

Prototyping a Packet Scheduler from Time

Driven Priority Network to 802.11

Access Network

Master of Science Thesis
*

Dipankar BiswasDipankar BiswasDipankar BiswasDipankar Biswas

KTH, Royal Institute of Technology, Stockholm, Sweden.
November, 2006

Examiner/Advisor: Dr. Johan Montelius
Supervisor: Prof. Yoram Ofek
 Prof. Renato Lo Cigno

* This work was a part of European Union R&D project, IP-Flow, supported by Marie Curie Chair
Excellent (EXC) Actions at University of Trento, Italy.

 ii

Keywords:Keywords:Keywords:Keywords:

Abstract of The Masters Thesis

Internet traffic continues to grow exponentially due to steady expansion of its

service areas and it is foreseen that it will be dominated by stream media flows,

such as, audio/video telephony or conferencing, distributed gaming, virtual reality

and many others. Additionally, since data and telecom network are merging to the

dream trend ‘all-IP’, the use and the presence of 802.11 network is expanding

beyond corporate offices and hotspot to home users and is becoming one of the

access networks of choice. So there is a real need to improve forwarding scalability

of IP packets to provide Quality of Service, especially for stream and real-time

traffic from core network to mobile user. A lot research is being carried out in this

field from data link layer to application layer. However, very few have researched

the use of ‘global time’ to solve the stated scalability problem. It has already been

realized, implemented and experimented that (universal coordinated time) UTC-

based packet forwarding is able to solve the scalability issue.

This thesis endeavors to find an optimal and cost-effective solution for the

wireless extension of time-driven packet forwarding to the 802.11 network. It also

aims to implement the idea and divulge the experimental results. This work

presents a kernel based prototype solution of synchronous scheduler for 802.11

network for an access network interface to time-driven network. It has been

implemented directly in kernel space of Linux operating system that manages

network layer and partially MAC layer of an Access Point.

The problem is of great complexity due to the non-modifiable device

dependent routines that manage MAC and PHY layer of 802.11 stack and

unavailability of device specification from vendors. However, this work has devised

and implemented two versions of packet scheduler. First one is open-loop that

shows only plausibility of synchronous time-driven scheduling but experimented

that, it is hard to implement on existing hardware. The second one is close-loop

approach, where the local clock generated by the access-point is aligned

periodically with the UTC-based time from the externally connected time-driven

network. It's feasible to implement this approach on existing hardware.

IP packet switching, 802.11 wireless network, time-driven network,

network layer protocol stack of Linux kernel.

 iii

Acknowledgements

At the outset I would like to thank Prof. Yoram Ofek, Renato Lo Cigno and Dr.

Johan Montelius for giving me the opportunity to carry out this research project.

Their encouragement and advice during the entire process is appreciated. I

would like to specially thank to the phd student of the project Yury Audzevich for

his help, suggestions, feedbacks and support without which this thesis would not

have been possible. I am grateful to the members of the IP-Flow project for

making my stay a memorable one. It was a pleasure working with the team. My

sincere thanks to all those generous individuals of different open source project

who replied promptly to my queries. Finally, I would like to thank my parents for

their constant support and encouragement.

 iv

Table of Contents

Abstract ii

Acknowledgements iii

List of Figures v

List of Tables vi

Chapter One: Introduction 1
Chapter Two: Background 5

2.1 Underlying Principle of Time-Driven Network 5
2.1.1 Common time reference

2.1.2 Packet forwarding with Time-Driven Priority

2.2 TDP Interface Implementation 10

2.3 Time Synchronization of IEEE802.11 12

Chapter Three: Theory of Proposed Approaches 12
3.1 Open Loop Approach 12

3.2 Close Loop Approach 12

3.3 Modification Needed by Time Driven Wireless Network (TDWN) 13

Chapter Four: Implementation and Platform 17
4.1 Introduction 17
4.2. Hardware 19

4.2.1. Atheros WLAN Chipset as AP
4.3. Software and Utility 21

4.3.1. Traversing Delimiter in the Kernel:
4.3.2. Linux Kernel Driver of Atheros WLAN Chipset 29

4.3.2.1. Specific Description of OLA Implementation
4.3.2.2. Specific Description of CLA Implementation

Chapter Five: System Evaluation 49
5.1 Evaluation of Open Loop Approach 49
5.2 Evaluation of Close Loop Approach 57

Chapter Six: Discussion and Future Work 66

Conclusion: 70
References: 70
Appendix: 72

 v

List of Figures:

Figure 1.1: Architecture for deploying wireless extension of Time Driven

Switching (TDS) network.

Figure 2.1: Definition of the common time reference

Figure 2.2: UTC-based pipe line forwarding

Figure 2.3: IP packet forwarding with TDP in the case of constant delay

forwarding

Figure 2.4: Packet forwarding scheme, immediate, non-immediate and arbitrary

forwarding

Figure 2.5: End-to-end prototypal test bed setup with time-driven wireless

extension

Figure 3.1: local offset adding

Figure 3.2: Ideally TDP time and beacon frame sending time line

Figure 3.3: Pseudo time-driven of CLA

Figure 4.1: Atheros 5002X chipset architecture with AR5212

Figure 4.2: Abstract view of network packet processing by Linux Kernel

Figure 4.3: IP packet traversing diagram through netfilter framework

Figure 4.4: Typical view of FIB (forwarding information base)

Figure 4.5: Flow of function calling to enqueue, dequeue and sending packets to

device driver in Linux kernel

Figure 4.6: Flow of function calling to start/restart beacon

Figure 4.7: Execution flow of interrupt driven beacon transmission

Figure 4.8: Pseudo code of interrupt driven beacon frame transmission

Figure 4.9: Pseudo code of open loop approach

Figure 4.10: Pseudo code of close loop approach

Figure 5.1(a): snapshot of beacon arrival interval from TDP AP in OLA

Figure 5.1(b): snapshot of beacon arrival interval from TDP AP in OLA

Figure 5.2: snapshot of beacon arrival interval from TDP AP in OLA, scenario 2.

Figure 5.3: Snapshot of beacon arrival interval from TDP AP in OLA, scenario 3

(best effort hardware queue).

 vi

Figure 5.4: Experimental setup for OLA

Figure 5.5: Ideal timeline of delimiter and beacon frame transmission in OLA

Figure 5.6: Experimental result of time line of delimiter and beacon frame

transmission in OLA

Figure 5.7: drift per tick for one arbitrary alignment

Figure 5.8: drift per tick for three consecutive arbitrary alignment

Figure 5.10: linear graphical presentation of average number of required tick per

alignment

Figure 5.11: linear graphical presentation of average number of required tick per

alignment from system time 9:18:43 to 15:23:20

Figure 5.12: A snapshot of capturing beacon frame arrival time

Figure 5.13 (a): case 1, beacon frame arrival time while alignment occur

Figure 5.13 (b): case 2 of beacon frame arrival time while alignment occur

Figure 6.1: Ideally tick time and beacon frame xmit time line

Figure 6.2: tick time and beacon xmit time line with drift in CLA

List of Tables:

Table 4.1: Implementation and experimental hardware description

Table 5.1: Phase shift of OLA in experiment scenario1

Table 5.2: phase shift (delay) of above setup in OLA

Table 5.3: phase shift of scenario-3 in OLA

Table 5.4: drift per tick and showed the alignment

Table 5.5: Number of alignment happened from system time from 4:11:48 to

7:06:42

Table 5.6: Number of alignment happened from system time 9:18:43 to 15:23:20

Table 5.7: Average number of tick per alignment from system time 9:18:43 to

15:23:20

 1

Chapter One:

Introduction

Internet traffic is growing steadily, about doubling in every year. Online

interactive entertainment, multimedia streaming, voice/video/TV over IP,
various real-time application are already deployed up to the massive
number of end-user. Now it is expanding services. So service-wise and
traffic-wise growth of internet is yet to come, which will be dominated by
distributed 3D gaming, high quality video-conferencing, virtual reality and
many more application and services. These streaming multimedia
applications need not only high speed data transferability, but also to be
ensured Quality of Service (QoS).

 On the other hand, telecom industry and data network industry are
merging to the dream-trend “all-IP”. Moreover, mobile devices are
spreading their versatility and usages in multi-tier information system in
heterogeneous network platform to the telecom service provider and
manufacturer. For example, Skype is on your mobile hand device. So wide
deployment of wireless LAN, wireless MAN that enable omnipresent
service provisioning to mobile user anywhere, any time, in any context.

So there are lots of issues to the research people to solve the problem

of immense growth of Internet traffic over wired network as well as wireless
network. In particular, there are two issues concerning IP packets
forwarding [5]:

• routing- determining the path a packet travels on from
source to destination, and

• flow control- how a packet is forwarded (or stored),
primarily with respect to universal time, along with the
selected destination path.

 Timing and flow control of IP packet over the Internet are important and
more critical issue especially when IP packet is forwarded (or stored)
between wired and wireless environment back and forth primarily with
respect to time, along with the selected path. It is already realized,
implemented and experimented that, to use global common time

reference (CTR) derived from GPS (global positioning system) to control
flow of IP packets and forwarding them over wired network is more

 2

beneficial than traditional ‘only’ destination address based forwarding
[1],[2],[3]. UTC-based (Universal Coordinated Time) pipeline

forwarding [4] for IP packet scheduling, flow control is particularly
suitable for stream application, since it:

• guarantees a maximum per-hop queuing delay below one ms,
independent of the flow rate and the network load, also in
bandwidth mismatch points [4];

• is already realized and implemented efficient packet switch
architecture that increases the scalability of switches and
eliminates the electronic switching bottleneck [2].

• guarantees Quality of service (deterministic delay and jitter, no
loss) for (UDP-based) constant bit rate (CBR) and variable bit
rate (VBR) streaming applications — as needed, while
preserving the TCP-based “best-effort” traffic(compatible with
existing application) [1],

In general, we called this network as time-driven network. Maximum benefit
can be achieved form UTC-based pipeline forwarding, if it is
deployed in the end-to-end user basis. Due to enormous growth of wireless
LAN, the number of mobile end users is growing exponentially. Moreover,
UTC with pipeline forwarding can solve the bandwidth mismatch problem
between high capacity core network optical/ethernet and low speed
wireless network, which is a link bottleneck problem. Therefore it

should be worth highlighting to take advantage from time-driven pipeline

forwarding to wireless network for IP packet forwarding and experiment
the performance. Figure 1.1 shows the general overview of architecture for
deploying time driven network with wireless extension.

 3

Figure 1.1: Architecture for deploying wireless extension of Time
Driven Switching (TDS) network.

All switches, a packet forwarder, in time-driven network require UTC time
directly from GPS. So it would be simpler solution to use a GPS receiver in
an access point in wireless network (802.11, Infrastructure). Unfortunately,
that will be expensive in comparison with current market value of AP.

.This thesis work endeavors to find an optimal, cost-effective solution
for wireless extension of time-driven network, implement the idea and divulge
the experimental result. This work presents a kernel based prototype solution
of synchronous scheduler for 802.11 network for an access network interface
to time-driven network. It has been implemented directly in kernel space of
Linux operating system that manages network layer and partially MAC layer
of an Access Point.

 4

The report is organized such a way that, next chapter describes

background of the project, i.e. basics of underlying technology time-

driven switching network and existing timing principle of wireless
network (IEEE802.11), chapter three views theoretical idea of proposed
approaches, chapter four provides details of prototypal implementation,
chapter five evaluates the performance of current implementation followed
by (in chapter six) a critics- the difficulty we faced, how far this work meet
the goal and what to do next.

 5

Chapter Two:

Background

This thesis work is based on an innovative concept to use ‘time’ to
forward packet with existing network architecture. So it would be helpful to
understand the basic principal of the underlying technology. This chapter
also gives a sufficient background to understand following chapters.
Experienced reader may safely skip some sections.

2.1 Underlying Principle of Time-Driven Network

 Internet traffic can be synchronized, minimum delay bounded,
congestion free by using UTC-based pipeline forwarding of IP
packets. Underlying idea is following.

2.1.1 Common time reference

In time-driven networks all switches maintain a common time

reference (CTR) typically aligned with UTC (coordinated

universal time) [1] [2] [4]. The granularity of the CTR is refereed as

time frame (TF) of predefined fixed duration (typically between 12.5 µs
and 125 µs) and the TFs are used to schedule packet forwarding from all
sources throughout the network. Note that different links can have different
TF duration (e.g., 12.5 µs for high capacity links and 125 µs for low
capacity ones), for example, for forwarding to wireless link it can be used
longer TF. Packets are not transmitted in a specific time, but rather within
this predefined TF. Thus, this method is called pseudoisochronous
packet switching.

 6

Figure 2.1: Definition of the common time reference [4].

The CTR is organized in the following manner: k TFs are grouped into a
time cycle(TC) and l contiguous TCs are grouped together into a super
cycle. A typical duration of a super cycle is one UTC second, as shown in
Figure 2.1 (for Tf = 125 µs), with k = 100 and l = 80.

 The underlying principle of forwarding packet using CTR derived from
the idea pipeline forwarding, used in computing, manufacturing, which is
called UTC-based pipeline forwarding. In UTC-based pipeline forwarding,
all switches, getting CTR from GPS, is forwarding packet utilizing TFs in a
sequential, synchronized and increasing manner of TFs. Two
implementations of the pipeline forwarding were proposed: Time-Driven
Switching (TDS) and Time-Driven Priority (TDP) in [1] [2]

 Figure 2.2: UTC-based pipe line forwarding [2]

Time-driven switching (TDS) was proposed to realize sublambda or
fractional lambda switching (FλS) in highly scalable dynamic, high speed
(optical) backbone networking with minimal optical buffer. In TDS all
packets in the same TF are switched in the same way.

2.1.2 Packet forwarding with Time-Driven Priority

Wireless extension of time-driven network, at the edge of the network,
requires flexibility, e.g. conventional IP destination based routing. Time-

driven priority (TDP) is a synchronous packet scheduling technique

 7

that implements UTC-based pipeline forwarding and can be combined with
conventional IP routing [2][4].

Packets are forwarded along TDP switches one hop every TF, as

shown in Figure 2.3, for example a video frame. This figure shows very
particular case. General idea is following:

Figure 2.3: IP packet forwarding with TDP in the case of
constant delay forwarding [1]

During each TF, one or more packets can be transmitted; for example,

if Tf = 125 µs and the link capacity is 1Gb/s, about 300 ATM cells can be
transmitted in every TF. If all packets that must be sent during TF i by a
node are in the correct output port of that node before the beginning of that
TF, and the delay between an output port of one node and the output port
of the next node is a constant integer multiple of Tf,, referred as
forwarding delay, the traffic in the network is said to be TDP paced

or shaped and these two conditions are the main points that allow TDP to
control the delay experienced by the packets in the network.

It is easy to understand that a resource reservation protocol is needed

by this queuing algorithm to keep these conditions true. Reserving resources
for a connection requires solving a scheduling problem to find a feasible
sequence of TFs, called schedule, on links on the route from source to
destination. TDP needs the establishment of virtual circuits over the network,
but as well as where sending a packet of a particular flow, TDP switches
must know when sending it. There are three different forwarding schemes to
choose when sending an incoming packet (k is the number of TFs in a TC):

• immediate forwarding: packets arriving at an output port in TF

i must be sent out in TF (i+1) mod k;

 8

• 2-frame choice: packets arriving at an output port in TF i can
be sent out either in TF (i+1) mod k or in TF (i+2) mod k, but the
choice must be the same for all the next packets of the same flow
that will arrive at this output port in TF i in the next TC;

• arbitrary-frame choice: packets arriving at an output port in
TF i can be sent out in any of the TFs (i+1) mod k to (i+k) mod k,
but the choice must be the same for all the next packets of the
same flow that will arrive at this output port in TF i in the next TC.

Figure 2.4: Packet forwarding scheme, immediate, non-immediate and
arbitrary forwarding [2].

It would be, therefore, clear the main implication of TDP forwarding:

the number of TFs it takes for a cell to be forwarded from one node to the
next node is predefined in a deterministic manner and, in order to do it, the
forwarding schedule of a given connection must be determined during set-
up and must be kept fixed for the connection duration. TDP forwarding with
the proper resource reservation therefore provides QoS guarantees in
terms of bandwidth, constant bound on delay, jitter of one TF (because
packets could be transmitted in a period of time that goes from the
beginning to the end of a TF) and no loss due to congestion for real-time
traffic. In the same time a best-effort strategy is possible: best-effort
packets can be transmitted anyway with lower priority during any unused
part of any TF. Furthermore, large best-effort IP packets can be sent during
multiple TFs in which case the packet will be fragmented by a time-driven
nondestructive preemptive priority.

2.2 TDP Interface of Time-Driven Wireless Network

Figure 2.5 shows end-to-end prototypal setup of a typical time-driven
network with wireless extension. All switches in the network are getting

 9

UTC time using attached GPS receiver. However, in wireless extension, AP
doesn’t have any GPS receiver due to non-feasibility of market value of AP.
But we believe that, it is certainly still possible to make wireless network
(802.11) time-driven and implement TDP packet scheduling if we consider
TDP router as timing master of wireless network. AP which is directly
connected with TDP router, eventually distributes the timing information
among the associated wireless client. We referred the AP that performs
TDP scheduled packet forwarding as TDP Access Point (TDP AP).

Figure 2.5: End-to-end prototypal test bed setup with time-driven
wireless extension

A prototypal implementation of a Time-Driven Priority (TDP) router has

already been realized for shaping packet forwarding inside the time-driven
network [23] and integrated with TDS optical backbone. It experimented the
performance in [1]. TDP router is realized using a personal computer with
FreeBSD operating system. Details of hardware configuration can be found
in table 4.1. Although a non-real time architecture such as a PC is used to

 10

implement TDP scheduling, it already experimented that, TDP router with
SVP interface can provide deterministic QoS over a packet switching
network, with a bounded end-to-end delay and jitter. Furthermore, it also
minimizes the buffering requirements inside networks switches, while
ensuring no packet loss due to congestion.

TDP router is to be considered as timing distributor of the Time-

Driven Wireless Network (TDWN), should send a special packet

called delimiter aligned with UTC time to the TDWN at pre-defined time
interval. Delimiter may either

(i) contain timing information, e.g. as timestamp value equals to
the time when delimiter packet start to send output interface
buffer of TDP router or

(ii) be empty body frame as timing indicator that will represent as
TDP timer within AP.

All APs connected with TDP router ‘simply’ accept the timing

information of delimiter and adjust (synchronize) its own time or consider as
time to forward timing value to all associated wireless client. Delimiter may
be implemented as either:

i) a special control/management frame, or
ii) TDP shaped ordinary UDP packet since delimiter doesn’t need any

acknowledgement.

In the current implementation of TDP router, former method is taken

on, i.e. TDP will send empty bodied delimiter as an ordinary TDP

shaped UDP packet at a pre-defined interval called delimiter

interval. So TDP AP simply and safely accept the delimiter as timing
indication to adjust its own timer by measuring drift or just forward timing
information to all associated. However, it is important to understand that,
since delimiter doesn’t contain any timing value, TDP AP can not just adopt
the time from the received delimiter packet. TDP classifier categorizes
delimiter by using Differentiated Services (DS) field [27]

(previously known as type of service (TOS)) of IP header [23]. Four
unallocated DS codepoints are used for identify TDP packets, but note that
the DS codepoint xxxx11xx identifies a TDP packet, other bits that
distinguish odd/even TFs and odd/even TCs. Therefore, it should be easy
to distinguish delimiter packet by TDP AP.

2.4 Time Synchronization of IEEE802.11

This section reviews the state-of-art of timing synchronization of
802.11 network. We limit our discussion in only infrastructure mode

 11

as this is the initial stage to introduce time-driven priority to the wireless
network.

Like other wireless network, 802.11 depends on the distribution of
time information to all stations which is used by the medium reservation
mechanism and other purpose as well. A time synchronization

function (TSF) keeps the timer for all stations, in addition to a local TSF
timer for each station. The TSF timer (a modulus 264 counting, 8 byte) is
based on a 1-MHz clock and increase in ‘ticks’ µs In infrastructure network,
the Access Point (AP) will be timing master, responsible to transmit a
special management frame called beacon periodically containing “now” in a
timestamp (TSF timer). AP should set timestamp value in beacon frame so
that, it is equal to the TSF time at the time when first bit of timestamp field
hits the physical layer plus the transmission delay from its MAC-Physical
interface to its physical interface with wireless medium [21]. This timing
accuracy is so rigid that, 802.11 standard defines to maintain the
synchronization of TSF timer with all stations in a BSS within 4 µs plus
maximum propagation delay of physical layer.

Every station associated with should simply accept the time received
beacon frame sent by AP, If a station’s TSF timer different from received
timestamp, should update its local timer, but they may add a small local
offset time. The interval at which AP sends beacon frame is referred as
beacon interval that measured in Time Unit (TU) which is equals to
1024 µs. Beacon interval is also included in beacon frame.

 12

 Chapter Three:

Theory of Proposed Approaches

This work is the very initial stage research- how to introduce UTC-
based pipeline packet forwarding concept in the wireless network and
experiment the result. We have proposed two possible approaches to
achieve the goal. Section 3.1 and 3.2 describes approaches in a more
‘general’ way, however, it can be found more specific description in section
3.3 for 802.11 network considering the implementation feasibility on the
existing hardware.

3.1 Open Loop Approach

Most of wireless network depends on timing distribution since medium
can be shared among the nodes on the basis of time. Moreover, one node
of the network should act as timing master (as central coordinator point) or
all node exchange timing information to each other. The node (for example,
coordination point) that directly connected with TDP interface should act as
timing distributor among the all nodes in the wireless network. We called
the node connected with the TDP interface as TDP node. Each TDP node
has its local timing function, e.g. its local clock.

The main idea of open loop solution is the central coordinator (for

example in 802.11, infrastructure, access point) of TDWN is designed such
a way that, internal clock is initialized and incremented with TDP timer
remotely. Virtually, it is expected that, there will be no propagation delay to
get timing signal from TDP router, like an electrical signal.

3.2 Close Loop Approach

Idea of the close loop method is similar to the time adjustment

process of a station in infrastructure mode of 802.11 network. In the
case of OLA, a TDP node should adjust or align its own clock after
receiving delimiter from TDP interface ‘if necessary’. It important to
define, when it is necessary to align own clock timer with TDP timer and

 13

how TDP timer can be implement within TDP node. TDP timer can be
implemented within TDP node by following ways depends on content of
delimiter, for example:

i) if delimiter contains TDP timing value TDP timer of TDP node will
be added value of TDP timestamp with local offset of TDP AP,
see figure 3.1

ii) in the case of empty bodied delimiter, receiving a delimiter cause
increment TDP timer one unit depends on local timer of TDP
node incrementing in which unit and delimiter is receiving at
which interval.

 Now it should explain when it necessary to make alignment. Since in
the TDP node there will be two timer, one its local clock timer, another is
TDP timer. It is important to point out that, the TDP timer represent UTC
time in the TDP getting via delimiter. The purpose of close loop method is
to synchronize between two timers. There should be drift between two
timers which is measured at each delimiter arrival time. It may be
problematic and time consuming to make an alignment. Moreover, it is
still possible to implement TDP traffic scheduling drift between two timers
don’t cross a certain time. We defined this upper limit of the drift as
drift threshold. Hence when the amount of drift is just crossed drift
threshold.

 Close loop method is not ideally time-driven as this method lives
always with a small drift. However, this drift never be greater than drift
threshold. That’s why this method may be referred as pseudo time-
driven method.

3.3 Modification Needed by Time Driven Wireless
Network (TDWN)

If it is possible to send timing information from TDP router to TDP AP

using lower layered frame exchanging, more timing accuracy can be
achieved. In the current implementation of TDP router, experimented to
send timing information using an ordinary data packet, UDP packet,
which goes into the inherited upper layer processing and adds some
software latency. However, the initial research of TDWN, for experimental
purpose indeed, we are interested to describes the both approaches in
consider with existing network architecture and network device that can
enable to implement the solutions to make wireless network time-driven.
As the research on TDWN is very initial stage, we only consider 802.11
network (infrastructure mode)

 14

3.3.1 For Open Loop Approach

We have reviewed (section 2.4) the state-of-the-art time
synchronization of IEEE802.11 (infrastructure) wireless network that
reveals AP maintains time synchronization functionality (TSF) with its
associated station by sending a beacon frame (special management
frame) periodically. To implement OLA in 802.11, it is necessary to
control sending beacon frame using TDP timer remotely instead of TSF
timer. So TDP AP should send beacon frame as soon as it gets the
delimiter. Virtually difference between these two times, when delimiter
has received by the TDP AP and time when beacon frame start to send,
should be (tends to) zero. AP (WLAN chipset) suppose to set timestamp
value at the time when first bit of beacon frame hits the physical layer of
the device to transmit to the air. On the other hand, stations simply adjust
it own local TSF time with timestamp value received from beacon. Hence,
stations suppose to get the network time ‘perfectly’ aligned with UTC
time. But practically it is not possible to keep the time difference between
delimiter receiving time and start to send beacon frame to (tends to) zero.
It may be useful to add some offset referred as local offset
determined by TDP AP This procedure can be useful only in case if
delimiter contains timing value when start sending the delimiter packet by
TDP router.

Figure 3.1: local offset adding

Although it is not possible to get device specification of WLAN

chipset from respective vendor, but what we have learned from the
experiment and open source community that, most of the chipset control
(by firmware) time-critical MAC functionality like beacon transmission,
since 802.11 standard stressed to maintain timing accuracy to sending
beacon frame within 4 µs plus propagation delay of MAC-Physical layer
interface [21]. This is certainly hard to maintain by device driver software.
Most of the WLAN device contain different hardware transmission queue
for different kind of traffic. Generally for beacon frame, AP also may use a
special queue only for beacon. So it important to set chipset to transmit
beacon at ‘exact’ time if it is already queued into the beacon queue.

 15

3.3.2 For Close Loop Approach

It is easy to implement CLA on the exiting hardware that’s design
was followed 802.11 standard. In the this method we are trying to align TSF
timer with TDP timer but device is still controlling to start sending beacon
frame. TSF timer of the device is increasing every µs. that implies,
granularity of TSF timer is µs. If we configure TDP router with delimiter
interval is (e.g.) 1 ms, arriving event of every delimiter causes 1000µs
increment of TDP timer. At each beacon frame transmission time, TDP AP
needs to measure the drift between TSF timer and TDP timer when drift is
greater than drift threshold, according to the method, an alignment of TSF
timer with TDP timer is needed.

It is not possible to reduce or increase time value of chipset clock,
but alignment can be possible if we can shift ahead or backward beacon
transmission equal to drift threshold then alignment will be success.

We have called close loop solution as pseudo time-driven method, as

this method is not ideally time-driven with TDP timer. Once an alignment
happened, sending beacon frame ‘aligned’ with TDP timer with some µs
before or after because of drift. However, this difference will never cross
drift threshold. This phenomenon was described in figure 3.2 and
3.3.

Figure 3.2: Ideally TDP time and beacon frame sending time line

 16

 Figure 3.3: Pseudo time-driven of CLA

 17

Chapter Four:

Implementation and Platform

From the chapter two and three, we have studied sufficient

theoretical description of the problem and possible and proposed solutions.
This chapter describes the implementation details, the development
platform, utility and environment in which the implement and experiments
were carried out.

4.1 Introduction

Before going to details description of implementation, we are
interested to focus on motivation and reason to choose the implementation
environment. There was sufficient time had been spent in the study period
of this thesis work to choose appropriate software platform and hardware to
implement this project , since almost no vendor is kind enough to open
source community. We needed to consider the availability, chipset vendor
specification and financial support that project can provide and some trade
off between several alternatives.
We have studied following alternatives:

a. OpenWrt:

OpenWrt [7] is Linux system distribution for embedded device e.g.

Wireless Router or Access Point that runs on Linux kernel. It provides fully
writable filesystem, JFFS2, along with read-only (embedded in the
firmware) known as SquashFS. This fully writable filesystem and package
management facility enables developers and users application selection
and configuration provided by vendor as well as allows you to customize
and add functionality through the use of existing packages and added
packages to make suit any preferred application. OpenWrt, a framework,
that allows developers to full customize and develop packages to enrich
feature without building complete firmware around the wireless router or
AP, those functionality was not envisioned by the vendors.

 Initial stage of this project work, we have studied the feasibility of
OpenWrt as the development platform to implement the idea as described
in section 3.1 and 3.2 , by developing a package and ultimately cross
compile for the target device (see chapter 6) Shortly it has been realized

 18

that, implementation of the proposed solution requires to access to some
lower level driver code of wireless LAN chipset which has vendor
proprietary and licensing issue. But OpenWrt is certainly important and
necessary platform for the future stage of this project work.

b. HostAP:

Host AP [8] is a Linux driver software as kernel module for wireless
LAN cards based on Intersil’s PRISM® (2, 2.5, 3) WiFi chipset [9]. This
driver was developed basically to support master mode (AP mode) without
having any special manufacturer provided firmware for wireless LAN card
along with its normal station operation in BSS and also in IBSS. Host AP
endows with functionalities in the host computer or embedded system
required to initialize, configure, attach, de-attach Prism based cards to
transmit and receive frames and to gather statistics. It also allows bridging
through the regular Ethernet bridge driver of Linux kernel which might be
useful for the implementation of this project work (see section 4.3.1).
Moreover, it includes most of IEEE802.11 management and control
functions such as authentication and de-authentication, association with re-
association, disassociation, power saving mode operation, frame buffering
for power saving stations. Although, this driver code has still lack of
development debugging, accessing hardware configuration records, I/O
registers. This driver software has been designed and optimized such a
way, it can be used as kernel module to customized Linux kernel for
embedded system.

According to the latest release notes [8], however, the firmware of
Intersil’s PRISM® chipset for station (supplicant) takes care of time

critical features of IEEE802.11 protocol stack, e.g. beacon frame
sending, frame acknowledgement. As described in section 3.3, in both
approaches, OLA and CLA, basically we need to control over sending
beacon frame from AP in shifted or adjusted time. This “time critical”
task is mostly built-in inside the firmware of the device. There fore,
choosing Hos AP driver as the implementation framework of this project
was in question.

c. Bcm43xx:

We already know that, implementation of this project will be
sufficient modification and adding of code that control lower MAC layer for
particular wireless LAN chipset. No vendor kind to open source
community. bcm43xx is Linux kernel driver platform for Broadcom

bcm43xx wireless chipset. This driver is based on reverse engineered
specification of binary release of world leading wireless chipset provider,
Broadcom after refusal to release any specs of their chips or any code of

 19

their driver. Open source community reverse engineered Broadcom
bcm43xx chipset family by analyzing disassembled code from other
Braodcom driver , partially hand translated assembly to C followed by
better understanding hardware and a creative MAC-On-Linux hacking to
allow PCI proxying [10].

 Compare with leading WLAN chipset provider Atheros provided
Madwifi, closed hardware access layer (HAL), bcm43xx should be
more useful platform to implement two solutions for this project. We would
have chosen this platform, however, while I started to implement,
bcm43xx was not succeeded to work with.

4.2 Hardware

The implementation environment consists of a testbed containing

two TDP router as interface of TDP wired and wireless network, TDP AP
(with linux kernel). Table shows a quick view of test bed. (see figure 5.4
experimental setup)

Name

Work as

Processor

Main
memory

Operating
system
(kernel)

TDP router

Network interface of
TDP network

Intel
®
Xeon(TM)

2.8 GHz,
4 processors in each
router

2 GB of
RAM

FreeBSD 5.3

TDP AP

Access Point of TDP
wireless network

Atheros WLAN
chipset,
Intel

®
Pentium4

(system µp)

1 GB
of RAM

Linux 2.6.12

Station

Synchronous
wireless client (as
source or destination
) associated TDP AP

Intel® Pentium 4
3.06 Ghz
(notebook)

1 GB
of RAM

Linux 2.6.12

Fluke
network
packet
analyzer

Synchronous
wireless client

associated with TDP
AP to capture and
analyze frame

Intel® Pentium M
1,1 GHz

504 MB
of RAM

Windows XP

Table 4.1: Implementation and experimental hardware description

4.2.1 Atheros WLAN Chipset as AP

We have chosen madwifi (see section 4.3.2) driver as our
implementation platform. This driver, lives in Linux kernel space, is for
WLAN device based on Atheros WLAN chipset. In particular we have

 20

selected Proxim WLAN card based on Atheros AR5212 chipset act as
access point. So it would be good for the reader having some knowledge of
chipset specification

Atheros AR5212 chipset support 802.11a,b,g is the second
generation chipset derived from initial AR5210 which has been first full
802.11a standard.

Atheros WLAN chipset has multi-protocol MAC or baseband
processor supports Radio-on-Chip (RoC) that can operate dual band 2.4/5
GHz. The radio modem use OFDM in 5 GHz band in 8 different channels
with throughput of up to 54Mb/s rates (depending of range).

The Atheros chipset has some proprietary features, e.g. Atheros
turbo G mode (super AG® mode) that allows to make twice of bit rate (say
108 Mb/s) by using two channels in parallel. Downside is, it helps to
increase sensitivity of interferences, certainly decreases number of
channels and lead to incompatible 802.11a. Host interface of the chipset
are MiniPCI, Cardbus (32 bit PCMCIA), PCI with direct DMA access.

 Figure 4.1: Atheros 5002X chipset architecture with AR5212 [22]

This chipset support wireless multimedia extension (WME), defined in
IEEE802.11e standard, Quality of Service (QoS) enhancement that
consider delay-sensitive application, voice over wireless IP by extended
802.11 MAC layer [11]. It can manage additional hardware transmit (TX)
queue for WME classified traffic, e.g. voice over wireless IP (VoWIP)
classified traffic can be assigned high priority queue. In one of our
experimental cases of OLA, we used a hardware TX queue of WME traffic
to transmit beacon frame (see section 5.1).

 21

4.3 Software and Utility

This section describes details of customization and added functionality

to the driver software for WLAN chipset. Moreover, in the beginning, a
details discussion of how delimiter packet traverses inside the kernel
followed by a timing resolution of Linux kernel that has affected the result of
our implementation.

4.3.1 Traversing Delimiter in the Kernel:

Two approaches have been proposed in section 3.3, to achieve the
objective of this project. And in section 2.3, architecture of TDP router has
been depicted. It has been clear that, delimiter, a UDP packet, will be act
as indicator to send beacon frame from AP for OLA or to measure the drift
between two timer, TDP timer and TSF timer .Since Linux is not real time
operating system, moreover its timing resolution is low, so it is important to
realize that, how much time is being spent to traverse delimiter inside
kernel to be routed from Ethernet interface to PCMCIA interface. To
prepare this section, we have followed OSI layer (appendix A.1) sequence
physical layer, MAC layer and then IP layer.

Figure 4.2 : Abstract view of network packet processing by Linux Kernel

4.3.1.1 Layer-1: Packet From NIC to the Network Buffer:

Linux kernel supports various network interfaces, for example,

Ethernet, 10/100baseT, gigabit Ethernet etc. In our implementation,
Ethernet has been used. So lets limit this study in the case of Ethernet
interface as receiver of delimiter packet from border interface router of time
driven network. Typically, the on board memory of Ethernet divided as
receiving buffer (Rx) and transmitting buffer (Tx). For instance, the 3c509B
from 3Com Ethernet card has 8kB on board memory buffer divided any of
combination of 4kB Rx, 4kB Tx or 5kB Rx, 3kB Tx or 6kB Rx, 2kB Tx
[12].

 22

The packet is received into this on board memory buffer in FIFO basis.
This structured is called rx-ring. After reception of a packet, hardware
issues a hardware interrupt (irq) to make attention of cpu execution and

an interrupt handler is invoked which has been registered during open()

method when device attached with the kernel using net_device kernel
interface. The interruption mechanism will be disabling as long as irq will
be acknowledged by the cpu.

Linux kernel network buffer structure called sk_buff declared in

/Linux-src/include/linux/skbuff.h is then allocated and then
packet is copied into the kernel memory that can be mapped to the Direct
Memory Access (DMA) region, shared memory etc. Once packet copied to
the sk_buff, it needs to be queued into the kernel network queue

declared as softnet_data structure in /Linux-

src/include/linux/netdevice.h. this structure is unique for all
interfaces for single cpu machine. Packets enter and leave to and from this
queue in FIFO basis.

We should describe briefly sk_buff an important control data

structure with block of attached memory, which has been used frequently in
this implementation. This control structure is used basically to contain
frame content, has several methods to maintain doubly linked list of
sk_buff e.g. skb_put(), skb_append(), kfree_skb() etc.

Once packet is queued, now it’s time to handle by kernel. So interrupt

handler of interfaces driver leaves a warning to kernel to dequeue packet at
its convenient time. Some times this mechanism is referred as software
interrupt.

4.3.1.2 Layer-2: From Network Buffer to Appropriate Protocol

Handler

Layer 2 is further divided into logical link layer (LLC) and MAC layer
by IEEE, that makes more complicated. Software interrupt is generally
scheduled for execution to dequeue the frame from network buffer to
appropriate protocol handler. Protocol type is supposed to identify by the
device driver followed by finding encapsulation type which gives
information how extract layer 2 header and eventually set sk_buff-

>protocol . Once protocol handler is determined, frame should go layer
3. Details description is out of the scope of this project work.

4.3.1.3 IP Layer: Packet Forwarding

 23

We have called this section as IP layer since we limit our study only
for IP packet that should be forwarded through the Linux kernel (layer 3)
followed by some kernel filtering. In one of our experiments, it was taking
considerable time for delimiter packet to be routed from Ethernet interface
to PCMCIA interface. The destination of the delimiter was a station
associated with access point in that PCMCIA interface. (see section 5.1).
We tried to analyze the reason for our implementation in this section and
some suggestion to avoid the delay time to traverse the delimiter will be
depicted in chapter 6. Implementation was beyond of this project work.

The packet, to be routed or dropped, enter layer 3 processing through
the method called ip_rcv() implemented in net/ipv4/ip_input.c,
then packet has to enter any hooks of Linux netfiler [13]. Netfilter is a
framework, started from Linux kernel 2.4.X, that enables packet (statefull or
stateless) filtering, network address (or port) translation (NAT, or NAPT)
packet mangling or manipulation, beyond the normal Berkeley socket
interface. Netfilter, the successor of ipchains and ipfwadm from
previous kernel, is a set of hooks associated with kernel modules to
register callback functions those are called back for each packet that is
going to forward through respective hook.

iptables, we are more familiar with, is a userspace command line
program helps to configure kernel netfiltering rule set. It is basically packet
selection system built over netfilter framework.

 All supported protocol of netfilter defines some ‘hooks’, e.g. IPv4
defines five hooks. The respective protocol stack will call the netfilter
framework with the packet to be traversed and hook number [14]. Netfilter
consist of sequence of hooks with some entry points for a particular
protocol stack. For instance, abstract diagram of IPv4 packet traversal
looks like:

Figure 4.3: IP packet traversing diagram through netfilter framework
[14].

Packets are passed to the first hook of netfilter framework referred as
NF_IP_PRE_ROUTING followed by some introductory check, e.g. IP
checksum, truncated or not, receive promiscuous etc.

 24

 Packer enter, next step, routing code where routing decision will take
place, i.e. the packets are destined another interface or get into processing
of local host or getting dropped because of non-routable.

If the destination address is the local host itself, packet passed to the

hook called NF_IP_LOCAL_IN followed by passing to the process of some
userspace. On the other hand, if the packet is destined to the other
interface, it is being passed to the NF_IP_FORWARD hook. This would be
the case of our implementation and giving more description in the next
paragraph. The packet may pass to the final hook of netfilter,
NF_IP_POST_ROUTING, before going to be handled by the Linux traffic
control and then driver module of another interface (see next section).

In the case of generating packet locally, the hook,
NF_IP_LOCAL_OUT takes care of them. You can realize from the figure

4.3 , after passing local_out hook the packet has to passed into routing
code again since it needs to check source destination address and some IP
options. In some case, e.g. NAT coding, routing may need to be changed
by altering skb->dst field.

Any kernel module can register itself to listen to any of these hooks.
When any particular hook is called from core networking code of kernel, the
module registered with the hook at some points is free to mangle the
packet and responsible take action of any of the following five alternatives
[14]:

• NF_ACCEPT: continue to forward as normal.
• NF_DROP: drop the packet; don't continue traversal.
• NF_STOLEN: someone have taken over the packet; don’t

continue to forward.
• NF_QUEUE: queue the packet for handling the process of

userspace.
• NF_REPEAT: call this hook again.

Routing decision needs a quite expensive look up operation into a
complex structure refer as Forwarding Information Base (FIB) tables.
The purpose of this look up is to find out an entry of route associated with the
destination IP address. A next hop, where packet will be forwarded, will be
associated with each of these route entry. Since this look up into the quite
complex data structure, FIB tables, is reasonably expensive operation, a
route cache is also used to make it faster. A hash function combination of
source address, destination address, incoming device and TOS filed, is used
to look up to the cache system.

 25

Figure 4.4: Typical view of FIB (forwarding information base) [16]

When the address of next hop is found, skb->dst variable is set with

this value. Some works, however, to fulfill the requirement of IP routing [15]
has to be completed before sending packet to the outgoing interface:

• TTL field of IP header suppose to decrement by one
• Checking the maximum transmit unit (MTU) of outgoing
interface. If MTU is smaller than the packet size, packet
should be fragmented otherwise let that be just transmitted.

• Depending on the requirement of IP routing ICMP message
may generated

• If the hardware address of the interface of next hop is not
known, an ARP packet has to be issued to get the hardware
address.

In our test bed setup (see figure 5.4.), the destination address of the

delimiter is one mobile station associated with the AP. So certainly delimiter

 26

suppose to be forwarded inside Linux kernel. From the above explanation,
delimiter has to be passed to first hook, NF_IP_PRE_ROUTING, of netfilter
framework followed by routing stack decision to forward to the Access Point
interface, PCMCIA. So hook NF_IP_FORWARD will next take care of. Since
delimiter packet is being forwarded at a very short interval (few
milliseconds), route entry may be in the cache system of FIB tables.

4.3.1.4 Layer 2 : Packet Queuing into the Outgoing Interface

Layer 3 packet forwarding was involved to find out the output

interface, route entry of next hop, encapsulation etc. Once al of these
works have been done, packet has to be queued for the outgoing interface.
At this stage, Linux traffic control, complex queuing discipline, bandwidth
shaping come to play. After releasing from the traffic control, device driver
will take care of packet to transmit with the device to next network.
Sometime device driver does additional vendor specific traffic classification,
provide quality of service (QoS) oriented hardware queue of respective
device for emitting the packet.

Every network device has its own queuing discipline and its own way
to treat on the enqueued packet for that device interface. Queuing
discipline may use filtering to classify among the different classes. For
instance, this task includes to giving priority to the packets of one classes
over other classes. High priority traffic may use token bucket filtering (TBF)
which ensures data rate at most 5 Mbps, for example. On the other hand
low-priority traffic is being queued by, say, FIFO discipline.

 Queuing discipline provides following set of methods (related one

mentioned here only) declared in struct Qdisc_ops in
source/include/net/sch_generic.h

• enqueu – enqueues a packet with classified queuing discipline.

• dequeue – returns the next packet qualified for transmitting

• requeue – put a packet back into the queue after dequeuing
for some reasons.

 27

 Figure 4.5: Flow of function calling to enqueue, dequeue and

sending packets to device driver in Linux kernel

Figure 4.5 shows the flow of procedure call, how a eligible packet comes
into hand of device (Access Point) driver code, our implementation platform
can start processing with delimiter. Here details of called function invoked
by queue discipline itself for classification etc. are not shown for make it
simple. Detail study is beyond of this project work. When a packet is going
to be enqueued into the device interface queue, enqueue function of

dev_queue_xmit() in /net/core/dev.c is invoked. Here it should be
mentioned that, device’s queue discipline is referenced by a pointer to the
corresponding struct Qdisc for all of its functions. qdisc_wakeup()

immediately call function named qdisc_restart(), which is the
important function responsible to poll queuing discipline.
qdisc_restart() is also responsible to take release packet from

queuing discipline of the device. On success, it invokes net_device’s
hard_start_xmit() declared in /include/linux/netdevice.h.
This is the function pointer which is unique for every network device,
responsible to hand over the packet for that net device’s code to transmit.
So for every packet suppose to transmit via that device, referenced function

 28

of that device driver to hard_start_xmit() function pointer will be
called. In our implementation, we have pointed to our own transmit
function, ath_xmit() by replacing its driver own xmit function

ieee80211_hardstart(). The details of next implementation phase will
be described in section 4.3.2

4.3.1.5 Packet Queuing and Timing Resolution

The queuing policy and discipline may not allow to send packet

instantly as soon they are enqueued [13]. A timer (see figure 4.5) may
need to configure to schedule the transmission of the packet. So packet
may be left in the queue for certain time. Linux has very low timing
resolution, timing is obtained by sampling internal clock tick unit (the
constant HZ) which is only operating at 100 HZ (1 tick = 10 ms) for Intel
based architecture [17]. This low timing resolution of Linux may be the
reason to impose restriction to configure parameter of scheduler for
departure of packet. For instance, a packet in token bucket filtering (TBF)
queue may need to wait 1/HZ seconds. Since, as describe earlier, 1 tick =
1/HZ seconds which equivalent to 10 ms for Intel based architecture, 1 ms
for alpha. In TBF queuing discipline, say B bytes is possible to send by this
buckets in any time interval (1 clock tick unit). So maximum bandwidth can
be achieved B*HZ . It, however, of course, is possible to make wake up
queuing asynchronously by entering other packets into the system, which
lead to positive timing effect.

4.3.1.6 Shorewall

To enable IP routing inside Linux kernel, to make traverse delimiter

packet from Ethernet interface (eth0) to wireless interface (wifi0), we have
used a user space tool for configuring netfilter’s hook

NF_IP_FORWARD called shorewall [26] after the motivation of users of
implementation platform madwifi. It gives possibility to describe the
firewall/gateway requirements using entries in a set of configuration files.
shorewall studies those files and with the help of the iptables utility
configures Netfilter to match the requirements. Shorewall is not a daemon.
Once shorewall has configured Netfilter, its job is complete. After that,

there is no shorewall code running although the /sbin/shorewall
program can be used at any time to monitor the Netfilter firewall. Moreover,
shorewall does not use Netfilter's ipchains compatibility mode and can
thus take advantage of Netfilter's connection state tracking capabilities.

The shorewall utility has been used in our case for configuration
route between Ethernet and Wireless interfaces, previously configured and
up, in particular the Two-interface Shorewall configuration scheme (the
usage of specific configuration files depend on the network design) was

 29

used. The content of each reconfigured file (Interfaces, Policy, and Zones)
represented in appendix A.2.

Shorewall views the network where it is running as being
composed of a set of ZONES, moreover it recognizes the firewall system
as own zone when the specific /etc/shorewall/zones file is
processed. We consider the Wireless as one zone, and the Ethernet
network as another zone.

In order to make route between two boundaries the association
between Linux INTERFACES and ZONES is accomplished in
/etc/shorewall/interfaces file. There is another zone that is not put
in this zones file, called the "firewall zone" or "$FW". This is already defined
in /etc/shorewall.conf. By default any traffic originating from the
machine (fw) to the Wireless and to the local Ethernet network is accepted.
For $FW and all the other zones defined beforehand the corresponding
POLICY for interconnections can be configured in
/etc/shorewall/policy file. The POLICY field can be build up from a
number of actions ("ACCEPT", "DROP", "REJECT", "CONTINUE" or
"NONE") in order to regulate traffic patterns. See appendix A.2
configuration file of shorewall.

In additional to firewall rulesets, the /proc filesystem offers some

significant enhancements to network security settings. The pseudo file (It
does not contain “real'' files but rather runtime system information) structure
within proc provides a file-system like interface to the kernel. This allows
applications and users to fetch information from and set values in the
kernel using normal file-system I/O operation. In our case to regulate IP
forwarding inside Linux kernel some modifications in
/proc/sys/net/ipv4 directory should be made (in particular insert “1” in

/proc/sys/net/ipv4/ip_forward file).

4.3.2 Linux Kernel Driver of Atheros WLAN Chipset

It has been realized that, we need to customize and add time-
driven functionality to WLAN chipset driver code to implement the idea. No
vendor (e.g. leading WLAN chipset provider Atheros, Broadcom, Texas
Instrument) is kind enough to open source community. This phenomena
makes complicated the implementation of this project. However, we have
chosen madwifi [19], a Linux kernel device driver for wireless LAN chipset
from Atheros Communications [20]. This is partially open source project
supported by the vendor Atheros itself. This section, gives the details of
implementation, is organized by starting a brief of network device driver,
then details of time synchronization of madwifi and lastly specific
description of both approaches, OLA and CLA.

 30

4.3.2.1 Basics of Network Device Driver for Linux Kernel

This section gives a brief introduction of network device driver for
Linux kernel. This will only describe the related part that may help to
understand our implementation. The experienced reader, however, can
safely skip this section.

 Linux kernel is inherently considered as the efficient and secure for
networking. Modularity, granularity of recent kernel provides concise well-
organized, and efficient and solely higher layer protocol independent coding
interface that enable programmer to develop network device driver as kernel
module, instead of part of monolithic kernel. As a kernel module, driver of
WLAN chipset, request resources needed for the operations of the device
such as I/O port, interrupt (IRQ) number etc. Kernel maintains a global list of
network devices those have been detected. Each interface defined by struct
net_device, declared in /include/linux/netdevice.h. Whenever a

device driver register itself, using register_netdevice(), it initializes the

hardware and allocate the resources it needs by filling up net_device’s
items. Following methods are common for each network device interface in
init_module() when a driver as kernel module is loaded into the kernel
[18].

o open() – this opens the interface identifying as name filed,
whenever ifconfig makes it up. This method also
responsible to allocate system resources it needs (I/O port,
IRQ, bus number, DMA, start queuing etc.)

o stop() – it closes the interface, release the resources, when
ifconfig makes it down

o hard_start_xmit() – whenever kernel release a packet for
transmission, this method is invoked to send packet by that
device. Packet should contain in sk_buff (socket buffer) skb.

o void *priv - private data for the driver. This is the base of all
data structure used for the driver development.

4.3.2.2 Introduction of Implementation Platform, MadWifi

Madwifi is partially open source project supported by the vendor
Atheros itself. We called it ‘partially’ open source since some part of
this driver, provided by the vendor, is closed source referred as hardware
access layer (HAL), comes available only as compiled binary for couple of
architectures. We will see soon why it is closed source according to vendor.
 MadWifi, Multiband Atheros Driver for Wireless Fidelity, a framework,
provides development environment as Linux kernel (started from 2.4.x)
device driver that your wireless card will appear as multipurpose network
interface in your system. It support wireless extension kernel API that

 31

allows to configure the device using common wireless tools, ifconfig,

iwconfig. A rich supported operational modes such as station, i.e.
managed mode, Access Point, i.e. master mode, ad-hoc mode i.e. IBSS
mode, WDS (wireless distributed system) to create large wireless network
by linking with neighbor AP, monitor mode etc. made madwifi platform
complex, not easily understandable and has been cumulated lots of code.

The whole madwifi code is consists of several parts. I just described
here as some modules. The device driver, as kernel module named
ath_pci consists from modules ath, ath_hal, net80211 and
ath_rate.

• net80211 or ieee80211 stack – this part is originally hacked
from FreeBSD which contains generic IEEE802.11
functionality. For BSDs, this stack supports numerous WLAN
devices. It, however, has been imported and customized only
for Atheros wireless LAN chipsets. This module implements lost
of called back which can be called by ath_hal, ath module
provided that, it has to be exported by EXPORT_SYMBOL.
net80211 module also consists of WLAN authentication,
cryptographical part.

• ath module – this module defines Atheros WLAN controller
specific callbacks for net80211 module access to the hardware
through HAL module. It contains time critical part of 802.11
management, e.g. beacon management, device’s ioctl,
configure and setup transmit (TX) and receive (RX) queue, PCI
bus controlling connected with the CPU etc.

• hal module – Hardware Access Layer, hal module is
responsible to access to hardware. This closed source
component, basically maintained by the vendor, Atheros, itself,
can be thought something like firmware of card with the only
exception is, its not stored into the card, instead consider as
kernel module. Commercial point is, it’s required less flash
memory on the board which can reduce market value of device.
By definition, hal is not exactly firmware, since firmware is
hardwared program executable on board microcontroller.
According to the argument of vendor, due to chipset’s versatility
to tune wide range of frequencies, even in unlicensed bands
(non-ISM), to enforce limit on transmit power etc and for some
legal issue, Atheros keeps the code of hal module as closed
source. Moreover, there is no documentation for hal exception
a public interfaces in hal/ah.h. Soon we will see this
unavailability has made our implementation so hard (see
chapter 6).

 32

• ath_rate module - this module selects the appropriate
algorithm for the best transmission rate. Among 802.11a, b, g,
multiple bit rates, this module sets the device’s transmission
when sending data packet. MadWifi includes three different
algorithm to choose bit rate: a) onoe algorithm, b) amrr
algorithm, c) SampleRate algorithm

4.3.2.3 Architectural Overview of MadWifi

In the last section (4.3.2.3), we have described all modules consist

of madwifi. This section will shed some light on organization and design
view of madwifi code followed by some important and related data structure
to our implementation.

I have customized and implemented two approaches (see section
3.1, 3.2) using MadWifi (version 0-9.1, virtual AP, vap branch) on Linux
kernel 2.6.12. Madwifi has several modules, our customization was
involved with basically ath and wlan or net80211 module. ath module
consists of the context of all hardware related operations, methods to
access hardware (mostly in if_ath.c, C source file), PCI bus configure (

if_ath_pci.c), board configuration (if_ath_ahb.c), ioctl related definition

etc. ath layer is used as callback that allows to call upper layer. i.e.

802.11 layer, ath_rate selection layer, binary module of madwifi, HAL
layer.

Device’s private (*priv) data structure ath_softc that contains
pointer of other concerned structures, e.g. ath_hal, ieee80211com,

net_device, beacon xmit slot (sc_bslot) of ieee80211vap, beacon miss
interrupt tasklet (sc_bmisstq) , beacon stuck interrupt tasklet (sc_bstucktq)
of struct ATH_TQ_STRUCT as well as some member variable, e.g.

- HAL queue number for outgoing beacon (sc_bhalq),
- missed beacon transmission (sc_bmisscount)
- buffer for beacon frame (ath_buffhead)
- next slot for beacon xmit (sc_bnext), etc.

Hardware access layer (HAL) API defined in structure ath_hal in

/hal/ah.h . To obtain a reference of ath_hal structure driver has to call

ath_hal_attach(). All hardware-related operation must call back into

the HAL through this interface, ath_hal, i.e. this structure contains pointer
of all HAL functions. Driver specific node state defined in structure
ath_node in /ath/if_athvar.h Device’s buffer declared as structure

ath_buf (in /ath/if_athvar.h) that contains physical address of buffer

descriptor, sk_buff pointer of ath_buf etc.

In the net80211 module, 802.11 layer’s control state is split into a
common portion. one- to –one map from a physical device to one or more

 33

virtual APs (vap) those are bound to instance of structure ieee80211com
. But each vap has corresponding kernel device entity. All traffic and control
flows, issuing ioctls go through each device entity. Some important and
more commonly used data structure are defined in net80211 module, for
example, ieee80211vap, ieee80211com, ieee80211node etc.

For the description of implementation and customization of madwifi
driver code, we define some terminology. For example:
 HAL function – we already know, the chipset vendor provided
a public interface (/hal/ah.h) of their closed source module ath_hal
this interface file contains definition of all the functions prototype and HAL
member variables. We refer these functions as HAL functions. Most of the
cases, prefix of these functions ath_hal-, e.g.

ath_hal_beaconinit().
 beacon state – most of the beacon management functionality
is time critical. So device has to configure (by driver coding) and set some
beacon parameters and beacon timer. We defined these set of parameters,
such as beacon timer, beacon timer, nextTBTT, beacon_miss_count,
nextDTIM etc as beacon state. Per station beacon state is defined as

struct BEACON_STATE in hal/ah.h.

Device’s Interrupt Handler:

Every network device should have an interrupt handler routine
registered in dev->irq in struct net_device. ath_intr() routine

has been registered as interrupt handler of madwifi using request_irq()

kernel method in /ath/if_ath_pci.c Most of actual processing are
deferred from this method. We need to understand interrupt handler
carefully since software beacon alert (SWBA) interrupt important for this
implementation. ath_intr() method invokes as soon as any interrupt
occurred by device. First we need to figure out the reason(s) for the
interrupt by calling the HAL function ath_hal_getisr(). For this
implementation, we are only concern with possible cause of interrupt may
be beacon alert time (SWBA) and beacon miss exceed (HAL_INT_BMISS
). Device notifies to driver to prepare beacon frame by occurring software
beacon alert (SWBA) interrupt sufficiently before next beacon transmission
time during the next TBTT since it needs some time to prepare, generate
and update the dynamic content of beacon frame followed by putting into
the beacon queue. So it might be difficult to meet the timing constraint
under load, if SWBA interrupt is not occurred sufficiently before time to
send next beacon. Other than these two kinds of interrupt, common
interrupt are, frame receive (HAL_INT_RX), receive error
(HAL_INT_RXEOL)to re-read link when RXE bit set etc. but study of these
is beyond of this project.

 34

4.3.2.4 Time Synchronization Functionality of MadWifi

This section will describe specific implementation description and
design architecture of beacon management functionality of madwifi as
master mode, i.e. AP mode. We know (see section 2.3) access point is
suppose to send beacon frame at exactly every beacon time interval with
time accuracy of few micro-seconds.

Missing to send few numbers of consecutive beacon frames is
considered severe annoyance of the wireless network and may lead to
collapse the whole network. Most of the part of this rigid time critical
beacon management has been let to control by device’s firmware (e.g
hostAP [8]) or device’s microcontroller to ensure this time accuracy.

Wireless LAN chipset vendor, Atheros Communications Inc. provided
a public interface of their closed source Linux kernel module ath_hal (in

hal/ah.h) without any specific documentation (very few vendors are kind
enough to open source community). Most of member variables and
function is the part of struct ath_hal defined in hal/ah.h. In our
implementation some hal functions are excessively used, for example, (it
is not possible to give all of them. Only important one is here):

 ath_hal_setupxtxdesc()- to set transmission queue(TX)
descriptor.

ath_hal_intrset()- to enable or disable interrupt firing

ath_hal_beaconinit()- to initialize beacon state

ath_hal_gettsf64()- to get current chipset TSF time in µs
ath_hal_puttxbuf- to put frame in a hardware queue

ath_hal_txstart- to enable any TX queue
etc..

Beacon management functionality of madwifi driver can be described in two
folded: a) beacon state initialization b) interrupt driven transmitting.

a) Beacon state initialization:

 Initialization of beacon state has been done ath_beacon_config()

function in ath/if_ath.c. This function has been called to start or restart
beacons. This function, for an AP, set up the device to notify the driver
time to prepare and issue next beacon frame, according code, it is referred
as software beacon alert (SWBA). Lets explain step by step, the

series of jobs done by this function ath_beacon_config().
Understanding this part is important for our implementation.

� Take the beacon interval from net80211 module. In usual case,
beacon interval is given when device is up (using the wireless tools
iwconfig) and suppose to be kept internally in ic_lintval variable of

 35

ieee802com struct defined in /net80211/ieee80211_var.h

and also AND-ed with HAL_BEACON_PERIOD to ensure in correct
margin value.

� Since we are only interested to AP mode, nextTBTT will be
equivalent to beacon interval and AP is supposed to schedule a
beacon frame as the next frame for transmission at each TBTT
[21]

� Enabling beacon timer and SWBA interrupt by OR-ing interrupt
mask variable sc_imask (member variable of *priv data structure
ath_softc in /ath/if_athvar.h) with HAL_INT_SWBA
constant.

� One of the major jobs of beacon state initialization is configure and
setup a hardware device queue for particularly only beacon frame
transmission. This have been done by implementing function
ath_beaconq_config(). The responsibility of this function to
get a hardware transmit (TX) queue dedicated for beacon using a
HAL function ath_hal_gettxqueueprops(). In our

implementation, device’s TX queue number 9 was beacon

queue. The value of some TX queue parameters of 802.11 MAC,
e.g. Inter Frame Space (IFS) duration, CWmin, CWmax are to be
set in this function to always burst out beacon traffic.

� A HAL beacon management function, ath_hal_beaconinit()
is being invoked and passed the OR-ed value of beacon interval
with constant HAL_BEACON_RESET_TSF and
HAL_BEACON_ENA successively to enable particular chipset’s
register followed by beacon miss_count set to 0. Interrupt firing
disabling and enabling again has been done by invoking hal
function ath_hal_intrset with the variable sc_imask.

So we understand how beacon state is initialized to set and configure

the device to issue SWBA. Now we analyze, when this
ath_beacon_config() function is to be invoked (see figure X). Actually
to start or restart, this function needs to invoked, i.e.

� when device is up, init_module() of driver is run, it needs to
start beacon.

� when chip needs to reset followed by some fatal hardware error or
FIFI RX queue over run or any problem.

� when channel has been changed or set

 36

Figure 4.6: Flow of function calling to start/restart beacon

 ath_newstate() also invokes ath_beacon_alloc() function to
allocate and setup beacon frame content. If any previous allocation for
beacon exists, release the associated skb. The beacon frame buffer must

be 32-bit aligned. mbuff() routine is supposed to return something with
this alignment from ieee80211_beacon_alloc() method of net80211

module. ath_beacon_alloc() basically allocates socket buffer

(sk_buff) for beacon frame.

b) Interrupt driven transmission of beacon frame:

 From the previous section, interrupt handler, we already know,
hardware issues time critical interrupt beacon alert time (SWBA) interrupt at
sufficiently before the next TBTT. Interrupt occur before the nextTBTT
since we need some time to prepare, generate, update some dynamic

 37

content of beacon frame taking account into current state and finally after
completion of generation of beacon frame we need to put into the beacon
queue. We will see here, bit details of this! The series of tasks have to be
done to prepare beacon frame and post generation task and a bit
description of methods involve with this phase. It is important to note that,
most of execution and processing of this section of code is common for
both approaches of this project implementation.

 When madwifi interrupt handler, ath_intr() realized the SWBA
interrupt has occurred, so it is time to prepare beacon frame and this has
been done by invoking ath_beacon_send() method. Figure X shows the
flow function calling until completion of beacon generation process. First
task should be a routine check whether the previous beacon has released
or not. If it is pending, so we miss to send one beacon frame which
obviously is not good. If we miss consecutive a constant number of beacon
so a situation reffered as beacon stuck is occurred. We called this
constant number of missed beacon as BEACON MISS THRESHOLD (say
we set this value 5) If beacon miss count is crossed this threshold we are
in beacon stuck situation so it needs to reset the device otherwise, it will
reduce performance of wireless network dramatically and associated
stations will not understand the existence of network.

 38

 Figure 4.7: execution flow of interrupt driven beacon transmission

If we don’t find any pending beacon, we should move on. So it’s time to fill
up the content of beacon frame for each virtual AP (vap, if more than one).
This has been done by invoking function ath_beacon_generate() and

return the pointer of complete beacon frame as ath_buf. sk_buff has
been used to link up with beacon buffer. However, the important job,
updating dynamic content of beacon frame based on current state is being
performed by callback function ieee80211_beacon_update() of

802.11 layer in net80211 module (/net80211/ieee80211_beacon.c

 39

). This method first checks whether channel changed by calling function
ieee80211_doth_findchan() and set the value. Most of the field’s
value of beacon frame (see section 4.3.2.4.b) is set by the function called
ieee80211_beacon_init(). First field of beacon frame format,
timestamp (64-bit long) is suppose to set by the hardware. The value of
timestamp field will be the time (e.g. in milliseconds) when exactly first bit of
beacon frame gets into the air [21]. Next field, beacon interval (2 octet)
suppose to store in ni_intval of struct ieee80211_node, third field
capability information, then SSID followed by supported rate returned from
the function ieee80211_add_rates(). CF parameter set information
element, WME, WPA parameter and Traffic Information message (TIM)
bitmap generated by AP and vendor specification. This project work is not
concerned with these former set of parameters.

Figure 4.8: Pseudo code of interrupt driven beacon frame transmission

beacon_send()
{

 if(check previous beacon is pending)
 {
 beacon_miss_count++ ;
 if(consecutive beacon_miss_count is greater than

 BEACON_MISS_THRESHOLD)
 {
 chipset_reset();
 return from this method;
 }
 }
 // if comes here beacon_miss_count should resume again

 if(beacon generation and update is successfull)
 {
 a. stop current DMA to beacon_queue;
 b. insert the pointer of beacon frame into beacon queue;
 c. enable beacon queue;
 d. increase global beacon_xmit varible;
 }

}

N.B. In this pseudocode, it is not been used real name of functions
 to make it reader friendly

generate_beacon_frame();

 40

 Allocation of beacon frame, set the frame length, and set

appropriate bit is done by ieee80211_beacon_alloc() function.
However, after filling up and update the values of field of beacon frame,
execution should back from 802.11 layer (net80211 module) to ath
module. Now its time to construct the descriptor of transmission (TX) queue
by invoking ath_beacon_setup() and a hal function

ath_hal_setuptxdesc() by passing frame length, 802.11 layer

header length, Atheros packet type (beacon), rate, ACK flags, RTS/CTS
duration etc. it also needs to (un)map from PCI bus to CPU and vice versa.

So now we have successfully generated beacon frame. Therefore only
task has left to put it into beacon frame. Before putting, we need to stop
current DMA to beacon queue to be safe side. A hal function

ath_hal_stoptxdma() is used then put the new beacon frame (frame

address) into beacon queue (indicated by sc_bhalq) and enable to

hardware queue. To do these tasks, two hal function is used,

ath_hal_puttxbuf(), ath_hal_txstart() accordingly.

Timing constraint and responsibility to start beacon transmission:

Time synchronization of IEEE802.11 standard (see section 2.3) AP

shall set the value of timestamp field of beacon so that it will be equal to the
value of TSF timer of AP at the first bit of timestamp is transmitted to the
physical layer of the device plus AP’s transmitting delay from MAC-Physical
interface to its interface with wireless medium [21]. So it is unlikely possible
to follow this timing constraint to put timestamp by software code.
Moreover, this timing constraint has to maintain the synchronization of TSF
timer within 4 microsecond plus propagation delay of Physical to Physical
layer [21]. Therefore, most of WLAN chipset, like Atheros, takes care of
setting timestamp. We have seen in section 4.3.2.4.a, beacon state
initialization, before starting to transmit beacon by AP periodically, device
needs to initialize beacon state. Device has to know two time, first is when
SWBA interrupt has to issue, second beacon interval and nextTBTT. One

of the major hal function, ath_hal_beaconinit(), is used to do this by
setting up chipset special register with two beacon parameter, beacon
interval and nextTBTT. Moreover, it is very important to know that,

according to the HAL specification, this hal function is suppose to use for
following two tasks when chip set will act as AP:

- set the hardware with new beacon interval, nextTBTT
- start chipset TSF timer to increment (in microsecond) from

zero.

 41

So clearly if we do initialize beacon state, consequently, TSF chipset
timer is being reset and start counting from zero. We will see next section,
this is one of draw back we can not avoid for implementation for close loop
approach. After beacon initialization, device already knows two important
times, when to issue SWBA interrupt and time to send generated and
queued beacon frame. SWBA interrupt occurs sufficiently before time to
send next beacon. After this interrupt occur, execution goes on according
to the description of section 4.3.2.4.b, interrupt driven beacon

transmission, So beacon frame will be gated into the beacon queue and
hardware responsibility to start sending the frame if medium is free. In case
of, however, busy medium, beacon will be sending immediately after the
current frame transmission. But this time shall not be accumulated with the
nextTBTT or beacon interval.

4.3.2.5 Specific Description of OLA Implementation

We already know from the section 3.3, the main idea of OLA, open
loop approach is solely replacement of existing TSF functionality of AP to
send beacon frame. Ideal case will be, AP does not know any timing
information, get delimiter packet from TDP send instantly beacon frame
and ensure the timing constraint of TSF synchronization between AP and
station.

If we analyze the open loop approach, two major steps have to be

done to achieve the goal. One, disable the existing TSF functionality of AP,
second; make the transmission of beacon driven by delimiter by
sidestepping the hardware responsibility to start sending beacon frame. We
have already discussed how delimiter traversed inside Linux kernel,
then ultimately comes to AP interface (PCMCIA interface) buffer that
enable to madwifi driver to have delimiter packet like other packet destined
to AP interface or any station associated with AP. This design, however,
has one drawback to particularly this project work, described in chapter 6.

We have implemented ath_xmit() method pointed to device’s

(net_device) hard_start_xmit function pointer. Therefore, when
kernel routing decision is over, particularly when netfilter and queuing
discipline (see section 4.3.1) release delimiter or any other packet destined
to AP interface or its associated station, ath_xmit() method will be
invoked. No outgoing packet will be transmitting until this function
execution. Now we need to be confirmed whether the packet is delimiter or
other non-delimiter. In the former case, we invoke
ieee80211_hardstart() for default xmit function for the device for

non-delimiter packet which will be processed and classified in net80211

module by calling ieee80211_hardstart() and

ieee80211_classified() in /net80211/ieee80211_output.c .

 42

From the specification of TDP router implementation [23], we
already know that, delimiter is special UDP packet which Type of Service
(TOS) or Differentiated Services Field Codepoints DSCP [24]
of IP header portion should contain specific pattern to identify delimiter.
We implement to perform this identification procedure using a method
called if_delimiter(). This method return true value the packet is
delimiter UDP type packet, otherwise return false. Simplest way to do this,
extract IP header of the packet and using tos member variable of struct
iphdr defined in /source/include/net/ip.h . After confirming the

delimiter we invoke handler_tdp() this function actually consider as
process context initiator for all TDP AP implementation.

Here it is important to know that, TDP router implementation
explains that, the delimiter sent by TDP router is more frequent, the
accuracy of TDP timing aligned with UTC more precise. For instance,
sending delimiter every 1 ms (UTC time) will be more accurate than
sending every 100 ms (UTC time). We already define the delimiter which
would be used to drive beacon frame, i.e. would be consider as an
indication of sending beacon is called tick. So if TDP router is configured
to send delimiter at 1 ms, certainly every 100th delimiter will be a tick if
beacon interval of TDP AP is suppose to 100 ms (UTC time). We define
this required number of delimiter as tick interval for the
implementation. We have option, for the experimental purpose, to the
implementation to set the tick interval constant according to the
configuration of TDP router and beacon interval of TDP AP. For example,

 Case A: Delimiter interval is equal to beacon interval of TDP AP

 tick interval will be 1

Case B: Delimiter interval is 1 ms (UTC), beacon interval of TDP

AP 100 ms (UTC), certainly tick interval will be 100

Case C: Delimiter interval is 50 ms (UTC), beacon interval of
TDP AP 100 ms (UTC), therefore tick interval is 2

 43

 Figure 4.9: Pseudo code of open loop approach

When we determine received delimiter as tick that will be similar to
SWBA interrupt except to give to the hardware responsibility to send. From
the description of section 4.3.2.4.a, beacon state initialization and beacon
management functionality of madwifi, we already know that, it is unlikely
possible to maintain timing constraint without giving responsibility to
hardware to send beacon frame. However, one of the major goals of OLA
is replacement of existing TSF functionality AP. So hardware is not
responsible to start sending beacon rather a tick would be consider as
indicator to start sending within zero time, ideally. It may not possible to
achieve this goal without having much control to the hardware. We will
discuss this issue more in section 4.3.2.5. Rather, we defined
implementation of OLA as feasibility study of OLA. Without giving
hardware to start to send beacon frame, the only way has left to work with

OLA(sk_buff_for_packet, net_device_for_AP_interface)
{
 //get the delimiter or non-delimiter packet
 //for AP interface from kernel

 //extract IP header and get the TOS/DS filed
 if(if_delimiter())
 {
 received_delimiter++;
 if(received_delimiter is equal to TICK_INTERVAL)
 {
 //time to send beacon frame

 tdp_driven_beacon_send();
 //similar procedure with Figure X
 //except used h/w queue is data queue
 //or best effort queue
 free_from_kernel(delimiter);
 received_delimiter = 0;
 }

 }else{
 //default xmit function for the device
 // trafic classification followed by priority setup
 kernel_dev_queue_xmit(delimiter);
 return;
 }

}

N.B. In this pseudocode, it is not been used real name of functions
 to make it reader friendly

 44

existing chipset, to use different hardware queue to transmit beacon frame
as normal data frame. Certainly this will not ensure the timing constraint
and degrade performance seriously while network is busy. We invoke to
generate and transmit beacon we invoke function tdp_beacon_send().

This is mostly customize version of ath_beacon_send() and execution
of program flow is also very similar to the section 4.3.2.4.b. that’s why we
leave here more detail description. However, after generation of beacon
frame, we put it into the a hardware data queue by using function
ath_hal_puttxbuf() passed into hardware queue number . Since this
implementation is considered as feasibility study, we experimented by
using different queue to transmit beacon frame, e.g. best-effort queue, a
data queue basically used WME (wireless multimedia extension, 802.11e)
QoS. It is important to note here, after gated beacon frame into the queue,
we have nothing to do other than safely anticipation that; hardware will start
to send it immediately.

4.3.2.6 Specific Description of CLA Implementation

We have studied in the section 3.3.2, goal of close loop solution is to

make alignment of existing timing functionality of AP and make it time
driven with TDP. Since delimiter packet doesn’t contain any timing
information itself, arriving time of it should be considered as TDP timer in
local system. Some simple steps have been followed to implement this
approach.

- preserve delimiter arriving time as TDP timer
- measure the drift between TDP timer and chipset time
- if drift is crossed to a predefined threshold value, align the

beacon frame transmitting time with TDP time, otherwise
continue

In this implementation, we reuse few methods from open loop
implementation, e.g. ath_xmit() for receiving all packets for AP interface
, if_delimiter(), for determining delimiter packet, handler_tdp() for start TDP
processing etc., all of these function has been described details previous
section.

 45

Figure 4.10: Pseudo code of close loop approach

CLA(sk_buff_for_packet, net_device_for_AP_interface)
{
 //get the delimiter or non-delimiter packet
 //for AP interface from kernel

 //extract IP header and get the TOS/DS filed
 if(if_delimiter())
 {
 received_delimiter++;
 increase TDP_timer according to TICK_INTERVAL;

 if(received_delimiter is equal to TICK_INTERVAL)
 {
 //measuring drift
 TSF_time = get_chipset_time();
 drift = differnce(TSF_time, TDP_time);
 if(drift is greater than threshold value)
 {
 //so it needs to allign beacon transmission

 //so it requires beacon initialization, enable
 //beacon timer, enable SWBA interrupt again etc...

 tdp_beacon_init();

 //TDP timer should start counting from current TSF
 //time again
 TDP_timer = get_chipset_time();

 }

 free_from_kernel(delimiter);
 received_delimiter = 0;
 }

 }else{
 //default xmit function for the device
 // trafic classification followed by priority setup
 kernel_dev_queue_xmit(delimiter);
 return;
 }

}

 //tdp_driven_beacon_send();
 //similar procedure with Figure X. no need to sketch again...

N.B. In this pseudocode, real name of functions is nor used
 to make it reader friendly

 46

 One of the major goal of timing synchronization of CLA
implementation is to measure drift between two time line, one chipset’s own
timer, two, TDP timer (UTC time). But we don’t have TDP timer in the
system. We have maintained
TDP timer using a counter variable, tdp_timer in ath/if_ath.c that
should initialize with TSF timer of chipset two times, when AP is turned
from normal master(AP) mode to TDP operation mode and when any
beacon initialization for TDP occurs. tsf_timer is another counter that hold
the current TSF time, chipset time returned by method
ath_hal_gettsf64() which should be the value of 1 MHz chipset clock
increasing one every microsecond.

 To measure drift between two timelines, one timer suppose to be
reference time, drift will be with reference to that timer. It is certainly not
possible to set the chipset timer to any adjusted time. This idea leads to
make us TSF timer as reference time. So difference between tdp_timer
and tsf_timer will be the amount of drift. According to the TDP router
implementation explains that, the delimiter sent by TDP router is more
frequent, the accuracy of TDP timing aligned with UTC more precise. For
instance, sending delimiter every 1 ms (UTC time) will be more accurate
than sending every 100 ms (UTC time). To keep option for further
improvement and increase TDP AP system performance and scalability, we
introduced the idea of tick interval (see previous section). By setting
the appropriate value we can configure the beacon interval parameter of
TDP AP whether TDP router is sending delimiter any lower interval. This
idea also defines how tdp_timer will be increasing. For example if TDP
router is configured to send delimiter at 1 ms (UTC), tdp_timer will be
increasing by 1000 microsecond and the same way.

 We have checked whether the drift has been crossed to a threshold
value referred as drift threshold which is a configurable parameter of
TDP AP at every tick interval, i.e. at beacon interval. For our experiment we
set drift threshold value is 1000 microsecond. If this drift is crossed the
drift threshold that means each beacon frame is being sent 1000
microsecond later or before with respect to TDP timer. So we need to
synchronize TDP AP with TDP timer. We called this process as
alignment. So we need to initialize beacon state as described section
4.3.2.4(a), Although we don’t need to follow all steps, but we need re-
enable beacon timer, re-start SWBA interrupt firing etc. These series of
task has been in tdp_beacon_init() For AP operation nextTBTT and
beacon interval parameter will be same, but according to Atheros chipset
specification and hal function interval will OR-ed with

 47

HAL_BEACON_RESET_TSF, HAL_BEACON_ENA and eventually initialize

the chipset registers by invoking hal function ath_hal_beaconinit().
 We already know, it is serious performance degration if we miss any
consecutive delimiter or delayed to arrive delimiter packet since TDP router
is being act as timing master of TDP AP. We devised a simple algroithm to
handle this like, we stored two time values timenow which contain current
kernel time (in microsecond) returned by the method
get_kerneltime_us() that actually used kernel API

current_kernel_time() defined in /source/kernel/time.c and

timeprev which contains previous time of arriving of immediate last
delimiter packet. We tried to find out whether we miss a delimiter by
checking the difference between these two time values is more larger
(defined in constant DELIMITER_MISS_THRESH) than delimiter interval of
TDP router. The number of consecutive missing
(delimiter_misscount) delimiter is crossed a predefined constant
value, we should reset the chipset or try to find out the reason. In case of
missing less than DELIMITER_MISS_THRESH or delayed we should
increase tdp_timer according to last recorded delimiter interval.

 Beacon state initialization has to invoke a closed source hal function
ath_hal_beaconinit() which leaves a compensation to CLA
implementation, i.e. this method reset the TSF timer means TSF timer start
counting from zero at every alignment. Timestamp value of beacon
frame will be changed accordingly, so station associated with AP should
not be affected. Once alignment is completed, then its hardware
responsibility to fire SWBA interrupt and eventually to start transmit beacon
frame at exact time at predefined beacon interval as described in section
4.3.2

 We got an unavoidable difficulty to set beacon interval of TDP AP in
implementation of CLA. The existing WLAN chipset certainly designed by
following IEEE802.11 standard that specify the beacon interval will be in
Time Unit (TU), a measurement of time equal to 1024 µs, i.e. 100 TU =
102.4 ms. Hardware allows to set beacon interval as an integer value, for

example 100 TU. In this case, AP suppose to send beacon frame at 102.4
ms interval.

On the other hand, in the CLA, beacon interval of TDP AP will be
according to delimiter interval of TDP router, equal to delimiter sending
interval or an integer (say 100) multiplication of delimiter sending interval.
According to TDP router implementation, the configurable granularity of
setting delimiter sending interval is 1 ms now. It may possible to change.
But for our experimental purpose, we set an appropriate tick interval

 48

so that there will be a corresponding integer time unit value of beacon
interval of AP. For instance, we did experiment
 125 TU = 128 ms or
 167 TU = 171.008 ms (with 8 µs error)
This constraint can be eliminated by allowing TDP router to configure for
sending delimiter at µs (UTC) unit.

 49

Chapter Five:

System Evaluation

The previous chapter describes of implementation of open loop
approach and close loop approach. We have evaluated the system
considering some issues, e.g. stability, scalability, and performance
analysis of the prototype in different scenarios.

5.1 Evaluation of Open Loop Approach:

We have studied in section 4.3.2.5 that, it is reasonably impossible

to achieve the goal of the OLA without full control of hardware and
associated driver code. We defined this implementation as feasibility study
of OLA, since we considered beacon frame as a ordinary management
frame of 802.11 management instead of giving hardware responsibility to
start send it and certainly after putting it into the queue, driver code has
nothing do except anticipate it will send as soon as gated into the queue.
Therefore, it there is no other traffic for AP to send out, beacon frame is
supposed to send immediately.

During evaluation of performance of feasibility of OLA, we have mainly

concentrated to determine:
- the tick (TDP) driven beacon interval. and
- how promptly beacon frame is driven by a tick (delimiter).

We believe that, by measuring elapsed time between two times at
which two consecutive beacon frames captured by a reliable and powerful
network analyzer, Fluek Network, we will get tick driven beacon interval of
TDP Access Point. Since, in our experimental setup there was no other
significant traffic, we can anticipate that when we put beacon frame into the
queue, device will start to send it. We have measured this time as beacon
arrival time at network analyzer in different scenarios. For example:

Here we should mention, in all of the experiment, we have used the

testing tools, such as Fluek network analyzer to capture beacon frame
using its wireless interface, as well as its Ethernet interface to capture
wired packet. The arrival time of frame shows at system time up to ‘µs’ unit.
We also use kernel time of TDP AP (from kernel syslog) that represents

 50

current kernel time of the system, showable up to ns. It is important to
notice, both values are coming from an ordinary PC architecture which may
have some error. However, it’s supposed to be very negligible. Moreover,
the TDP router is now also implemented on ordinary PC, since, according
to its specification, it also has some negligible error in sending delimiter
aligned with UTC time. We should consider, the following result is with this
error (if any).

Scenario-1: TDP router configured as delimiter interval 200 ms (UTC)

 So, ideally, beacon interval of TDP AP is 200 ms(UTC).
In the figure 5.1(a) (b) showed snapshot of the measurement. We

have realized considerably constant beacon arrival interval (in ms, system
time of network analyzer) with some (e.g. 7 microsecond) plus or minus.
However, this more or less value is not constant any more, for instance, we
found, interval is about or more than 50 microseconds.

 51

Figure 5.1(a): snapshot of beacon arrival interval from TDP AP in
OLA

Figure 5.1(b): snapshot of beacon arrival interval from TDP AP in OLA

Scenario-2: TDP router configured as delimiter interval 100 ms (UTC)
 So, ideally, beacon interval of TDP AP will be 100
ms(UTC).
In the figure 5.2 showed snapshot of the measurement. We have

realized almost similar value with scenario-1, i.e. considerably constant
beacon arrival interval (in ms, system time of network analyzer) with some
(e.g. 7 microsecond) plus or minus. However, this more or less value is not
constant any more, for instance, interval is about or more than 50 or even
70 µs.

 52

Figure 5.2: snapshot of beacon arrival interval from TDP AP in OLA,
scenario 2.

Scenario-3: TDP router configured as delimiter interval 200 ms (UTC)

 So, ideally, beacon interval of TDP AP will be 200
ms(UTC).

In this experiment, we use best effort hardware queue to
transmit beacon.

In the figure 5.3 showed snapshot of the measurement. We have
realized almost similar value with scenario-1, i.e. considerably constant
beacon arrival interval (in ms, system time of network analyzer) with some
(e.g. 7 microsecond) plus or minus.

Figure 5.3: snapshot of beacon arrival interval from TDP AP in OLA,
scenario 3 (best effort hardware queue).

To find out how promptly the beacon frame is drived by tick, we

setup experimental testbed as shown in Figure 5.4. We capture two
different frames into Ethernet interface and wireless interface by network
analyzer. Ethernet interface, connected with Gigabit hub, captures delimiter

 53

(tick), on the other hand, wireless interface of network analyzer captures
that particular delimiter (tick) driven beacon frame and we saved time at
which delimiter as well as beacon captured. As nature of hub, Gigabit hub
broadcast delimiter packet to

Figure 5.4: Experimental setup for OLA

Ethernet interface of network analyzer as well as Ethernet interface of
Linux box which has wireless interface that would be act as AP. Delimiter
will be traversed and routed inside linux kernel get into AP interface and will
be turned to SWBA interrupt to start sending beacon frame. This beacon
frame will be driven by the delimiter. From section 4.3.1, we already know
that, it takes significant time to be traversed and routed of delimiter packet
inside linux kernel and then generate and update beacon frame. So we can
safely assume that, time, when beacon frame captured will be later than

 54

time, when delimiter captured by network analyzer. Therefore, difference
between these two times will indicate the promptness of beacon frame that is
driven by a tick (delimiter), since delimiter packet is suppose to be gated
into the Ethernet interfaces of both network analyzer and Linux box at the
same time. We did experiment same scenarios like previous paragraph.

 In all scenarios, although, beacon frame is captured in

expected and considerably constant interval (with some microsecond +/-),
but delimiter driven beacon frames are captured delayed with around 50
ms. We referred this delay as phase shift. See figure 5.5 and 5.6

Figure 5.5: Ideal timeline of delimiter and beacon frame
transmission in OLA

Figure 5.6: Experimental result of time line of delimiter and beacon
frame transmission in OLA

If we analyze the cause of phase shift of beacon xmit in our

experimental setup, it will be the added value of time of the following steps:

 55

a) uncertain and unknown time for delimiter to make routing decision

by linux iptables, IP layer of Linux kernel, to put pcmcia (AP)
interface kernel buffer while jumping between two interface. See
section 4.3.1

b) After confirming delimiter as tick, SWBA interrupt, time to send
beacon now. Invoking some methods to generate beacon frame
followed by update some dynamic filed according to current state.

c) unpredictable time to stay into the hardware data queue, see
section 4.3.2.5.

d) time to transmit by TDP AP and receive by network analyzer the
whole beacon packet (around 1200 µs) at 1 Mb/s data rate
(practically) of device (beacon frame size is 124 * 8 bit)

We measured amount of this delay time, phase shift, in few scenarios

(see previous section).

Scenario-1: TDP router configured with delimiter interval 200 ms (UTC)
 So, ideally, beacon interval of TDP AP is 200 ms(UTC).
 And it has been used data queue.

Packet
Number Delimiter arrival time Beacon arrival time Phase Shift(ms)

9 20:18:18.232138 20:18:18.294918 62.780
10 20:18:18.432146 20:18:18.494927 62.781
11 20:18:18.632155 20:18:18.694962 62.807
12 20:18:18.832163 20:18:18.894961 62.798
13 20:18:19.032172 20:18:19.094956 62.784
.
.
63 20:18:29.032095 20:18:29.094855 62.760
64 20:18:29.232103 20:18:29.294897 62.794
65 20:18:29.432113 20:18:29.494893 62.780
66 20:18:29.632120 20:18:29.694913 62.793
67 20:18:29.832128 20:18:29.894913 62.785
68 20:18:30.032139 20:18:30.094913 62.774
69 20:18:30.232146 20:18:30.294937 62.791

 Table 5.1: Phase shift of OLA in experiment scenario1

Scenario-2: TDP router configured with delimiter interval 100 ms (UTC). So,
ideally, beacon interval of TDP AP will be 100 ms (UTC). In this experiment,
we use data queue to transmit beacon. Table 5.2 shows the result.

 56

Packet
Number Delimiter arrival time Beacon arrival time Phase Shift(ms)
69 19:15:12.927679 19:15:12.994834 67.155

70 19:15:13.027745 19:15:13.094762 67.017

71 19:15:13.127687 19:15:13.194732 67.045

72 19:15:13.227754 19:15:13.294594 66.840

.

.
100 19:15:16.027746 19:15:16.094774 67.028

101 19:15:16.127688 19:15:16.194760 67.072

102 19:15:16.227630 19:15:16.294781 67.151

103 19:15:16.327698 19:15:16.394709 67.011

104 19:15:16.427640 19:15:16.494774 67.134

105 19:15:16.527706 19:15:16.594532 66.826

106 19:15:16.599732 19:15:16.694784 95.052

 Table 5.2: phase shift (delay) of above setup in OLA

Scenario-3: TDP router configured with delimiter interval 200 ms (UTC)

 So, ideally, beacon interval of TDP AP will be 200 ms(UTC). In
this experiment, we use best effort hardware queue to transmit beacon.

Packet
Number Delimiter arrival time Beacon arrival time Phase Shift(ms)

6 20:35:44.276598 20:35:44.363769 87.171
7 20:35:44.476605 20:35:44.563765 87.160
8 20:35:44.676613 20:35:44.763765 87.152
9 20:35:44.876622 20:35:44.963793 87.171
.
.
 .

107 20:36:04.476575 20:36:04.563556 86.981
108 20:36:04.676585 20:36:04.763567 86.982
109 20:36:04.876593 20:36:04.963597 87.004
110 20:36:05.076601 20:36:05.163574 86.973
111 20:36:05.276611 20:36:05.363584 86.973
.
.

145 20:36:12.076523 20:36:12.163614 87.091
146 20:36:12.276531 20:36:12.363507 86.976
147 20:36:12.476538 20:36:12.563504 86.966

Table 5.3: phase shift of scenario-3 in OLA

 57

5.2 Evaluation of Close Loop Approach:

We studied the implementation of close loop approach, the
objective this solution is to make alignment of existing timing functionality of
AP and make it time driven with TDP router. We should evaluate rigorously
how much drift between TDP timer and chipset time is happening at every
tick interval, moreover, in due course, how many alignment (if any) is
needed for a particular time range. Secondly check out how precisely
beacon frame transmission is time driven with TDP router. We should
explain here the methodology of experiment to evaluate CLA solution how
we prepared the result of experiment. We have used very common kernel
debugging system printk() and redirect syslog (/var/log/messages) daemon.
Details of this description should be beyond here. We found the required
data in a text file followed by parsing this text file writing some simple shell
script. Graphical representation has been created using spreadsheet
software (MS Excel).

Experimental Configuration-1:
 TDP router is configured to send delimiter at 1 ms(UTC)

interval and tick interval is 100 ms. So TDP AP is supposed to take every
100th delimiter as tick and measure the drift followed by an alignment, if
any.

We have measured how much time is drifted with reference of

TSF time per tick basis for few hundred alignments in experimental
configuration- 1. The value of drift is not constant any more but it increased
almost constantly. Table 5.4 shows some snaps of continuous tick number
and drift. For instance in one alignment it was needed 1927 ticks to reach
drift of 1009 µs. So, averagely, about 0.524 µs drift has been reached in 1
tick (100 ms)

Continuous serial
number of Tick

Tick Number Drift (microsecond)
with reference of TSF time

.

.
.
.

.

.

6264 1951 -892
6265 1952 -952
6266 1953 -1010 (alignment)
6267 1 66
6268 2 9
6269 3 75
.
.

.

.
.
.

 58

6962 696 -259
6963 697 -318
6964 698 -252
.
.

.

.
.
.

7709 1443 -749
7710 1444 -683
7711 1445 -741
.
.

.

.
.
.

8192 1926 -951
8193 1927 -1009 (alignment)
8194 1 66
8195 2 9
.
.

.

.
.
.

 Table 5.4 : drift per tick and showed the alignment

drift vs tick number for one alignment

-1200

-1000

-800

-600

-400

-200

0

200

1

1
4
7

2
5
5

3
9
7

5
4
7

6
9
7

8
4
7

9
9
7

1
1
4
7

1
2
9
7

1
4
4
7

1
5
9
7

1
7
4
7

1
8
9
7

1
9
5
1

1
9
5
4

tick number

d
ri
ft
 (
m
ic
ro
s
e
c
o
n
d
)

Figure 5.7: drift per tick for one arbitrary alignment

Figure 5.7 shows how drift is increased per tick. We choose arbitrary 3
alignments and for each alignment how drift gradually increase. For
simplicity, we plot this graph by value of drift every 50th number tick,

 59

otherwise graph won’t be readable. Number of required ticks for one
alignment is not constant but averagely almost equal.

drift per tick for 3 alignments

-1200

-1000

-800

-600

-400

-200

0

200

0 300 650 1000 1350 1700 2001 2200 2500 2850 3200 3550 3900 3958 4300 4650 5000 5350 5700 5900

tick number

d
ri
ft
 (
m
ic
ro
s
e
c
o
n
d
)

Figure 5.8: drift per tick for three consecutive arbitrary
alignment

 We evaluate the stability of TDP AP in respect with the required
number of alignments in particular time duration. We configured the system
as experimental configuration-1 and analyze the system performance two
long time period, one is from 4:11:48 to 7:06:42 (system time) another one is
from 9:18:43 to 15:23:20. we kept record the kernel time of system when an
alignment has occurred, see Table 5.5 and Table 5.6 and how many alignment
has occurred from start of these experiments.

Tick Number
System Time
(upto second)

Number of Alignments
happened so far

3864 4:11:48 --

 60

11187 4:24:01 7

20306 4:39:13 12

29496 4:54:32 17

38615 5:09:44 22

47790 5:25:01 27

57019 5:40:24 32

66233 5:55:45 37

75438 6:11:06 42

90193 6:35:41 50

99486 6:51:11 55

108794 7:06:42 60

118089 7:22:11 65

127386 7:37:41 70

136752 7:53:17 75

Table 5.5: Number of alignment happened from system time from

4:11:48 to 7:06:42

If is important to know, how much time needs for one alignment (from
Table 5.6):

This table shows 110 alignments occur in 5:48:47 hour, i.e.
(5*60*60 + 48*60 + 47) = 20927 second .
So averagely, one alignment has occurred at every (20927 ÷ 110) =

190.2455 seconds

System time
(up to second)

Number of Alignments
happened so far

9:18:43 --

9:34:33 6

9:50:22 11

10:06:10 16

10:21:57 21

Time
No of Alignment

15:23:20 116

9:34:33 6

 61

10:37:47 26

10:53:47 31

11:09:55 36

11:25:55 41

11:41:46 46

11:57:34 51

12:13:22 56

12:32:19 62

12:48:07 67

13:03:56 72

13:19:46 77

13:35:38 82

13:51:28 87

14:04:06 91

14:19:55 96

14:35:47 101

14:51:38 106

15:07:30 111

15:23:20 116

 Table 5.6: Number of alignment happened from system time

9:18:43 to 15:23:20

 We have showed another important data, average number of tick
needed to occur per alignment with respect to time. We have organized
record in almost 6 hours, from 9:18:43 to 15:23:20 calculated average
number of tick needed per alignment

System time
(upto second) Elapsed Time

No. of Alignments
in elapsed time

Average Number of
Tick Needed per

alignment

9:18:43 -- -- --

9:34:33 0:15:50 5 1899

9:50:22 0:15:49 5 1896

10:06:10 0:15:48 5 1894

10:21:57 0:15:47 5 1899

 62

10:37:47 0:15:50 5 1921

10:53:47 0:16:00 5 1935

11:09:55 0:16:08 5 1920

11:25:55 0:16:00 5 1902

11:41:46 0:15:51 5 1896

11:57:34 0:15:48 5 1896

12:13:22 0:15:48 5 2275

12:32:19 0:18:57 6 1580

12:48:07 0:15:48 5 1897

13:03:56 0:15:49 5 1899

13:19:46 0:15:50 5 1905

13:35:38 0:15:52 5 1899

13:51:28 0:15:50 5 1516

14:04:06 0:12:38 4 2374

14:19:55 0:15:49 5 1902

14:35:47 0:15:52 5 1903

14:51:38 0:15:51 5 1904

15:07:30 0:15:52 5 1900

15:23:20 0:15:50 5 --

Table 5.7: Average number of tick per alignment from system time

9:18:43 to 15:23:20

We found stability of alignment occurring is considerably constant (but
not exactly constant, see figure 5.10 and 5.11), for example, averagely, one
alignment took around 1909.636 tick during time period from 9:34:33 to
15:23:20, on the other way, in this experiment tick interval was 100 ms
(UTC) so (1909.636 × 100) at every 190963.6 ms (UTC) one alignment has
occurred.

We already know, alignment is initializing the beacon state with re-

enable beacon timer, restart SWBA interrupt and as a side effect of it
restart counting TSF timer from zero. However, it is remain absolutely
hardware responsibility to start sending beacon frame which supposed to
be gated into the beacon hardware queue before time to send beacon as
next frame. Now we should think about the experiment how beacon frame
is transmitting while alignment is occurring at averagely 190.2455 seconds
interval. We did this experiment in following configuration:

 63

Stability of system: required number of tick per alignment

0

500

1000

1500

2000

2500

3000

3500

4:24:00 4:52:48 5:21:36 5:50:24 6:19:12 6:48:00 7:16:48 7:45:36

time

a
v
e
ra
g
e
 n
o
.
o
f
ti
c
k
 p
e
r
a
li
g
n
m
e
n
t

Figure 5.10: linear graphical presentation of average number of
required tick per alignment

Figure 5.11: linear graphical presentation of average number of
required tick per alignment from system time 9:18:43 to 15:23:20

Experimental Configuration-2:
 TDP router is configured to send delimiter at 1 ms(UTC)

interval and tick interval is 128. So TDP AP is supposed to take every 128th
delimiter as tick and measure the drift followed by an alignment, if any.
Beacon interval of TDP AP is 125 TU (i.e. 128 ms) and drift threshold is set
to 1 ms (1000 µs).

However, it is important to realize that, some time hardware stop

sending only one ‘queued’ beacon if any alignment is happened exactly drift

threshold, dt, before the next beacon transmission time, see figure 5.13(a)
and 5.13(b). On the other hand when an alignment happened exactly drift

 64

Stability of System: required no. of tick per alignment

0

500

1000

1500

2000

2500

9
:1
8
:4
3

9
:3
4
:3
3

9
:5
0
:2
2

1
0
:0
6
:1
0

1
0
:2
1
:5
7

1
0
:3
7
:4
7

1
0
:5
3
:4
7

1
1
:0
9
:5
5

1
1
:2
5
:5
5

1
1
:4
1
:4
6

1
1
:5
7
:3
4

1
2
:1
3
:2
2

1
2
:3
2
:1
9

1
2
:4
8
:0
7

1
3
:0
3
:5
6

1
3
:1
9
:4
6

1
3
:3
5
:3
8

1
3
:5
1
:2
8

1
4
:0
4
:0
6

1
4
:1
9
:5
5

1
4
:3
5
:4
7

1
4
:5
1
:3
8

1
5
:0
7
:3
0

Time

A
v
e
ra
g
e
 n
o
.
o
f
T
ic
k

Average No. of
Tick required
per alirnment

Figure 5.12 shows a snapshot of capturing beacon frame arrival time at
network analyzer.

Figure 5.12: A snapshot of capturing beacon frame arrival time

threshold ‘after’ the next beacon transmission time, within that drift threshold
time, it should not be any ‘queued’ beacon frame. Since TSF timer start
counting again, beacon arrival interval will be beacon interval time plus dt
drift threshold.

 65

Figure 5.13 (a): case 1, beacon frame arrival time while alignment occur

Figure 5.13 (b): case 2 of beacon frame arrival time while
alignment occur

Figure 5.13(a), (b) shows our result of Experimental configuration-2 can

consider as former case. When alignment happened, beacon arrival
interval is 255 ms (128ms + 128ms – 1 ms) Since beacon interval 128 ms
and alignment occur exactly before drift threshold (1000 µs).

We also got the result for later case, while alignment needs dt time
after beacon transmission time (when TDP timer is ahead of TSF timer).
Beacon arrival interval was 129.018 ms (128 ms + 1000 µs) with few µs
error.

In the first case, a client associated with TDP AP is getting beacon
frame after (about) two beacon interval time while an alignment occur. On
the other hand, second case, client will be getting beacon frame drift

threshold time before the beacon interval.

This incongruity, an irregularity of beacon frame transmission timing is

only happen after (around) every 2000 beacon frames. So certainly it is not
a serious problem for a station.

 66

Chapter Six:

Discussion and Future WorkDiscussion and Future WorkDiscussion and Future WorkDiscussion and Future Work

This chapter discusses some difficulty, we have faced, to implement
the proposed solution on the existing hardware, associated with closed
source code, known limitation of the implemented solutions with some
experimental suggestion to extend this project work.

TDP router is considered as timing master of a particular time-driven

wireless network. One of the major responsibilities of TDP router is to send
a special UDP packet, delimiter to TDP AP at predefined time interval to
reveal its existence and provide timing indication to time-driven wireless
network.
TDP AP has to assume safely following things:

- There is no propagation delay between a delimiter is sending by
TDP router until AP interface receiving that. So time between those
two event suppose to virtually zero.

- TDP router is sending delimiter in correct time.
- Any delimiter should be not missing.

As describe above, timing indication for both solutions, CLA and OLA

is being taken from confirming of arrival of delimiter packet. Delimiter frame
itself, doesn’t contain any timing information from TDP network. In the
current implementation, delimiter packet has been let to be routed via IP
layer (netfilter) of kernel, as described in section 4.3.1, that takes uncertain,
unpredictable and non-constant time. We got the experimental result of
OLA, section 5.1, phase shift of about 50 ms. One of the major cause of this
delay is time to traverse delimiter packet. More over, from the evaluation of
CLA, figure 5.7, amount of drift for each tick is not uniformly equal. Since in
the current TDP router implementation, the delimiter packet doesn’t have
any timing value of current time of TDP router, so clearly it is NOT
expected to let delimiter be routed inside kernel iptables. This work was
outside of scope of this project, can be considered as one of the major
future work to make wireless network time-driven.

Recent Linux kernel has rich ‘modularity’ feature that leads inter-
module communication is more dynamic and easier [18]. As a kernel
module, wireless interface driver can get indication of arriving delimiter
packet directly from Ethernet device driver module. There is several ways
to implement this idea [18], which certainly enable to avoid IP layer routing

 67

time of delimiter packet. This could be the starting point of future work of
this project.

One of major drawback of current implementation of TDP router,
working as timing master of TDP AP, is sending delimiter without putting
any timing value in the frame. That makes complicated the implementation.
We believe modification to TDP router should be part of future work that
should facilitate CLA implementation easier.

Although, the GPS card can support an interrupt granularity (e.g.1024

µs), but the current implementation of TDP router specify delimiter sending
granularity (e.g. TF duration 125µs for slow link) has to be submultiple of
the second (because the TDP supercycle duration is 1 UTC second). So,
currently, it is possible to configure delimiter granularity (for example) 1000
µs, 2000 µs, 500 µs, 250 µs etc. On the other hand, since the design of
existing WLAN chipset is certainly followed IEEE802.11 standard that
specify the beacon interval will be in Time Unit (TU), a measurement of time
equal to 1024 µs. Therefore, we got an unavoidable difficulty while aligning
beacon interval of TDP AP with delimiter interval since WLAN chipset
allows only TU (say 100 TU) which is 100 multiple of 1024 µs. This
constraint limits the freedom to set beacon interval of TDP AP with possibly
two values, practically:
 125 TU = 128 ms or

 167 TU = 171.008 ms (with 8 µs error)

Theoretically, closed loop solution is not ideally time-driven with TDP
timer. Once an alignment happened TSF timer start counting again, sending
beacon frame ‘aligned’ with TDP timer with some µs before or after
because of the drift. However, this difference will never cross drift threshold.
This phenomenon has described in figure 6.1 and 6.2.

 Figure 6.1: Ideally tick time and beacon frame xmit time line

 68

 Figure 6.2: tick time and beacon xmit time line with drift in CLA

What is the compensation, we have to pay for an alignment. During

alignment we had to invoke an HAL routine (closed source) that (re)start
counting TSF timer. But with the current hardware, this is not happened
for normal operation except when device experienced a fatal error needs to
reset chip or switch to new channel. Since we don’t have code of this
routine or even any official specification from vendor, we can not try to
avoid this limitation of the current implementation.

More over, we got the result, see section 5.2. b) Experimental
Configuration-1, in the first case, when alignment occurred drift
threshold, dt, time before the nextTBTT, a client associated with TDP
AP is getting beacon frame after (about) two beacon interval time. On the
other hand, second case, when alignment occurred dt time just after the
last beacon transmission time, client will be getting beacon frame dt time
after the beacon interval.

From the description of CLA, we are informed that, beacon state
initialization needs to invoke a hal function (ath_hal_beaconinit) which is a
closed sourced function provided by chipset vendor. Unfortunately, like
other vendors, Atheros did not provide any kind of specification or
documentation of binary module (HAL) for open source community. We
have been verified from open source community, the major task of this
function is to set chipset with two major beacon parameters, nextTBTT,
beacon interval and (re)start counting TSF timer from zero and stop
sending already queued beacon since this function also needs to enable
beacon timer of chipset and another logic is what will be timestamp value
of queued beacon frame. It should mention here again timestamp value will
be TSF time when first bit of beacon frame goes to physical layer of the

 69

device. So timestamp value of that beacon will be dt µs Unfortunately, we
don’t have any official reference of this specification from chipset vendor.

The above incongruity, an irregularity of beacon frame transmission
timing is only happen for one beacon after (around) every 2000 beacon
frames. So certainly it is not a serious problem for a station.

 Other than above known limitation, we have seen the CLA implementation
has achieved up to the mark. We believe, these limitations can be worked
out by choosing appropriate platform that is solely open source. For
example compare with Madwifi with Atheros provided closed HAL;
bcm43xx, as described in section 4.1.c, should be more useful platform to
implement solutions for this project [11]. We would have chosen this
platform; however, unfortunately, bcm43xx was not stable that time. But at
the time writing this report, bcm43xx, which has no binary crap, is stable
and should be considered as the platform of future work.

We have realized that, it may not possible to achieve goal of OLA

completely without having microcontroller of WLAN chipset or full code of
lower level MAC. That’s why we called this implementation as feasibility
study or emulation of OLA. Evaluation of current OLA implementation
(section 5.1) on current hardware, we have found significant good result in
the case of consecutive beacon interval. However, phase shift between
TDP timer and TSF timer is significantly more, that makes this
implementation complicated.

As part of future work, it can be possible to use the current

implementation of CLA with some added functionality as describe above to
port into embedded Linux kernel with different CPU architecture for a
commercial access point. This work needs to do following steps, e.g. some
modification of current implementation of CLA, cross compilation for target
architecture in consider with presence of Linux kernel in the target AP.
Vendor provided binary part, HAL, of this driver specify that, it supports
couple of architecture e.g. x86, ARM, MIPS, CRIS etc. A good example can
be found [24] [25].

 70

Conclusion

This work has provided a kernel-based prototypal solution for wireless

extension of time-driven switching network on the existing hardware for
802.11 protocol stack. The Implementation envisaged the emulation of
UTC-synchronized beacon frame generation of an access point that helped
to design of a synchronous packet scheduler. The implementation has
been done directly in kernel space of Linux operating system that manages
network layer and partially MAC layer. Implementation of proposed
approaches was difficult since most of the time-critical activities of
management frame controlled by firmware of chipset and vendor specified
closed source code. However, the goal of the close-loop has been
achieved with a known limitation. Experimental result shows that, it is non-
trivial to implement open-loop approach on existing hardware and standard.

Reference:

[1] Y. Ofek, D. Agrawal, M. Baldi, G. Marchetto, V. T. Nguyen, D. Severina,

"A Novel Approach for Supporting Streaming Media: Design,
Implementation and Experiments", ACM Multimedia 2006, Santa
Barbara, CA USA, October 22-28, 2006

[2] Y. Ofek, M. Baldi, "Multi-Terabit/s IP Switching with Guaranteed

Service for Streaming Traffic," IEEE INFOCOM 2006 High-Speed
Networking Workshop, Barcelona (Spain), Apr. 2006.

[3] M. Baldi, Y. Ofek, “End-to-end Delay Analysis of Videoconferencing

over Packet Switched Networks”, in IEEE INFOCOM April 1998.

[4] M. Baldi, Y. Ofek, “Common Time Reference for Interactive Multimedia
 Applications”, IEEE International Conference on Multimedia & Expo
 (ICME2000), New York, NY, USA, July-Aug. 2000, pp. 1679-1682

[5] Yoram Ofek, IP-Flow project description, http://ip-flow.dit.unitn.it/

[6] Y. Ofek, M. Baldi, “Blocking Probability with Time-driven Priority

Scheduling”, SCS Symposium on Performance Evaluation of Computer
and Telecommunication Systems (SPECTS 2000), Vancouver, BC,
Canada, July, 2000.

[7] The official website of OpenWrt , http://openwrt.org/ last accessed
October, 2006

 71

[8] Jouni K. Malinen, Host AP driver: official site and mailing list,
September, 2006 http://hostap.epitest.fi/

[9] Intersil Corporation, the provider of PRISM Wireless LAN chipset, now

maintained by Conexant Systems, Inc., www.conexant.com/ ,
http://www.intersil.com/ , September, 2006

[10] Open Source Project for Linux kernel driver for Broadcom bcm43xx

wireless chipset, http://bcm43xx.berlios.de/

[11] IEEE 802.11e task group E, specification of 802.11e standard.
[12] Paul Gortmaker, "Linux Ethernet-Howto", v2.8, Oct 29, 2000

[13] V. Gunffens, “ Path of a Packet in the Linux Kernel”, Apritl 2003.

[14] Rusty Russell, Harald Welte, " Linux netfilter Hacking HOWTO ", July,

2002
[15] F. Baker. RFC1812 - Requirements for IP Version 4 Routers, June

1995.

[16] David A. Rusling. The Linux Kernel. 1996, Chapter 10.

[17] Stephen Hines, Bartow Wyatt, and J. Morris Chang, “Increasing Timing

Resolution for Processes and Threads in Linux ”.
[18] Jonathan Corbet, A. Rubini, G. Kroah-Hartman Linux Device Drivers,

Third Edition, Chapter 17: Network Drivers, O'Reilly.
[19] MadWifi project at sourceforge site

http://sourceforge.net/projects/madwifi/
[20] The official webpage of Atheros Communications, www.atheros.com

[21] MAC Sub Layer Management Entity, Specification of IEEE 802.11

standard, section 11.1, 1999
[22] Atheros Communication Inc. Wireless product factsheet,

www.atheros.com

[23] Guido Marchetto, Masters Thesis, “Prototypal Implementation Of A

Time-Driven Priority Router”, January, 2005

[24] OpenWRT forum, http://forum.openwrt.org/viewtopic.php?id=5585

last access November 03, 2006
[25] Cross-compilation toolkit, http://www.scratchbox.org/ last access

November 03, 2006

[26] Open source project of shorewall, netfilter configuration tool,
http://www.shorewall.net/ last access October, 2006

 72

[27] Nichols, K., Blake, S., Baker, F. and D. Black, "Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers",
RFC 2474, December 1998.

Appendix

Appendix A.1: The OSI Layered Model

Appendix A.2:

The configuration file set (valid for Ethernet –Wireless interconnection) for
shorewall, used for enable IP routing inside Linux kernel iptables, is written
below:

Zones file: ZONE TYPE OPTIONS IN OUT
 OPTIONS OPTIONS

 73

fw firewall
wifi ipv4
cable ipv4

Interfaces file: ZONE INTERFACE BROADCAST OPTIONS

wifi ath1 detect
cable eth0 detect

Policy file: SOURCE DEST POLICY

cable wifi ACCEPT
wifi cable ACCEPT
all $FW ACCEPT
all all REJECT

