown in Figure 1: 

1.   Z=0 – Immediate Forwarding (IF): incoming TFs are 

forwarded with zero delay to the next switch. 

2.   K>Z>0 – Non-Immediate Forwarding (NIF): incoming 

TFs can be forwarded to the next TDS switch with delay 

being any from 0 to Z TFs. 

The case of Z=K is called full forwarding (FF) since the 

incoming TF can be forwarded in any TF in one TC span. IF 

provides no freedom in selecting TF sequence at every switch 

along the route. Once a TF is selected at the first switch on the 

route all subsequent TFs are determined. Meanwhile, the case 

of FF is trivial for scheduling since it always brings valid 

schedules as long as resource is still available. Therefore, this 

work focuses on NIF, since it brings more scheduling 

flexibility and scalability, reducing blocking probability and 

increasing network utilization. However, the result of this 

work can also be easily applied for FF and IF cases. 

B. TDS scheduling problem 

Definitions:  

Available TF - a TF at an output of a switch that have resource 

to carry packets of a requested flow. 

Choice - a choice is an available output TF selected for a 

given flow for which a set-up request arrives at a switch. A 

choice is limited by the constraint: if at switch j, TF i (0 ≤ i ≤ 

K-1) is assigned, then at switch j+1, a TF in the range of [i, 

(i+Z)mod K] (in the same or next TC) can be a choice. 

Schedule - a schedule is a sequence of choices over a 

predefined route of multiple switches. 

Blocking of a schedule - a schedule is blocked at switch j 

when no choice is possible on that switch to advance the 

schedule to the next switch. 

1. Network model: In TDS, routes are determined for any 

flow using existing routing protocols. TDS then focuses on the 

manner of (pipeline) forwarding the packets on that route. 

Hence, we will only study here the TDS problem: (1) on one 

predefined route (i.e, without route selection) with a 

predefined number of TDS switches as in Figure 2, (2) without 

propagation delay and alignment delay.  

 

Figure 2 – Network model with Z=2-forwarding 

The route is to carry traffic of the flow from Source to 

Destination (non-TDS points in our model), via h TDS 

switches. 

2. Scheduling problem formulation: For NIF, sufficient 

bandwidth (available TFs) on every switch does not guarantee 

a non-blocking schedule to setup a flow, due to the mapping 

range restricted within Z TFs forwarding. TFs on a switch in 

general are assumed to be randomly available since the flows 

are stochastically created and released; thus all its available 

TFs may happen to be out of the Z-range for the considered 

request from the previous switch. Moreover, scheduling for 

NIF is a complicated task due to the larger size of the possible 

solution space, i.e., the large number of possible schedules as 

described below. 

Observation 1: For Z-forwarding (0 ≤ Z ≤ K-1), (i.e., also IF 

and FF), with a single-channel, the total number of possible 

schedules for a h-switch route is: K ⋅ (Z+1)h-1  

Proof: There are K choices for the 0
th
 hop to forward a TF to 

the 1
st
 hop of the route. At the consecutive (h-1) hops, a TF 

can be buffered from 0 up to Z TFs before being switched. 



 

Thus for all hop except the 0
th
 one, there are (Z+1) choices to 

schedule a TF. Since scheduling at all hops is independent 

(within the choice constraints), the total schedules are given by 

combination of all the possible single hop schedules:   

 (K)0th ⋅ (Z+1)1th…(Z+1)h-1th = K ⋅ (Z+1)
h-1
  

There is a big difference in complexity between NIF and IF 

which has only K possible schedules with K TFs per TC. For 

one flow, finding a proper schedule from a space of 

( ) 1
1

−+⋅ h
ZK possibilities is a potentially complex problem due 

to the exponential boom of computations. A simple search for 

each request may take a long duration. Since we need to setup 

the flow (i.e., “virtual circuit”) before the data transfer, the 

search time could restrict the reduction of the TF duration, and 

reduce the scalability of the TDS network (as the optical 

channel capacity increases, K and Z tend to increase as well). 

Moreover, with h in the exponent, the number of schedules 

grows exponentially with the size of the network.  

Observation 2: For Z-forwarding (0 ≤ Z ≤ K-1), with C 

optical channels, the total number of possible schedules along 

a h-switch route is: K ⋅ (Z+1)h-1 · Ch
  

Proof: the result is easily derived from the Observation 1 

 (K · C)0th⋅ [(Z+1) · C]1th…[(Z+1) · C]h-1th = K ⋅ (Z+1)
h-1
 · C

h
 

Observation 1 and 2 show the exponential growth in the 

number of possible schedules. Thus, our objective is to design 

a scheduling algorithm that is efficient (low complexity) and 

robust, such that, it guarantees to find a schedule even if only 

one such schedule exists. Moreover, it may be important to 

minimize end-to-end delay. This, in turn, will lead to 

minimizing the required buffer size. 

In general, a flow may be allocated a bandwidth of: (i) one 

TF, (ii) multiple TFs or (iii) a fraction of TF, thus the 

scheduling algorithm should be able to allocate such the 

schedules, accordingly. As a start point, in this work we focus 

on the one-TF scheduling case. We propose an algorithm 

based on the concepts from Viterbi algorithm [10], exploiting 

trellis diagrams. Thanks to their deterministic attributes, TDS 

resources on the route can be mapped to a suitable trellis 

structure to enable the search in dynamic stages. Also, from 

the analysis of different scenarios, the trellis will be adapted to 

each scenario with reasonable modifications. The scheduling 

algorithm is called eSS algorithm (efficient-Survivor-based-

Search) which finds the same best schedule returned by 

exhaustive search, while not suffering from the exponential 

growth in schedule options due to the deployment of a 

survivor-based mechanism. Within the scope of this paper, we 

address to the scenario of scheduling for a Single TF request in 

Single/Multiple-Wavelength Homogeneous TDS networks.  

III. ESS - EFFICIENT-SURVIVOR-BASED-SEARCH 

A. Underlying principles 

A trellis diagram is used to describe all possible schedules set 

up in the TDS network for a given requested flow. The eSS 

algorithm then searches for the best schedule selection. 

Shortest delay will be used as the optimality criterion for 

schedule selection.  

The trellis state diagram is constructed as follows (Figure 3): 

- h stages  present h switches.  

- K states represent K TFs per TC of the output link of a 

switch on the route. Each j

iT  represents the binary status 

of state j

iTF (TF i at switch j) to be considered for 

scheduling, where j

iT is 0 for being Reserved or 1 for 

being Available. The states of the K TFs at each switch 

form a hop_availability_vector: { }jiT =
jj

VS ×  (described 

in [2]), where:  
j

S : Switch availability vector: availability of each 

output of the switches along the route.  
j

V : Link availability vector: availability of each link 

along the route 

- Each transition presents a feasible Z-forwarding between 2 

states of 2 consecutive trellis stages, with its metric being 

the packet delay. 

- Every trellis path is a sequence of trellis states on 

consecutive stages. A path represents a TF schedule for the 

flow. A path metric is the sum of all transition metrics on 

that path, which is the end-to-end delay of the flow. 

The scheduling computation with the eSS algorithm is 

performed in a memoryless process: the computation at phase j 

is built up only on the computation result of the previous phase 

(j-1), without the necessity of referring to (j-2) and backward. 

This property is presented in our algorithm:  Given the path 

metric (accumulated delay) up to an available state of the stage 

(j-1), the searching algorithm works on stage j based on 

joining the path metrics until j-1 and the transition metric from 

j-1 to j, then comparing metrics of all paths converging to a 

same state.  

Only one best accumulated path, namely the “survivor”, is 

kept per each state. This reflects the idea of searching for the 

best end-to-end forwarding delay schedule. The computation 

process is then progressed stage by stage until the destination 

stage is reached. At the last stage, at most K survivor paths, for 

K states respectively, would be available. The last comparison 

now among those K survivors yields the final selected 

schedule. Due to the memoryless searching property, the huge 

computational processing is avoided since the computation 

does not store and grow exponentially with the number of 

stages h.  

 

Figure 3 - An Example of Z= 2 (NIF), K= 8TFs per TC 



 

The implementation can be done (i) in a distributed manner, 

with each switch computing its own result (for its trellis stage) 

and then passing the result to the next one; or (ii) in a 

centralized manner: one switch (or scheduling server) will take 

care of all the computations based on the information from all 

the other switches. Realizing the eSS algorithm needs some 

preliminary design settings: the availability of routing 

information and a signaling structure to transport the set-up 

messages. 

B. Scheduling algorithm 

The eSS scheduling algorithm can be formalized as follows: 

Definitions:  

- Path:  a trellis curve from S to any state j

iTF : Pi = 

{p0,…,pj} with p0 ,…, pj are state indices at stage 0,..,j and 

pj = i 

- Accumulated path metric (e.g., total accumulated delay)  

from S to j

iTF  : µ(Pi)  

A route of switches {S0,…,Sh-1} is pre-determined by a routing 

algorithm. 

Step 1: # With  hop_availability_vector { }0iT of switch 0: 

1.  For each TF i: i=0 to K-1  

2. Initialize ∅=iP  

3. If 10 =iT , put it to a new path Pi ={i},  µ(Pi)=0 

Step 2: # For each state i at stage (switch) j, select a survivor 

path that has the minimum accumulated path metric µ(Pi)  

4. For { }jiT of each switch  j: j=1 to h-1 

5. For each TF i: i=0 to K-1  

6. ∅='iP  ; ( ) ∞='

iPµ  

7. If 1=j

iT  

8. For Db = Z to 0  

9. With TF m:  m=(i−Db+K)modK 

 10. If 11 =−j
mT  AND  ∅≠mP    

11. If ( ) ( )'ibm PDP µµ ≤+   

12. ( ) ( ) bmi DPP += µµ ' ;  
mi PP ='  

   # Store the path to prepare for the next iteration: 

13. For each TF i: i=0 to K-1 

14.  If  ∅≠'

iP  

15.   { }iPP ii ,'= ;  ( ) ( )'ii PP µµ =  

16.  If  ∅='

iP , then '

ii PP =  

Step 3:  

17.  After switch (h-1) finishes in step 2, find Pn (0≤ n ≤K-1):  

  ( ) ( )i
Ki

n PP µµ
10

min
−≤≤

= .  Pn is the best schedule. 

Notice that the eSS algorithm minimizes the maximum 

buffering used at each switch by searching the survivor from 

“far” to “near” states (line 8-9), eSS replaces the current 

candidate with the path having smaller or equal metric. Hence, 

the final survivor (minimum-cost path) for each state contains 

the closest state from the previous stage, which results in 

minimum delay, hence buffering at that switch (stage).  

In fact, the eSS algorithm is transparent to the bandwidth 

management of flows since the scheduling is per-request 

based. It means that the flow controller has freedom to decide 

if a schedule is per-flow, per-TF or even per TF-group basis by 

varying request rates to the source’s scheduler. Hence eSS is 

flexible for any scheduling strategy: If scheduling is per-TF, 

the request is repeated for every TF of the flow. If per-flow 

scheduling is used, data of a flow follows the same scheduling 

after the first request during its whole span. The latter case has 

a lower computation compared to the former one; but 

bandwidth utilization might be lower if flows do not have 

continuous packets.  

C. Proof of Integrity 

Theorem  

Let P̂ be the best path from S to D found by eSS, and *P  the 

best path from S to D found by the exhaustive search for the 

same network, then *ˆ PP ≡  

Definition: 

The set “All” of all possible paths from S to D can be divided 

into two sets:  

- “Discarded”: all the paths discarded during eSS 

-  “Survived”  all survived paths up to D kept by eSS 

Survived path at state j

iTF : ( )jiTFsv  

Proof   By definition of P̂  and *P   

:P∀ ∈P “Survived” :  ( ) ( )PP ˆµµ ≥        (i) 

:P∀ ∈P “All” :  ( ) ( )*PP µµ ≥   (ii) 

If ∈*P “Survived, (i) & (ii) can be merged and P̂ means *P . 

Proof by contradiction: let’s assume: ∈*P  “Discarded”, i.e., 

is discarded by eSS at state *

*

j

iTF . Hence *P  consists of 2 

paths: from S to *

*

j

iTF (
1β ) and from *

*

j

iTF  to D (
2β ). 

According to the eSS discarding rule:  

 ∃  ( )**jiTFsv : ( )( ) ( )1*

* βµµ <j

iTFsv        (iii) 

Therefore,  

 ∃ :'P ∈'P  “All” and ='P ( ){ }2*

* ,βj

iTFsv       (iv) 

From (iii) and (iv) we can derive: 

  ( )'Pµ = ( )( )*

*

i

jTFsvµ + ( )2βµ ( ) ( )21 βµβµ +< ( )*Pµ=  

 ( )'Pµ→ ( )*Pµ<  that contradicts to the definition of *P . 

Therefore, the Assumption is wrong, i.e., ∈*P  “Survived”, 

and (i) & (ii) are then merged to say *ˆ PP ≡  

It is proved that the best-schedule resulting from the eSS 

algorithm (with discarding some paths on the way of forward 

dynamic programming searching) is the same as the one of the 

exhaustive search, yet avoiding the impractically exponential 

complexity as it has a linear complexity as shown in the 

following section. 

D. Worst Case Complexity Analysis 

1) Exhaustive search: Computation at each stage must 

take into account all the intermediate solutions produced by 

the computations at the previous stage. Thus, the computation 

cost is given:  
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      (1) 

Obviously, the complexity of this O(Z
h
)- algorithm grows 

exponentially with the size of the problem h, i.e., with the 

number of switches on a path. 

2) eSS algorithm:  

X(h,K,Z) = (h-1) ⋅ K · (Z+1)    h≥1         (2)   

The maximum number of computation steps to obtain an 

optimal solution is linear in the size h of the problem. Thus, 

the complexity shows the eSS algorithm to be efficient to find 

out an optimal solution alike exhaustive approach, but with 

acceptable complexity. 

Proof:  

Stage 0: there is no transition metric computation: C0 =0 

Stage 1: (Z+1) transitions are built for each of the K available 

states at stage 0; only the best path is kept for each state at 

stage 1: C1 =K ⋅ (Z+1) and S1 = K paths. 
Stage j: for each of the Sj-1 paths retained at stage (j-1), (Z+1) 

possible transitions, hence new paths, can be created i.e., 

Cj=Sj-1 ⋅ (Z+1) = K ⋅ (Z+1), but only the best path is kept for 
each state at stage j, i.e., Sj =K. Considering a path of h 

switches, the scheduling complexity is: 

( )1)1(),,(
1

1

0

1
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E. eSS vs. Dijkstra algorithm 

Starting from a list of vertices
1
 (or states in the trellis 

diagram) for which the shortest path have been found, the well 

known Dijkstra algorithm [11][12] greedily considers all their 

neighbors (traditionally in the space domain) to add to the list 

the neighboring vertex reachable through the shortest path. 

This list updating is repeated until all vertices of the graph 

have been included, i.e., the shortest path to each of them has 

been found.  Although the Dijkstra algorithm could in 

principle be deployed for the TDS scheduling, its execution 

cannot be easily performed cooperatively by the switches in a 

distributed manner. The Dijkstra best-fit approach could try to 

include in the above mentioned list a vertex corresponding to a 

TF in another switch. Hence, each step of the algorithm would 

require state information from various switches. The eSS 

algorithm, instead, by exploiting the topological structure of 

the trellis (in the time-space domain), carries out the search 

stage by stage (or, physically, switch by switch), keeping one 

path for each vertex (TF/state) in a stage. Consequently, the 

eSS algorithm can be naturally implemented in distributed 

manners over a route of TDS switches. Moreover, the eSS 

solution enables dynamic programming with less complexity. 

In the general implementation (linear search), the Dijkstra 

algorithm takes up to steps O(V
2
) for a graph {V,E}.Even for a 

sparse graph (e.g: not a full trellis, with small Z, making the 

number of edges small) in which the Dijkstra algorithm can 

utilize a priority queue with a binary heap, its complexity is 

O((V+E)logV) [12]. Both complexity figures are considerably 

greater than our solution’s O(E).  

 
1 The list originally includes only the vertex from which the shortest path 

tree is to be calculated. 

(In our full trellis: the number of vertices is V= h⋅K, and 
number of edges is E ~ h⋅K⋅Z).   

IV. EXTENDING ESS TO WDM 

TDS is working towards ultra-scalable switching and efficient 

bandwidth provisioning via being well coupled with WDM. 

The following extends the eSS scheduling algorithm to 

wavelength division multiplexing (WDM) in homogeneous 

TDS networks (i.e., where all optical channels have the same 

capacity). The scheduling algorithm in this case deals with the 

issue of wavelength and time frame assignment (WTA), which 

is related to wavelength and time-slot assignment with the 

major difference stemming from the nature of NIF (as 

specified using the parameter Z).  

Assumptions and Definitions: 

- C: WDM link capacity expressed as the number of optical 

 wavelengths per optical fiber (λ1,…,λC ). 

- R: wavelength conversion range. 

The scheduling feasibility in this case is related to the 

availability of capacity on a wavelength during a given time 

frame. Therefore, the objects dealt with by our scheduling 

algorithm here are a bi-dimensional resource, given by pairs of 

(TFi,λm). In this context, the definitions of choice and schedule 

given in Section II.B and state given in Section III can be 

extended as follows: 

State - )( m

j

iTF λ is TF i on λm at stage j 

Choice - a choice is an available output TF on a wavelength 

selected for a packet flow for which a set-up request arrived at 

a switch. A choice is limited by the constraint: if at switch j , 

TF i is assigned (0 ≤ i ≤ K-1), then at switch j+1, a TF in the 

range of [i,( i+Z) mod K] (in the same or the next TC) on can 

be used.  

Schedule - a schedule is a sequence of choices of a specific 

wavelength and a TF at each network switch, on a predefined 

route of multiple switches. 

 

Figure 4 - Scheduling with a) no-wavelength-conversion, b) 

full wavelength conversion  

Instead of the bi-dimensional trellis deployed in the previous 

basic case, a tri-dimensional one is required for the WDM 

case, as shown in Figure 4, features C planes, each 

representing one optical channel λm. Hence, the number of 

states N at each stage has grown C times with respect to the 

single-wavelength case, i.e., N=C · K. 

Applying the eSS algorithm to the WDM network, there is a 

usual but simple case in which no wavelength conversion is 

used just to extend the bandwidth by linear lambda allocation. 



 

The scheduling problem can be seen as the combination of a 

wavelength assignment (WA) and time frame assignment (TA) 

sub-problem. Thus, we can run a known WA algorithm (first-

fit, least-loaded etc.) [8] to select a wavelength first then TF 

searching on that lambda (disjoint approach). Another option 

(joint approach) is to select a wavelength based on specific 

information from the eSS algorithm, i.e., for the delay of the 

best schedule among the ones found previously on each 

lambda. With the joint solution, the eSS algorithm is to run C 

times in the worst case. With the disjoint solution in the worst 

case the algorithm must check all C planes before finding a 

schedulable one. Hence, in both cases the (worst case) 

complexity is C times the one of the eSS algorithm given by: 

X(h,K,Z,C) = (h-1)  ⋅ K ⋅  (Z+1) ⋅ C         (3) 

In the case in which network switches have only limited 

wavelength conversion capabilities, by using tunable lasers 

[5], each wavelength can be converted to any wavelength in 

the range of R adjacent wavelengths, R≤C, in a contiguous 

wavelength selection fashion (R=C - full wavelength 

conversion). 

1. Each state TF i is marked Available if the TF i is available 

on λm. 

2. A valid transition exists between two available states 

)( n

j

iTF λ and )(1 m

j

kTF λ+  iff:  

(1) Db= (k - i +K)mod K ≤ Z 

(2) Wb=|λm - λn| ≤  R 

3. Perform searching as described in section III with forward-

keeping at each state the path with minimum µb. 

Metric µb can be constructed as a weighted sum of the multiple 

submetrics (i.e., delay, distance, and load). If the weight 

selected for one submetric, say delay, is much larger than the 

others, the schedule is selected according to the delay and the 

others are used only to select among equal-delay paths. 

X(h,K,Z,R,C) = (h-1) ⋅ K ⋅ (Z+1) ⋅ C ⋅ R       (4) 

Proof: For each state, there are (Z+1)·R transitions to it from 

states of R planes, (Z+1) states in each of R planes. So for 

(C⋅K) states, there are (C⋅K)⋅[(Z+1)·R] transitions at each 
stage. Thus, for h stages, the complexity is given: 

 X(h,K,Z,R,C) = (h-1) ⋅ K⋅ (Z+1) ⋅ C ⋅ R  

The algorithm is linear in size of h, K and Z. If R~C, we have 

quadratic complexity in the size of C since O(C·R)∼O(C2
) is a 

polynomial complexity according to [9]. 

V. DISCUSSION 

This work focused on the scenario of finding a schedule for a 

single TF requests in TDS networks. The proposed eSS 

(efficient-Survivor-based-Search) scheduling algorithm is 

proven to be an efficient scheme that avoids the need to use 

either an exponential-complexity search or a heuristic 

algorithm. Furthermore, the eSS algorithm provides schedules 

with minimum delay. 

Future works will include further algorithmic search design 

and analysis in various scenarios not considered in this work. 

In fact, different scheduling scenarios, as summarized in Table 

1, can be formulated, depending on parameters such as: 

Requested bandwidth per flow in TFs: a flow request may 

require bandwidth of a Single TF, Multiple TFs, or Fraction of 

one or more TFs to transport its traffic. 

Number of optical channels: a link can contain a single-

channel (SW) multiple channels (i.e. WDM with C lambdas 

multiplexed on one fiber on a link). 

Network Type: when all links have the same capacity, having 

the same number K of TFs per TC, the TDS route is 

considered homogenous. Otherwise a TDS route is 

heterogeneous, with grooming and degrooming points.  

 

Table 1 – roadmap table 

In Table 1, case 1 and case 2 are the two addressed scenarios 

of this paper. The primary challenge in our future work is to 

maintain the same level of search complexity for the remaining 

cases as the obtained result of the first two cases. 
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