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dalle valli trentine, ovvero Chini, Dal Follo, Endrici, Gionta e Zadra.

Thanks also to ChessMaster Troy Goldschmidt, who never let me turn to the

Dark Side of the Force, and all the people I’ve been living with during my Erasmus

experience in Helsinki.

I would like to thank also Dr. Andrea Boni, Dr. Giorgio Fontana and Dr. Ofek

for having given me the chance to partecipe to this project, Francesco, Franco,

Luca and Michele for their help during the hard days of work in the laboratory of

electronics.

In the end, thanks to David Pajo and the Dirty Three, whose celestial music

defeated my sleeplessness.



Contents

Acknowledgements v

List of Figures ix

List of Tables xi

Introduction xv

1 Background and objectives 1

1.1 the IP-FLOW project . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Principles of operation . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Timing signals . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 The prototype . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Accuracy requirements . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Previous configuration . . . . . . . . . . . . . . . . . . . . . 12

2 Devices and instruments 17

2.1 Main devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 GPS receiver #1 . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 FPGA #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Other devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 FPGA #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Function generator . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Oscilloscope . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Universal counter . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



viii CONTENTS

2.2.5 GPS receiver #2 . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 The FPGA-related software . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Data acquisition related software . . . . . . . . . . . . . . . . . . . 29

3 The principle of working 35

3.1 Practical problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 The implementation phase 41

4.1 The VHDL components . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Reset generation . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.2 1PPS signal period measurement and division calculation . . 43

4.1.3 1PPS signal period correctness check . . . . . . . . . . . . . 45

4.1.4 Output generation . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Test phase and corrections . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 The asynchronous input issue . . . . . . . . . . . . . . . . . 48

4.2.2 The input rise time issue . . . . . . . . . . . . . . . . . . . . 48

4.2.3 Jitter and drift . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Input signal filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 FIR filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 FIR filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.2 PID controller . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Final results 63

6 Conclusions 67

6.1 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Further developments . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 71



List of Figures

1.1 Common Time Reference structure. . . . . . . . . . . . . . . . . . . 4

1.2 Example of packet flowing in a UTC-based pipeline forwarding ar-

chitecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Fractional λ switch architecture and operating stages. . . . . . . . . 6

1.4 Functional diagram of a Time Driven Switch. . . . . . . . . . . . . 7

1.5 Testbed functional diagram. . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Phase-Locked Loop - Scheme of principle. . . . . . . . . . . . . . . 13

1.7 Block Scheme of the Tekelec’s Epsilon Board II. . . . . . . . . . . 13

1.8 Hardware setup of the Tekelec’s Epsilon Board OEM II. . . . . . 14

1.9 Tekelec’s Epsilon Board OEM II. . . . . . . . . . . . . . . . . . 14

2.1 Final system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 U-BLOX ’s LEA-4T GPS receiver. . . . . . . . . . . . . . . . . . . 18

2.3 ComBlock ’s COM-1300. . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 UBlox ’s LEA-4T circuit board. . . . . . . . . . . . . . . . . . . . . 21

2.5 Digilent ’s Spartan-3 Starter Board. . . . . . . . . . . . . . . . . 23

2.6 Rise time comparison between the three receivers. . . . . . . . . . . 25

2.7 Xilinx ISE 8.1 graphical interface. . . . . . . . . . . . . . . . . . . 26

2.8 Xilinx ModelSim output example. . . . . . . . . . . . . . . . . . . 27

2.9 Xilinx PACE graphical interface. . . . . . . . . . . . . . . . . . . . 29

2.10 Xilinx iMPACT - Programming type selection. . . . . . . . . . . . 30

2.11 Xilinx iMPACT - JTAG programming window. . . . . . . . . . . . 30

2.12 Oscilloscope’s data acquisition.vi - Front panel: inputs. . . . . . . . 31

2.13 Oscilloscope’s data acquisition.vi - Front panel: output 1. . . . . . . 32

2.14 Oscilloscope’s data acquisition.vi - Front panel: output 2. . . . . . . 33

ix



x LIST OF FIGURES

3.1 Basic algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Temporal window. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Reminder distortion. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Reminder recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Moore vs. Mealy machine. . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Pure 1PPS vs. Sampled 1PPS (enlarged detail on the right). . . . . 50

4.3 Tekelec’s Epsilon Board II vs U-Blox ’s LEA-4T: delay time progress,

histogram and time sliced histogram using a sliding window. . . . . 52

4.4 Tekelec’s Epsilon Board II vs Trimble’s Resolution T: delay time

progress, histogram and time sliced histogram using a sliding window. 53

4.5 U-Blox ’s LEA-4T vs Trimble’s Resolution T: delay time progress,

histogram and time sliced histogram using an enlarging window. . . 54

4.6 FIR filter in the direct structure. . . . . . . . . . . . . . . . . . . . 56

4.7 FIR filter in the transposed structure. . . . . . . . . . . . . . . . . . 56

4.8 The implemented FIR filter. . . . . . . . . . . . . . . . . . . . . . . 58

4.9 The implemented PID controller. . . . . . . . . . . . . . . . . . . . 60

4.10 Step responses of the PID controller. . . . . . . . . . . . . . . . . . 62

5.1 1000 seconds long acquisitions of 1PPS signals delay. . . . . . . . . 66



List of Tables

3.1 Algorithm: ideal behavior. . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Algorithm: possible real behavior. . . . . . . . . . . . . . . . . . . . 39

4.1 Divider’s functioning. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Divider’s results. D/d=Q+r. . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Acquisitions results - U-BLOX ’s LEA-4T GPS-1PPS . . . . . . . 64

5.2 Acquisitions results - Operating frequency: 50MHz . . . . . . . . . 65

5.3 Acquisitions results - Operating frequency: 70MHz . . . . . . . . . 65

xi



xii LIST OF TABLES



“The Web infrastructure, and even Google’s [infrastructure] doesn’t scale. It’s not

going to offer the quality of service that consumers expect”

Vincent Dureau, Google’s head of TV technology

Amsterdam, Cable Europe Congress

7th Febrary 2007

“Network synchronization plays a central role in digital telecommunications as it

determines the quality of most services offered by the network operator. However,

the importance of network synchronization is often underestimated [...]” [8]





Introduction

The Internet has been growing exponentially for several years and the demand

for broadband services is going to find new reasons to increase from streaming

media flows, requiring a lot of bandwidth in order to fulfill customers’ request for

high definition video. Moreover, real-time applications, such as video-conferencing,

video-telephony and gaming, require small delay to allow them to be fully enjoyed

by customers. But the actual infrastructures seem to be inadequate to satisfy the

future requirements, so new technologies are needed to prevent the network from

collapsing.

In 2004, Marie Curie Chair Professor Yoram Ofek started a project called IP-

FLOW, founded by the European Union, developing a new architecture for optical

networks based on Fractional Lambda Switching, an innovative technology for the

realization of low complexity, high scalability switches invented by Ofek himself. In

2006, after less than two years of hard work involving people and structures from

three italian universities (of Trento, Milan and Turin), a prototype was successfully

developed and tested.

Pipeline forwarding is the method at the base of an ultra scalable switch pre-

sented as the solution to the problem. In this context, a major role is played

by synchronization: packets flow over the optical network from the server to

the client without the need of processing overhead, but the switching operation is

driven by a timing signal based on Coordinated Universal Time (UTC) providing

common time reference (CTR).

But the synchronization issue does not end here: the upcoming activation of the

Galileo positioning system shows the way forward to new applications, especially

in the telecommunication field, as shown by the growing interest on conferences

like the International Telecoms Synchronization Forum. From this perspective,

xv



xvi INTRODUCTION

the higher is the precision of the timing signal, the higher is the upper-bound

performance achievable by the system.

Improvements in the same field are also connected to the astonishing success of

FPGAs, a type of powerful, small and inexpensive semiconductor device contain-

ing programmable logic components and programmable interconnects. According

to In-Stat [10], a high-tech market research firm, the value of worldwide FPGA

shipments will increase from $1.9 billion in 2005 to $2.75 billion by 2010; more-

over, communications are one of the largest two end-use segments whose combined

market share of the FPGA market will increase from 73.8% in 2005, to 76.8% by

2010.

In the synchronization field knowledge is still extremely meager while real-time

Internet applications are increasing their catchment area without the certainty of

having enough resources to satisfy the need for deterministic Quality of Service.

The purpose of the presented thesis project is to generate high accuracy timing

signals from the UTC-one pulse per second (UTC-1PPS) signal, which nowadays

can be easily derived from inexpensive GPS receivers, with a low-cost FPGA. The

realized device will then advantageously replace the actual GPS board which is now

supplying the switch prototype with low jitter 1PPS and 10MHz clock signals used

for switching operation.

The thesis is structured in the following way:

in the first chapter an overview on the IP-FLOW project is given, explaining

its basic principles, focusing mainly on the synchronization issue, and describing

the prototype’s architecture;

the second chapter focuses on the thesis project objectives, defining the sys-

tem constraints related to the timing aspect;

in the third chapter all the devices and instruments used for the development

of the project will be described in details; thus, not only the ones constituting

the final device will be treated, but also the ones used for debugging, testing

and comparing, which have been very useful to identify the source of the various



xvii

problems and find the corresponding solution;

the forth chapter is dedicated to the software used for programming the FPGA

and evaluate the performance of the device, concentrating on the most useful tools

used during the implementation, debug and test phases;

the fifth chapter focuses on the algorithm which the thesis project is based

on; the first practical problems will be identified also, as well as their solutions;

in the sixth chapter the first VHDL code implementation phase will be dis-

cussed, in which the generation of a clock signal with high phase and frequency

accuracy from a precise 1PPS signal was carried out;

in the seventh chapter the testing of the implemented VHDL code will be

described, focusing on the non idealities introduced by the several components and

the related problems’ solution;

the eight chapter focuses on the reduction of the jitter affecting the input

reference signal; the proposed solutions will be explained concentrating on the

system response to the filtering operation;

the ninth chapter is dedicated to the measurements that have been made; the

performance of the designed product will be evaluated in order to understand the

limitations the algorithm suffers from;

in the tenth and last chapter the thesis conclusions will be drawn; moreover,

future developments will be suggested.
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Chapter 1

Background and thesis objectives

1.1 the IP-FLOW project

IP-FLOW [16] is a three-year European project supported in full by Marie Curie

Chair Excellent (EXC) Actions and has been awarded to Prof. Yoram Ofek. The

focus of IP-FLOW project is on the flow control of IP packet over the Internet.

Timing and flow control are critical since they directly affect how users perceive

the quality of IP-based services, such as voice-over-IP or video-over-IP. Its final

goal is to provide an efficient solution to the flow control problems that internet

is going to experience when real-time applications like video-conferencing, video-

telephony and gaming, whose Quality of Service (QoS) requirements (in particular

regarding delay and jitter) can not be fulfilled by the actual infrastructure, will be

widely spread around the world. Nowadays, circuit switching is the only known

way to ensure it, but this technology suffers from some serious technical limitations;

circuit switching networks are in fact bandwidth-inefficient and restrictive in sup-

porting a diverse array of end-user services. On the other hand, packet switching

and statistical multiplexing can provide a better network utilization but for these

technologies it is currently impossible to provide deterministic QoS despite lots of

sophisticated queuing algorithms have been deployed: some with good results, but

none of them can actually ensure this kind of requirement [13].

IP-FLOW is an acronym for Internet Protocol FLows over Optical and Wire-

less: in fact, the underlying research and the project itself are focused on several

1



2 CHAPTER 1. BACKGROUND AND OBJECTIVES

IP packets flow issues through IP networks, from the optical core to the wireless

edges.

The IP-FLOW project develops in three research areas:

1. UTC-based pipeline forwarding for IP flows for solving switch and link bot-

tlenecks;

2. TrustedFlow : a general method for run-time authentication that guarantees

correct execution of service level agreements and window flow control;

3. delivering high fidelity content over wireless (Wi-Fi) with directional anten-

nas.

In this thesis, the first area will be widely described, while the other two ones

are still under preliminary research.

IP-FLOW development started in April 2004, involving people and structures

from three italian universities: Università degli Studi di Trento, Politecnico di

Torino and Politecnico di Milano; many activities have been proposed, planned

and executed ever since, leading to the realization of a Terabit/s switch prototype

based on the Fractional Lambda Switching (FλS) technology [7] featuring QoS

guarantees (deterministic delay and jitter, no loss) for (UDP1-based) constant bit

rate (CBR) and variable bit rate (VBR) streaming applications.

This thesis deals with synchronization, an issue of major importance in this

context.

1.1.1 Principles of operation

Unlike whole λ switching, FλS dynamically switches fractions of a wavelength

allocated with the proper size to satisfy the specific needs of the access networks

to which a λ fraction is connected.

Pipeline forwarding [7], [3] is the fundamental mechanism that lays at the base

of the switch: the idea is to translate in the optical networks environment the

1Acronym for User Datagram Protocol; it is an unreliable protocol belonging to the transport
layer of the the TCP/IP model, used in applications such as VoIP.
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assembly line, i.e. the manufacturing process of historical importance firstly suc-

cessfully realized by Henry Ford in his car factories at the beginning of the 20th

century.

This is done taking advantage of the UTC2One Pulse Per Second (1PPS) signal

provided by a GPS receiver, thanks to which it is possible to have the necessary

requirement of Common Time Reference (CTR), used by the network nodes to get

phase synchronization with identical frequencies.

Nowadays, GPS receivers can be easily found in the market at different prices,

depending on the quality of the service provided. Moreover, the GALILEO project,

the satellite positioning and navigation system born from the collaboration between

the European Union and the European Space Agency and specifically designed for

civil purposes, will be fully operational in the immediate future (according to the

last estimates, everything will be ready before 2012), allowing higher precision than

is currently available through GPS [19].

In this way, time can be universally divided into the basic elements called Time

Frames (TFs) of duration Tf , which are grouped into Time Cycles (TCs), which

are in turn grouped into one UTC second long Super Cycles (SCs). For example,

as shown in figure 1.1, 100 TFs form one TC and 80 TCs are included in a SC,

which is identified with one UTC second.

Therefore, an end-user demanding for a service experiences the advantages of

circuit switching, since packets flow over the network through a pre-defined path,

but without wasting bandwidth, since the same wavelength3 is shared with other

users by dividing time in the way above explained. The TFs are then associated to

every single user depending on two factors: the bandwidth needed for the specific

application and the delay it can tolerate. The traffic is shaped according to the

Time Driven Priority (TDP) mechanism whose design basic objective is to satisfy

real-time multimedia services by giving higher priority to real time traffic in a

periodic fashion [12], [13].

2Acronym of Universal Coordinated Time, it is the international atomic time scale that serves
as the basis for timekeeping for most of the world. UTC is a 24-hour timekeeping system. The
hours, minutes, and seconds expressed by UTC represent the time-of-day at the Earth’s prime
meridian (0◦ longitude) located near Greenwich, England.

3Actually data won’t be carried on the same frequency all along the path, but at every node
it will be generally moved from a wavelength to another
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Figure 1.1: Common Time Reference structure.

In the proposed solution, packets flow over the optical network according to

two rules:

1. all packets that must be sent in the tth TF by a node must be in its output

ports’ buffers at the end of the (t− 1)th TF ;

2. a packet p transmitted in the tth TF by a node n must be transmitted in the

(t+ dp)
th TF by node n+1, where dp is an integer constant called forwarding

delay ; the tth and the (t + dp)
th TFs are also referred to as the forwarding

TF of packet p at node n and node n+1, respectively. The value of the

forwarding delay is determined at resource-reservation time, i.e. it is known,

and must be large enough to satisfy rule 1.

In figure 1.2 there’s an example of how this can happen. A, B and C represent

the network nodes the packet has to go through, Tij stands for the delay introduced

by the propagation from node i to node j while Tii represents the processing delay

due to node i. Hence, the forwarding delay can be calculated according to the

following pseudo-code:

dp = round up(dpropagation + dprocessing); (1.1)

where dpropagation is the propagation delay and dprocessing is the time required by the

node for processing. The basic unit to which the rounding operation refers to is, of

course, the TF.

The predefined schedule for forwarding a pre-allocated amount of bytes during

one or more TFs along a path of subsequent UTC -based switches is known as Syn-
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Figure 1.2: Example of packet flowing in a UTC-based pipeline forwarding archi-
tecture.

chronous Virtual Pipe (SVP) [3]. The SVPs are calculated and provided by a TDP

router directly connected to the service provider, e.g. a video streaming source;

the flow is then managed by the switches, which perform a series of operations that

can be summarized by two steps, as described by figure 1.3:

1. receiving and alignment : the switch receives the data units belonging to a TF

on each wavelength separated by a WDM de-multiplexer, but at the input

port the TFs are usually not aligned because of the propagation delay, which

is generally not a multiple of Tf ; thus, some CTR aligning procedure is needed

performed by an alignment system, which also provides input buffering of

data units until they can be switched;

2. switching and forwarding : after step 1 has been accomplished, all the data

units are transferred through the switching fabric to their corresponding out-

put port, where they are transmitted on their selected λ through a WDM

multiplexer.

There are two different approaches in doing this: one implementing immediate

forwarding, in which the data units received in the tth TF are moved to their output
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Figure 1.3: Fractional λ switch architecture and operating stages.
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Figure 1.4: Functional diagram of a Time Driven Switch.

port and forwarded in the (t + 1)th TF ; the other implementing non-immediate

forwarding, in which the two steps are not necessarily carried out in consecutive

TFs.

1.1.2 Timing signals

It is now clear that synchronization is a fundamental aspect in the switching opera-

tion, which the whole system can not prescind from: for this reason, this technology

is also known as Time Driven Switching (TDS).

There two timing signals, which are provided to every single switch by GPS

cards, as shown in figure 1.4. The first one is the 1PPS signal, used to identify

uniquely the first TF of every SC. Then, a 10MHz clock is furnished to the FPGA

that controls the switching fabric and that uses it to build the TFs. This clocking

signal is synchronized in frequency and in phase with the 1PPS signal, i.e. it

is generated in such a way that there are exactly 10, 000, 000 cycles between two

consecutive rising edges of the 1PPS and that the first and last cycles of every SC

are aligned with the pulse. In such a way it is possible to achieve CTR, which the

whole system is based on, since it is essential during for alignment phase of the

switching procedure.
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1.1.3 The prototype

The architecture described so far has been implemented on a testbed in the Elec-

tronic Laboratory of the Department of Information and Communication Technol-

ogy at University of Trento. The prototype, whose functional diagram is shown in

figure 1.5, is composed by the following components:

- a video server emulating heterogeneous and asynchronous streaming sources

(audio, video and text) by transmitting two different movies to two distinct

clients;

- TDP router that represents a TDP domain at the backbone edge; the TDP

router acts both as edge router encompassing a SVP interface and as an

interface to the TDS backbone [11], [12], [6];

- two TDS switches that are constructed with Mindspeed M21151 switching

boards, with capacity of 400 Gb/s;

- two distinct FPGA-based controllers for the two switches;

- three GPS boards, providing the needed timing signals;

- two streaming media receivers for separately playing the two video streams

transmitted from the asynchronous streaming sources;

- 20 km single-mode optical fiber connecting the two switches;

- multi-mode optical fiber to connect the router with to the first switch and

the second switch to the two clients.

The TF duration Tf and the size of the TCs have to be set in the TDP router

and the two switches.

Two asynchronous video flows are generated by the streaming media source

and transmitted to the SVP interface within the TDP router. The streaming video

packets are then forwarded via an optical link by the TDP router through Gigabit

Ethernet (GE) transceivers to the first TD switch during different predefined TFs.

Specifically, in reference to 1.5, the 5th TF and the 15th TF belong to one SVP while



1.2. OBJECTIVES 9

Figure 1.5: Testbed functional diagram.

the 6th TF and the 16th TF belong to another SVP. The optical signal entering

the first TD switch is converted to an electrical one, switched by the first stage and

forwarded to the second switching stage through an electrical connection. Then the

video streams are transmitted as an optical signal, through a single mode optical

fiber link of 20 km, to the second TD switch that routes each video stream to a

different output. Then the separated video streams are forwarded to two receivers

through optical links of an arbitrary length. Video flows are therefore multiplexed

on the first and second link they traversed, but TDS ensures that video packets

reach their corresponding destination with deterministic QoS, i.e., during the 6th

TF and the 16th TF and during the 7th TF and the 17th TF respectively. Switching

of all three switching boards and network interfaces are synchronized with the 1PPS

signal received from three different GPS receivers [3].

1.2 Objectives

Synchronization plays a major role in the entire project: without well-defined tim-

ing uncertainty in the alignment, the optical switches can not forward data units

in the correct direction, since it is time that drives the switch. Thus, high accuracy
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timing signals are needed in order to ensure a correct flow control of the IP packets

but the question is: how close to the ideal case does the alignment have to be?

1.2.1 Accuracy requirements

There are two issues that have to be considered: one connected to the jitter affecting

the TF connected clock, the other,which is definitely more delicate and crucial,

connected to the accuracy of the 1PPS signal aligned to UTC.

The former is easily resolvable once we have high precision 1PPS signal de-

limiting the time interval in which there has to be an exact number of TFs, i.e.

between two consecutive input pulses no TF has to be missing and there has to be

no time for additional TFs over the pre-defined quantity. The device dedicated to

the supply of the timing signals, a low frequency one and a high frequency one, set

to 1Hz and to 10MHz respectively, has to tune the frequency of the last mentioned

clocking signal according to the first one in such a way that the number of output

cycles contained in a SC respects the network design parameter related to that

particular node. As a consequence, the accuracy issue is translated into a stability

question regarding the oscillator internal to the device. Fortunately, the answer

is already given, since, short of abrupt physical environment changes, the actual

quartz oscillators achieve really high despite short term stability: a typical crystal

oscillator’s frequency vs. temperature (which is the parameter the oscillators are

more sensitive to) stability may be ±25ppm for a temperature range of −55◦C to

+85◦C [20].

The latter issue requires more dedication since different alternatives can be im-

plemented, but all sharing the same basic mechanism: the 1PPS signal is used for

the identification of the first TF of the first SC included in a UTC second, obtain-

ing in such a way synchronization among all the optical switches constituting the

network. Depending on how the whole system is designed, the switching operation

turns out to be non-ambiguous if the following accuracy requirements are fulfilled:

1. in case the TFs are not bounded by any delimiter, the timing uncertainty

has to be much smaller (e.g. 5%) than Tf ; moreover, a safety margin, i.e.

an idle time in which no data is transmitted, between the TFs is needed in

order to be sure not to forward fractions of TFs in the wrong direction; such
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a safety margin is not intended to delimit the TF, since also inside a TF itself

there could be some idle time, e.g. in case no one is asking for bandwidth.

Obviously, the absence of delimiters does not allow any alignment operation:

TFs can not be distinguished from each other and, as a consequence, the

incoming signal is seen as a continuous stream of data; therefore, no buffering

is supported, i.e. the forwarding delay is equal to the propagation delay.

In order to allow correct packet forwarding this delay has to be an integer

multiple of Tf , requiring precise calculations of the lengths of the optical

fibers connecting the network nodes;

2. in case the system is provided with delimiters, things get much easier: de-

limiters can be implemented in various ways ranging from defining a control

packet to be transmitted as a delimiter to setting a 1 bit field in the first

packet transmitted during a TF ; the requested accuracy to maintain correct

mapping of TFs is therefore lowered to ±1
2
· Tf [7].

3. accuracy relaxation can be enhanced exploiting the re-occurring nature of the

TCs : TFs can be counted for univocal identification within the TC whose

half period consequently represents the modulus of the minimum accuracy

required for correct forwarding;

4. alternatively, the accuracy requirement can be relaxed if the use of Time

Stamps is introduced. A Time Stamp (TS) is a record of the time associ-

ated to a certain event. In this case, since time is divided into TFs, which

represent the basic time unit for the system, the TS is identified with the

TF ’s index within the TC ; again, the minimum accuracy required is lower,

in modulus, than half the TC period. The mechanism could paradoxically be

propagated to TCs into SCs, but obviously such a requirement goes against

the idea of real-time application, besides the fact that even low cost GPS re-

ceivers accuracy is in the order of few microseconds. In the light of this last

consideration, TSs can be useful for network fault detection: if the misalign-

ment exceeds a pre-defined threshold value, it means that the timing signal

generator is not working properly and the affected node has to be considered

out of order. Thus, the system’s fault tolerance capability could be extended
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since it would be possible to isolate the faulty node by the execution of a

recovery procedure with the aim of generating new routes that avoid that

node.

The insertion of delimiters give flexibility to the switching operation but there’s

a major issue related to their complexity, while the “delimiters-free” approach is

simple and supported by the precision of actual GPS receivers combined with the

elaboration power of the existing programmable logic devices.

1.2.2 Previous configuration

In the actual prototype, Tekelec’s Epsilon Board OEM II is the device which

has the task of providing both the timing signals to the switch controller. The

board does not simply include a GPS receiver which provides the UTC 1PPS, but

is made of a high quality and, as a consequence, high cost mixed analog/digital

technology which allows to obtain really high accuracy timing signals: an oven

stabilized crystal oscillator with 1PPS output is synchronized to UTC 1PPS with

a Phase-Locked Loop (PLL).

A PLL is an electronic circuit implementing a closed-loop feedback control

system designed to generate an output wave at a specific frequency, synchronized

with another input signal (a.k.a. “reference signal”) whose frequency is different.

It is generally made up by the following components, as shown by figure 1.6:

- a phase comparator ;

- a voltage-controlled oscillator (VCO);

- a frequency divider.

Let’s assume that the VCO generates an output wave whose frequency is closed

to the desired one; the divider returns a signal whose frequency is a submultiple of

the one generated by the VCO and compares its phase with the reference signal’s

one. The output of the comparator then drives the VCO, keeping its frequency

strictly phase-locked to the input.

Tekelec’s GPS board is designed in a more complex way: the phase shift is

measured and commanded to zero with a digital PID controller that analogically
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Figure 1.6: Phase-Locked Loop - Scheme of principle.

Figure 1.7: Block Scheme of the Tekelec’s Epsilon Board II.

drives a varactor diode in the crystal oscillator. The digital PID is required because

the involved time constants are very large and may reach hours. The principle of

functioning and the hardware setup of the evaluation kit in which the device is

included are illustrated in figures 1.7 and 1.8.

The purpose of the whole thesis is to replace the Epsilon Board OEM II,

providing the same timing signals, with a digital device implemented on an FPGA,

trying to get as close as possible to its performance, which is known to be really

good (this aspect will be discussed deeply in chapter 5, and at least providing the

minimum accuracy requirements above highlighted.

The motivations that lead to the realization of such a component are:

- Tekelec’s Epsilon Board OEM II is an almost unique device in the market:

there are no many companies providing products with similar purposes, but

the whole testbed needs to be independent with respect to the market;
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Figure 1.8: Hardware setup of the Tekelec’s Epsilon Board OEM II.

Figure 1.9: Tekelec’s Epsilon Board OEM II.
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- Tekelec’s Epsilon Board OEM II is too expensive,

- Tekelec’s Epsilon Board OEM II is bulky, while an FPGA can contain

the code corresponding to the timing signals provider and still have space for

additional logic.
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Chapter 2

Devices and instruments

In order to attain the pursued objectives stated in chapter 1.2, several devices and

instruments were used. Here’s a list of them, with their main features described

and particular care given to the most useful aspects regarding this project. More-

over, the achievement of the objectives laid down at the beginning of the project

required the capability to make many different devices interact. The creation of

the VHDL code, its simulation in order to fix the bugs, the estimate of its effi-

ciency, programming the FPGA and the measurements of the system performance

are examples of such kind of activities that were lead by heterogeneous software.

In this chapter the computer programs used in the whole development phase will

be described too.

2.1 Main devices

The expression “Main devices” refers to all the elements that constitute the fi-

nal sub-system1, i.e. without all the instruments used for initial implementation,

debugging and testing, as shown in figure 2.1. Thus, the GPS receiver and the

CardBus FPGA Development Platform will now be described in details.

The 1PPS signal is provided to the FPGA by the U-BLOX ’s LEA-4T GPS

module, shown in figure 2.2.

1With the term sub-system, the GPS board, matter of the thesis, is meant, while the term
system refers to the whole Fλ switch prototype.

17
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Figure 2.1: Final system.

Figure 2.2: U-BLOX ’s LEA-4T GPS receiver.
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2.1.1 GPS receiver #1

It’s main features, according to the data sheet, are:

- dimensions: 17× 22.4× 3mm;

- configurable time pulse: 0.1Hz to 1kHz;

- time pulse accuracy: 50ns;

- digital I/O interface for the time pulse signal;

- Power Supply: 2.7− 3.3V ;

- ultra low power consumption: typically 39mA @ 3.0V or 38mA @ 2.7V ;

- operating temperature range: −40 to 85 ◦C;

- rise time : 800ns (see figure 2.6 for a comparison with Tekelec’s Epsilon

Board OEM II)

- price: 145C.

The GPS module is provided with a software that allows to set the receiver’s

parameters, and gives informations about the signals captured by the antenna,

such as the strength, the transmitting satellites sending the information and their

position. The software then decodes the messages received, containing exact time

and 3D space coordinates.

The work does not take into account any elaboration that could be operated by

the receiver, since the purpose is to be able to generate high accuracy timing signals

from every GPS receiver, thus taking into consideration worst-case scenarios (i.e.

“raw”, unprocessed signals). Anyhow, if better precision is needed, every option

can be exploited.

2.1.2 FPGA #1

The FPGA in which the timing signal generator has been implemented is in-

cluded in a PCMCIA/CardBus FPGA development platform model COM-1300

by ComBlock, of which a picture is provided in figure 2.3.
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Figure 2.3: ComBlock ’s COM-1300.

Its main features are (in the CardBus configuration):

- typical sustained data throughput: 100/40 Mbits/s (transmit/receive);

- Xilinx Spartan-3 XC3S400-4ft256 FPGA: 400K gate Xilinx Spartan-

3 FPGA with sixteen 18-bit multipliers, 288Kbits of block RAM, and up

to 500MHz internal clock speeds (50MHz internal clock multipliable and

divisible through DCMs2;

- 32MB SDRAM for use as elastic buffer;

- GUI3 called “ComBlock Control Center”, used for remote monitoring and

control over simple serial link;

- ComScope, a component which allows to store internal digital signals in real-

time within the internal memory and then export them to a host computer

for plotting, storage and further processing.

The GPS module is installed on a circuit board connected to the FPGA through

the expansion port of the COM-1300; in such a way the LEA-4T is power sup-

plied while providing the FPGA with the GPS-1PPS signal. The same board also

serves the function of connecting the FPGA to the Mindspeed M21151 switching

2Acronym for Digital Clock Manager, a component capable of generating clocks at whichever
frequency, belonging to the output frequency range, through the use of a DLL unit. acronym for
Delay Locked Loop

3Acronym for Graphical User Interface.
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Figure 2.4: UBlox ’s LEA-4T circuit board.

boards for control. Moreover it allows USB and RS-232 communication and output

signals monitoring through SMA4 connectors (refer to figure 2.4).

2.2 Other devices

Many other devices were used during the implementation, debug and test phases,

used to simulate input signals, reproduce COM-1300 behavior and measure out-

put quality. Here is a list of them.

2.2.1 FPGA #2

During the development phase, the VHDL code was not implemented on the Card-

Bus platform, but a different device was used for debugging and first testing: Dig-

ilent ’s Spartan-3 Starter Board, whose main characteristics are:

4Acronym for SubMiniature version A connector, it is a a type of coaxial RF connector devel-
oped in the 1960’s as a minimal connector interface for coaxial cable with a screw type coupling
mechanism.
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- Xilinx Spartan-3 XC3S200-4ft256 FPGA: 200K gate Xilinx Spartan-

3 FPGA with twelve 18-bit multipliers, 216Kbits of block RAM, and up

to 500MHz internal clock speeds (50 MHz internal clock multipliable and

divisible through DCMs;

- on-board 2Mbit Platform Flash (XCF02S);

- 8 slide switches, 4 pushbuttons, 8 LEDs, and 4-digit seven-segment display;

- serial port, VGA port, and PS/2 mouse/keyboard port;

- three 40-pin expansion connectors;

- three high-current voltage regulators (3.3V, 2.5V, and 1.2V);

- works with JTAG3 programming cable.

The complementarity with the CardBus board was ensured by the belonging of

the included FPGAs to the same family (Xilinx Spartan-3 ).

The Starter Board was really helpful thanks to the display, which allowed to

monitor the content of any counter, selectable through the use of the switches,

thanks to the leds, which allowed to monitor the system flags, such as resetting

and enabling signals, thanks to the buttons, used to simulate external interfering

elements, and finally thanks to the expansion ports which the interface with the

other elements composing the whole system was realized through.

The Starter Board features an FPGA which is half sized in terms of logic

space if compared to the one included in the CardBus. However, it has also to

be considered that part of the Spartan3 of the COM-1300 is already filled with

drivers for the CardBus interface.

2.2.2 Function generator

At the very beginning of the development phase, the 1PPS signal sent by the

satellites and captured by the GPS receiver has been simulated by a function

generator, which allows to build digital signals such as sinusoids, square waves,

noise and pulse-like signals (as requested by the application) allowing to set the
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Figure 2.5: Digilent ’s Spartan-3 Starter Board.

frequency in a dynamic way, i.e. whenever needed, also during the generation of

the output, through the use of buttons and a knob.

2.2.3 Oscilloscope

The assessment of the system has been carried on mainly through the use of a digital

real-time oscilloscope featuring two input channels, 9-bit vertical resolution, sample

rates up to 1.25GS/s, automatic delay measurement and LAN communication

port. In addition to the monitoring of the signals on the color LCD, a program

developed in LabVIEW environment has been configured to communicate with the

oscilloscope with the purpose to collect and analyze the delay acquisitions between

the various 1PPS signals.

2.2.4 Universal counter

The accuracy of the 10MHz square wave output has been estimated not only using

the oscilloscope, but also through the use of a universal counter featuring two input

channels, 10 digits per second of frequency/period resolution and a bandwidth of

225MHz and capable of frequency ratio measurements between the input channels.



24 CHAPTER 2. DEVICES AND INSTRUMENTS

2.2.5 GPS receiver #2

The absence of an extremely high precision clock, e.g. an atomic clock, does not al-

low to quantify univocally the accuracy of a timing signal. Thus, the measurements

have been performed comparing Tekelec’s output with the generated one, but in

order to understand the origins of the different behaviors that can be observed

by the acquired data, another receiver has been used, allowing cross-comparisons:

Trimble’s Resolution T. The results of the analysis will be discussed later on in

section 4.2.

Another parameter that characterize the three receivers is the rise time, which

is directly connected to the bandwidth of the circuit.

In figure 2.6 the time needed by the three GPS receivers to change from 10%

of its final value to 90% of its final value is shown. As it can be seen, UBlox ’s

LEA-4T has a really long rise time: this is the price that has to be paid when

reducing the device dimensions in such a drastic way.

2.3 The FPGA-related software

Xilinx is the worldwide leading company in the FPGA field. Together with its

programmable logic products, it provides software for the implementation of the

algorithm into the devices. In the case of this project, the following programs were

used:

- Xilinx ’s ISE 8.1i, providing a HDL synthesis and simulation, implementa-

tion, device fitting, and JTAG programming environment (see its graphical

interface in figure 2.7);

- Xilinx ’s ModelSim XE III v6.0d, providing an HDL simulation environ-

ment that enables to verify the functional and timing models of the imple-

mented design and the HDL source code (see an example of the generated

output in figure 2.8).

In particular, ISE 8.1i features the IP5 CoreGen & Architecture Wizard utility,

which allows the designer to utilize many types of ready made intellectual property

5Acronym for Intellectual Property.
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(a) Tekelec’s Epsilon Board OEM II - Rise time.

(b) U-BLOX ’s LEA-4T - Rise time.

(c) Trimble’s Resolution T - Rise time.

Figure 2.6: Rise time comparison between the three receivers.



26 CHAPTER 2. DEVICES AND INSTRUMENTS

F
igu

re
2.7:

X
ilin

x
IS

E
8
.1

grap
h
ical

in
terface.



2.3. THE FPGA-RELATED SOFTWARE 27

F
ig

u
re

2.
8:

X
il
in

x
M

o
d
e
lS

im
ou

tp
u
t

ex
am

p
le

.



28 CHAPTER 2. DEVICES AND INSTRUMENTS

(IP) cores in the project. IP cores can range in complexity from simple arithmetic

operators to complex system-level building blocks such as filters, transformers or

memory.

In our case, the tool was used to create a Digital Clock Manager, a component

that, among the offered services, can be used to increase the clock’s frequency. In

this way it is possible to limit the effects entailed by the oscillator frequency since

it can be multiplied for whatever factor comprised in a wide set of values; in such

a way, the problem related to the operating frequency is transfered to the code

efficiency.

As a matter of fact, one of the big deals with FPGA is that an implemented

algorithm can not work at whatever frequency, but there’s a bound on the speed

it can run at. This is due to gate and net delays introduced by the “compiled”

code, which does not allow the signal to propagate correctly unless it respect the

speed constraint imposed by the particular device the developer deals with. In this

sphere, every time the top level entity is synthesized, ISE 8.1i provides a report

of the elaboration in which, among the many informations, an estimate of the

maximum frequency the designed entity can work at is provided, and which comes

with a detailed description of the time needed by the signals in the different entities

to propagate. In this way it is possible to understand where the code weaknesses

are and as a consequence act to improve it already knowing the points that most

require some optimization.

The so obtained code can then be simulated through the creation of test bench

file, which can be realized with the ISE graphical tool that allows to modify the

inputs in the shape of waveforms, or writing down directly the VHDL code defining

the values assumed by input signals. This procedure brings to the creation of a

file that has to be given in input to the ModelSim, whose task is to generate

the code expected output. Of course, there is no guarantee about the provided

results, since the tool does not take into account the effects introduced by the

effective physical implementation of the designed entity, such as signal propagation

problems, presence of asynchronous signals, fan out issues and many more; but

at the same time the simulation allows to understand if the algorithm itself is

developed correctly through the verification of the generated output correctness.
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Figure 2.9: Xilinx PACE graphical interface.

Once the ModelSim’s output corresponds to the desired one, it is possible to

assign the input and output signals to the package pins, writing down the related

“.ucf” extended file manually or using ISE ’s PACE utility, whose interface is shown

in figure 2.9, and create the programming file that is used to configure the FPGA,

task that is still left to the ISE. After the generation of this file, it is possible to

program the FPGA, task that is left to ISE ’s iMPACT utility (shown in figures

2.10 and 2.10), via the JTAG port included in the Digilent ’s Spartan-3 Starter

Board, or providing the file with extension “.mcs” to the PROM which the FPGA

included in ComBlock ’s COM-1300 is connected to.

2.4 Data acquisition related software

The assessment of the system accuracy is mainly based on the oscilloscope’s delay

measurements. In order to collect the acquisitions in some computer files and to
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Figure 2.10: Xilinx iMPACT - Programming type selection.

Figure 2.11: Xilinx iMPACT - JTAG programming window.
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Figure 2.12: Oscilloscope’s data acquisition.vi - Front panel: inputs.

carry out deep analysis on the generated output, a LabVIEW program called

“Oscilloscope’s data acquisition.vi6” was developed.

National Instrument ’s LabVIEW is a powerful graphical development envi-

ronment, for signal acquisition, measurement analysis, and data presentation; it

also provides the flexibility of a programming language without the complexity of

traditional development tools.

The created VI features the front panel shown in figure 2.12 from which the

user defines the output file in which the data will be saved, the duration of the

whole acquisition process and, since the communication occurs over the internet,

the IP address of the oscilloscope. Then, it provides real time graphs representing

the time progress (in which it is possible to superimpose a polynomial curve of

a given order that best represent the data) and the histogram of the gathered

information (refer to figure 2.13); finally, after all the required measurements have

been taken, a 3D time sliced histogram analogue to the one present in figure 2.14

can be analyzed, showing the evolution over time of the occurrences of the data in

a temporal window whose width has to be defined by the user in the front panel.

The temporal window can be used in the following ways:

1. sliding window : its width remains the same and it moves forward with time,

thus observing the samples from the ith to the (i + W )th, from the (i + K)th

to the (i + K + W )th, from the (i + 2K)th to the (i + 2K + W )th, etc., where

K stands for the time interval between two consecutive histograms and W

6the programs developed with LabVIEW are called Virtual Instruments, or, in a simpler way,
VIs
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Figure 2.14: Oscilloscope’s data acquisition.vi - Front panel: output 2.

defines the window width; in such a way it is possible to understand if the

receiver’s behavior changes during the day, e.g. if the receiver works better

when the environment is warmer;

2. enlarging window : the starting point of the analysis is always the first ac-

quisition, but the window width increases with time; the samples analyzed

will then be the ones from the 1st to the (W )th, from the 1st to the (2W )th,

from the 1st to the (3W )th, etc.; again, the period between two consecutive

histograms is given by the parameter K (even though it does not appear in

the formulas) while W now represents the window enlargement. This kind

of study helps to understand if the histogram spreads with time.

The oscilloscope is controlled through a set of instructions and queries by a

remote computer in which the program is running: in such a way it is possible to

command the device automatically with a cycle in which every iteration starts with

a request for a measure and finishes when the information is received and saved

into the indicated file.
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Another LabVIEW VI was then developed, called “Data elaboration from

file.vi”, carrying out the same analysis of the previous one but the data is read

from the saved files instead of being gathered from the oscilloscope. Moreover,

in order to make the comparisons between different couples of signals easier, two

input files are expected.

Another interesting and useful function used for the analysis is the curve fitting,

which in our case was realized through polynomials of order dependent on the

particular acquisition. In such a way it is possible to discriminate the effect of

drifting with the one related to the jitter.



Chapter 3

The principle of working

The idea that lays at the base of the whole system is really simple and can be

summarized by the figure 3.1: from the GPS receiver the system obtains the basic

timing reference from which it is possible to build the output: the high accuracy

1PPS signal, whose precision we can’t query. During the ith cycle, delimited by

the rising edge of two consecutive pulses, the clock internal to the device is used

to measure the pulse length (so a counter is needed, counting the number of clock

cycles present in a 1PPS period) which should be close to the ratio between the

internal clock’s frequency and the reference signal’s frequency. The obtained value

is then divided by the ratio between the wanted output signal frequency (let it be

a generic frequency F ) and the reference signal frequency (i.e. 1Hz) in order to get

the output’s signal length (measured in clock cycles). This value is used to build

the F [Hz] square wave during the (i + 1)th 1PPS cycle, supposing the internal

clock’s frequency to be stable.

The stability assumption has to not to be taken for granted for long, so the

procedure has to be repeated continuously, for every incoming pulse. In this way it

is possible to to put bounds on the effect of the frequency drift affecting the quartz

oscillator, an effect which is strongly correlated to instabilities including: aging,

noise, temperature effects, warm up, acceleration effects, magnetic field effects,

atmospheric pressure effects, radiation effects, and interactions among the various

effects[20].

35
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Figure 3.1: Basic algorithm.
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Figure 3.2: Temporal window.

3.1 Practical problems

When a developer gets in touch with reality, he/she often finds out that things are

quite more complicated than the ideal case.

First of all it has to be considered the chance that the GPS receiver is not

working properly, due to whatever faulty functioning (e.g. interference or bad

antenna positioning), providing erroneous pulses or missing some of them. Thus,

it is necessary to lay down limits in the shape of temporal windows, as shown in

figure 3.2, during which correct pulses are supposed to happen. In case of pulses

received out of these windows, or not received at all, the system has to be able to

detect the failure and consequently act to generate the output omitting the faulty

information gathered but storing the last supposed correct data as long as internal

clock’s stability can be considered uncorrupted (i.e. despite the information stored

was correct, the generated output is wrong because the internal clock’s frequency

has changed, even if in a slight way; so, in the generation process, there’s no

connection between the information obtained during the ith period and the output

built in the (i+n)th period using the above-mentioned data which now is obsolete)

or a new reliable input is provided.

Another aspect that needs to be considered for a proper functioning is the

presence of the reminder in the division calculation. If the output is built without

considering it, high bad synchronization risk has to be taken into account. Here’s
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Symbols

Fref = reference signal frequency
Fout = output signal frequency
Fclock = theoretical internal clock frequency
Lideal

ref = theoretical reference signal length
Lideal

out = theoretical output signal length
Lreal

ref = real reference signal length
Lreal

out = real output signal length

Frequency ratio

Fref = 1Hz
Fout = 100Hz

⇓
Fout/Fref = 100

Ideal behavior

Fclock = 1KHz
⇓

Lideal
ref = Fclock = 1000

Lideal
out = Fclock

Fout/Fref
= 10

Table 3.1: Algorithm: ideal behavior.

an example of how this could happen:

But since the division calculation returns an integer, it could happen that:

In this way, if the internal clock is stable, i.e. the result of the counting will not

change in the following 1PPS period, 999/9 = 111 output square wave periods will

be built, not 100. In other words, the output generation entails a distortion that

could compromise the functioning of the system. This distortion, that can be seen

in figure 3.3, is introduced by the presence of the reminder in the division calcula-

tion; however, the reminder can be recovered during the generation phase through

the use of an accumulator module Fout/Fref , which the reminder is added to at the

end of every cycle built. Thus, the distortion can be compensated extending the

square wave period for one additional internal clock cycle every time an accumu-

lator overflow occurs, as shown in figure 3.4, where, for obvious space limitations,

the frequencies have been changed as follows: the output signal frequency is set

to 3Hz and theoretical internal clock frequency to 10Hz, while the reference signal
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Possible real behavior

Lreal
ref ' Fclock

= 999
⇓

Lreal
ref

Fout/Fref
= 9 rem 99

Lreal
out =

⌊ Lreal
ref

Fout/Fref

⌋
= 9

Table 3.2: Algorithm: possible real behavior.

Figure 3.3: Reminder distortion.

frequency remains to 1Hz.

3.2 Parameters

After these considerations, it’s possible to create a list of parameters that we need

to provide for the correct working of the system:

- the ratio between the frequency of the output square wave (which in our case

is 10MHz) and the frequency of the reference signal (which is 1Hz, but it

could be any frequency; obviously, the higher it is, more often the data used

to build the output is updated);
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Figure 3.4: Reminder recovery.

- the theoretical reference signal length, i.e. the theoretical rate between the

frequency of the internal clock and the frequency of the reference signal;

- a maximum value for the delta between the theoretical reference signal length

and the real one.

The first parameter is used as divider in the calculation of the output’s length,

while the other two ones describe the temporal window used to check the input’s

correctness, defining the first it’s center and the second it’s width. Of course

different strategies can be used to define the temporal window; for example the

last valid PPS length measurement can be used as center, but the first option was

implemented since a certain connection with the nominal frequency is desired.



Chapter 4

The implementation phase

The algorithm explained in chapter 3 was then translated in VHDL language. Usu-

ally the best approach for the realization of a whole hardware system, whose as-

pects are not considered in their totality yet because of the intrusion of unexpected

problems, is to implement it in a modular way, connecting different components,

having each of them a specific task to fulfill. In this manner, since a component

sees only its own input signals without the need to know how they are managed, it

is possible to modify a single component without caring about the others, as they

perform correctly their own duties.

In order to understand if the algorithm is working properly or not, a whole

system made of the GPS receiver and the clock generator needs to be simulated.

At this point the Digilent ’s Spartan-3 Starter Board offers much more useful

instruments than the ComBlock ’s COM-1300. The performance of the system can

be assessed through the help of a function generator providing the 1PPS signal,

then buttons, switches and LEDs of the starter board can be used to control and

monitor internal signals, a display to show the content of the counters (with the

help of a switch to change the bytes displayed in case the digits are not enough)

and an oscilloscope to depict the outputs. The functioning of all the components

needs to be checked, so many steps are required to complete this phase. Of course,

the fact that the system works properly using artificially generated signals does not

directly imply that it will work with the real ones, since many factors of uncertainty

are introduced by the external environment and by the devices themselves.

41
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4.1 The VHDL components

As a consequence of all the considerations given in chapter 3, it is possible to define

in a really clear way which are the main tasks that have to be fulfilled. Now, they

will be described.

4.1.1 Reset generation

Every time a pulse is received, the system needs to be reset, i.e. the various counters

need to be reset to zero after their last value had been memorized (if needed). The

fact that this pulse is 100µs long entails the fact that the signal supplied by the

GPS receiver has to be filtered somehow, making the pulse shorter (not longer than

a cycle of the internal clock), in order to allow the other components to correctly

measure its period and properly build the output. The component this task is

entrusted to is the Reset generator, initially realized through a Mealy machine1

receiving in input the 1PPS signal and a clock, and providing as output the reset

signal for the other components of the system. In this way the reset signal is kept

asynchronous, so that there’s no loss of time between the instant the GPS pulse

arrives and the instant the entities are reset.

Its functioning is really simple:

1. Reset out is set to ”1” when Reset in arrives;

2. Reset out is reset to ”0” at the immediately next rising edge of the Master

clock (it remains high for a period shorter than or equal to a period of Master

clock);

where Reset in is the signal provided by the GPS receiver and Reset out is the

shortened pulse.

The debug of this entity has been realized with the help of the function gener-

ator, simulating the GPS signal, and the oscilloscope, monitoring the 1PPS signal

and the Reset generator output. The generated reset has to rise with the pulse

and fall in less than a Master Clock ’s period.

1A finite state machine which produces an output for each transition, i.e. the output generated
by a Mealy Machine depends on both its state and its inputs.
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4.1.2 1PPS signal period measurement and division calcu-

lation

The system algorithm is based on the measurement of the 1PPS signal period and

its result’s division to obtain the length of the output cycles. As said in chapter

3, this is achieved by counting the number of rising edges of the Master Clock

that happen between every two following pulses (considering their rising edges as

temporal bounds for the counting).

When a pulse arrives, the consequent reset signal determines the saving of the

counter before its value is canceled to allow the system to acquire the following

input period length measurement. Since the informations needed to build the

output have to be ready right after the input cycle is finished, the division is

performed contemporaneously with the 1PPS signal period measurement through

the use of other two counters, one incremented at every rising edge of the Master

Clock and counting from 0 to the value of the frequency ratio between the output

square wave and the reference signal, the other incremented every time an overflow

of the previous said counter occurs.

Here’s an example of how the signals work, considering init and end as the the

instants when a pulse and the following one respectively arrive. Being the pulse

asynchronous with the clock, a small delay is considered between the pulse arrival

and the first rising edge of the clock.

The values contained in the registers at the end, i.e. when the second pulse

arrives, are then memorized in other registers allowing the construction of the

output.

The debug of the divider can be realized with the help of the display for checking

the result of the calculation (saved in the Clock lengths memory). In order to

understand if the operation is computed correctly a low frequency clock signal

is desirable to simplify the measurements. Through the function generator it is

possible to set the period of the input signal (so the result has to change), allowing

to check if the algorithm works correctly in a dynamic way. Some results are

reported in table 4.2.
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Symbols

Fref = reference signal frequency
Fout = output signal frequency
Fclock = theoretical internal clock frequency

Dividend = Master clock counter, reset every time a pulse arrives;
DIV ISOR = frequency ratio between the output square wave

and the reference signal;
Reminder = Master clock -module DIVISOR counter;
Quotient = overflow counter of the

Master clock -module DIVISOR counter.

Parameters

Fref = 1Hz
Fout = 3Hz
Fclock = 10Hz

⇓
DIV IDEND = 3

Behavior

Registers
Master clock ’s rising edges

init 01 02 03 04 05 . . .
Dividend 0 1 2 3 4 5 . . .
Reminder 0 1 2 0 1 2 . . .
Quotient 0 0 0 1 1 1 . . .

000 05 15 25 35 45 . . .
Time [ms]

Behavior

Master clock ’s rising edges
Registers

. . . 06 07 08 09 10 end

. . . 6 7 8 9 10 10 Dividend

. . . 0 1 2 0 1 1 Reminder

. . . 2 2 2 3 3 3 Quotient

. . . 55 65 75 85 95 1000
Time [ms]

Table 4.1: Divider’s functioning.
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Clock 1PPS d D Q r D Q r
Frequency [Hz] Ideal Experimental

100 1,3 10 76 7 6 75/76 7 5/6
100 1,2 10 83 8 3 82/83 8 2/3
100 1,2 10 90 9 0 89/90 8/9 9/0
100 1,0 10 100 10 0 99 9 9
100 0,9 10 111 11 1 110/111 11 0/1
100 0,8 10 125 12 5 124 12 4
100 0,7 10 142 14 2 141/142 14 1/2
100 0,6 10 166 16 6 165/166 16 5/6
100 0,5 10 200 20 0 199 19 9
100 0,4 10 250 25 0 249 24 9
100 0,3 10 333 33 3 332/333 33 2/3
100 0,2 10 500 50 0 499 49 9
100 0,1 10 1000 100 0 999 99 9

Table 4.2: Divider’s results. D/d=Q+r.

4.1.3 1PPS signal period correctness check

As said before in chapter 3, it could be possible that the receiver is not working

properly, thus some pulses must not to be considered in the measurement or some

others are lost causing the counting to be unconnected to reality. It is then neces-

sary to check in some way the correctness of the 1PPS pulse received. This is done

simply allowing the saving of values provided by the Divider only inside temporal

windows which define the correctness of the pulses.

This is achieved through the combination of a temporal bounds manager, called

Clock length bounds memory, which defines the temporal window, and of a

Synchronizer of the counts and the saves with the input signal. The Clock

length bounds memory supplies as output the minimum and the maximum

values that the main Master clock counter of the Divider can assume in order

to be considered valid and let it be saved. It can work in two different modes,

called static bounds mode or dynamic bounds mode. The former indicates that the

temporal bounds are decided prior to FPGA programming and are never changed,

the latter that they are set during the algorithm execution depending on the last

1PPS correct period, creating a window centered in the last measured value and
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with a Delta equal to 1/2N of the window center, where N is fixed during the

development phase. Obviously, at start-up, a default value has to be used.

The Synchronizer receives as input the temporal window, the actual value of

the main Master clock counter and the reset signal which indicates that a 1PPS

pulse have just been received. In order to avoid problems caused by possible counter

overflows, it disables the increment of the counters when the main one exceeds the

upper temporal bound through a flag supplied as output; it also enables counter

saving when a correct pulse is received and it determines whether the connection

with the satellite works properly or not,i.e. if an erroneous pulse is received, or in

case of a missing one, it waits for a minimum pre-defined number of consecutive

correct 1PPS pulses before updating the last valid measurement acquired.

The measure of the 1PPS period needs to be available for the output genera-

tion. This task is assigned to a memory element, called Clock lengths memory,

which saves the given input data on the rising edge of its clock. The clock of this

component is not the Master clock of the system, but it is obtained by the reset

provided by the Reset generator activated through the enabling signal provided

by the Synchronizer.

The Divider, the Clock length bounds memory, the Synchronizer and

the Clock lengths memory are then grouped into a unique component called

Clock manager.

Its tasks are:

- to provide the length of a cycle of the 1PPS period signal checking its validity

through the use of a temporal window which a 1PPS pulse has to happen

into in order to be considered valid;

- to provide the length of a cycle of the output signal performing the division

between the number of cycles included in a 1PPS cycle and the ratio wanted;

- to enable the generation of internal clocks when the system locks to the

satellite for the first time.

The debug of these components can be verified using a button to simulate

external noise or stopping the the input signal supply, fact that has to lead

to ignore the corrupted acquired data.
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4.1.4 Output generation

Once valid data have been stored, the outputs generation is enabled based on the

lengths provided by the Clock manager. The task is assigned to the Clock

builders.

Two outputs are built: the first one is the internal 1PPS signal, whose length

simply corresponds to the last measured period of the input signal, the other one

is the one at higher frequency, that is build using the information obtained by the

division calculation.

Both the Clock builders receive as inputs an enabling signal allowing the

output construction only when the information held in the internal registers is

reliable, a resetting signal defining the initial instant of the generation process and

the output’s length (measured in Master clock ’s cycles) giving information about

the output’s period. The higher frequency signal builder gets also the reminder of

the division calculation. In fact its presence suggests, during the generation phase,

the use of the fraction recovery procedure explained in chapter 3 in order to achieve

a better result. In other words, the reminder represents the fraction of Master clock

lost while carrying out the integer division, which introduces a distortion in the

output. This can be avoided accumulating the reminder in a base-(Fout/Fref )

counter during the generation process and perpetuating for an additional Master

clock ’s cycle the output’s period every time an overflow occurs, i.e. every time the

accumulated fractions reach the value of a unit. Two other control signals are then

used: the first one to allow the generation of both pulse-like signals and signals

with uniform duty-cycle, the second one to set a maximum number of generated

output cycles since the last reset has happened. In this way, it is possible to stop

the construction of the internal 1PPS in case the signal from the satellite is lost

and to keep the other output, providing a high accuracy high frequency clock, low

once the desired number of cycles are built, avoiding the construction of spurious

periods due to the remaining unrecovered accumulated fractions of the Master clock

or to sudden oscillator frequency change.

The correctness of this component can be easily checked with the help of the

oscilloscope, capable of measuring the output frequency. Moreover, it is possible to

monitor the behavior of the higher frequency output right before the input 1PPS
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rises, so that the reminder recovery procedure and the avoidance of spurious periods

construction can be verified , and compare the generated frequency with a known

correctly working signal using the universal counter.

4.2 Test phase and corrections

The third part of the the development of the thesis project, after the implemen-

tation and debug phases, was constituted by the testing of the VHDL code with

real, asynchronous and noise affected inputs.

4.2.1 The asynchronous input issue

At the very beginning, the high frequency output behavior was verified setting the

following configuration: the high frequency output clock of the FPGA was com-

pared with the one coming from Tekelec’s Epsilon Board II using its 1PPS signal

as input to the Spartan-3, in order to eliminate possible uncertainties introduced

by the use of different receivers. Unfortunately, the fact that the signal used to re-

set the system, i.e. the 1PPS signal supplied by the GPS receiver, is asynchronous

with the clock led to problems: once every some minutes the reset could not be

seen by all the components, entailing unacceptable “holes” in the generated output;

therefore, an input signal sampler was included, despite this operation unavoidably

introduced a first element of loss of precision, which intensity is inversely propor-

tional to the internal clock frequency. In practice, the Mealy machine was replaced

by a Moore machine2 and the problem was resolved. The price to pay for the intro-

duction of the sampler is a loss of resolution equal to the master clock frequency,

fact that, in any case, does not create problems since the accuracy requirements

are quite relaxed.

4.2.2 The input rise time issue

Then, the test was carried on replacing the input to the FPGA: Tekelec’s Epsilon

Board II was replaced by U-Blox ’s LEA-4T, whose rise time is really high, as

2In the theory of computation, a Moore machine is a finite state machine in which the outputs
are determined by the current state alone and do not depend directly on the inputs.
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(a) Moore machine (b) Mealy machine

Figure 4.1: Moore vs. Mealy machine.



50 CHAPTER 4. THE IMPLEMENTATION PHASE

(a) Pure 1PPS vs. Sampled 1PPS signals. (b) Sampled 1PPS signal: detail.

Figure 4.2: Pure 1PPS vs. Sampled 1PPS (enlarged detail on the right).

can be seen in figure 2.6. The added noise does not allow a correct sampling of

the 1PPS input signal, because it determines the output fluctuations presented in

figure 4.2 due to unwanted threshold crossing. Moreover, this effect is amplified

when the operating frequency is boosted. The sampler was then changed into a

more complex Finite State Machine (FSM) implementing a sort of hysteresis3 cycle:

it constitutes a sampler that, when it detects a threshold transition, interrupts the

sampling operation for some time (i.e. some nanoseconds) waiting for the transient

to be over. The duration of the needed suspension period depends on the rise time

and on the noise amplitude. Since this amount of time has to be translated for the

FPGA into a number of cycles, the operating frequency is another parameter that

has to be taken into consideration.

4.2.3 Jitter and drift

After that, the system was tested comparing the 1PPS signals and the higher

frequency ones provided on the one hand by Tekelec’s Epsilon Board II and on

the other hand by the FPGA. Again, the response was not as good as desired,

even though the accuracy is already sufficient for allowing the implementation of

the device into the Fractional λ switch prototype: in fact, signal jumps, offset and

3Hysteresis is a property of systems that do not instantly follow the forces applied to them,
but react slowly, or do not return completely to their original state: that is, systems whose states
depend on their immediate history, not only on the present stimulus



4.3. INPUT SIGNAL FILTERING 51

jitter seemed to be affecting one of the two signals. Unfortunately, no atomic clock

was available for high precision acquisitions; hence, in order to understand which

of the receiver was the source of the problems, the third GPS receiver, Trimble’s

Resolution T, was used to perform cross-analysis of the three devices.

The acquisitions were realized by the oscilloscope measuring the delays between

the three receivers, analyzed separately in pairs. The acquired data were trans-

mitted to a PC and collected into files for further processing with the LabVIEW

software described in chapter 2. In figures 4.3, 4.4 and 4.5 the delay vs. time graphs

are reported, showing also the lowest order polynomial curves that achieved good

fitting at first glance. It seems that the signal jumps and the offset are mostly

connected to some filtering that takes place in the Epsilon Board II, while the

jitter affects mainly the Ublox’s and Trimble’s receivers.

Moreover, since the measurement carried out in the ith cycle is used to build

the output in the (i + 1)th cycle, the effect of the jitter is doubled: let’s assume

for example that the implemented VDHL code is running at 50MHz (the counting

resolution is therefore 20ns) and that the jitter affecting the received UTC 1PPS at

the ith cycle is +45ns over the ideal pulse length; thus, the counter will experience

a +2 ticks count. Then suppose that in the following second, the system misses 2

ticks because of a −45ns overlapping noise. The overall count will then be affected

by a −4 ticks error (−2 due to the late arrival of the first pulse which resets the

counter, and −2 due to the early arrival of the second pulse), that will cause a

−80ns difference over the ideal case, entailing the generation of a distorted output.

This fact introduces the need of some kind of filtering on the signal provided by

the receiver, since the precision requested by the entire switching system does not

allow such a distortion in the generated output. Since this operation turned out

to be quite complicated, the whole section 4.3 is dedicated to the implementation

of the filter.

4.3 Input signal filtering

Once the test phase revealed that the main problem can be identified with the jitter

affecting the signal, the project evolved focusing on the reconstruction of the 1PPS

signal with the purpose of eliminating or at least reducing the effect of the noise
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Figure 4.3: Tekelec’s Epsilon Board II vs U-Blox ’s LEA-4T: delay time progress,
histogram and time sliced histogram using a sliding window.
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Figure 4.4: Tekelec’s Epsilon Board II vs Trimble’s Resolution T: delay time
progress, histogram and time sliced histogram using a sliding window.
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Figure 4.5: U-Blox ’s LEA-4T vs Trimble’s Resolution T: delay time progress,
histogram and time sliced histogram using an enlarging window.
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introduced by the physical environment, i.e. temperature and antenna positioning,

and by the data processing internal to the receiver. The way this could be done

was obviously recognized with some filtering operation on the signal provided by

the GPS receiver.

The issue is quite complicated: our sub-system is characterized by two inde-

pendent clocks: on the one hand the signal derived from the satellites by the GPS

receiver, whose purpose is to provide a precise reference used to eliminate the in-

herent low frequency instability of the quartz oscillator connected to the FPGA,

and on the other hand the clock internal to the FPGA-based GPS board, which

purpose is to eliminate the high frequency noise that overlaps the 1PPS signal

obtained by the satellites. The filter has to be designed in such a way that the

filtering at a certain frequency id delegated to the correct clock.

4.4 FIR filter

4.4.1 FIR filter

In order to understand in a clearer way which kind of operation is needed, another

acquisition has been taken with the following configuration: Tekelec’s Epsilon

Board II was allowed to lock for 24 hours, in order to achieve an accurate 1PPS

signal. Then, the antenna was disconnected from the receiver to avoid further

adjustments obtaining a stable signal, i.e. low jittered and not jumping, that

was compared with U-BLOX ’s LEA-4T output. The histogram over a 24 hours

analysis revealed a gaussian distribution; assuming the jitter not to have a line

spectral density (power per frequency interval) which means that it does not behave

in any particular way in the frequency domain (in which case a specific band pass

filter could be used), a low pass filter was firstly considered. But since the filtering

operation has to be executed continuously, for the reasons explained in chapter 3, a

sort of sliding window is needed; for this reason, instead of a simple averaging filter,

a FIR filter was designed, which, moreover, permits the attribution of different

weights for different input elements.

A FIR filter, where the acronym stands for “Finite Impulse Response”, is a

digital filter which consists of a finite number of sample values. The system is



56 CHAPTER 4. THE IMPLEMENTATION PHASE

Figure 4.6: FIR filter in the direct structure.

Figure 4.7: FIR filter in the transposed structure.

described by the following equation:

y [n] =
L−1∑
i=0

wix [n− i] ; (4.1)

where wi are the coefficients that characterize the filter. It can be designed as

the tapped delay line presented in figure 4.6 or the one illustrated in figure 4.7.

In order to design the wanted moving average filter, the weights have to be set

according to the following equation:

wi =
1

L
for i = 0, 1, 2, . . . , L− 1; (4.2)
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where L represents the length of the line.

The VHDL implementation of the filter led to several problems, which are

strongly connected to the nature of the FPGA and that help to understand the

difference between software and hardware programming.

The input to the filter is the result of the last 1PPS signal period measure-

ment. In order to simplify the operations the FPGA has to perform, no division is

performed, which would require a lot of hardware resources, but only shifts, which

correspond to division by powers of 2. Thus, the length of the delay line has to

be itself a power of 2; only in this way it is possible to have correct coefficients.

Moreover, since all the weights are equal, there is no need for a tap weight for

every sample; thus, as suggested by the following equation, just one coefficient was

applied to the final accumulation:{
y [n] =

∑L−1
i=0 wix [n− i]

wi = 1
L

for i = 0, 1, 2, . . . , L− 1
(4.3)

⇒ y [n] =
1

L
·

L−1∑
i=0

x [n− i] ; (4.4)

Equation 4.4 was implemented in VHDL language as shown in figure 4.8. Com-

piling and simulation were successful, but when the layout generated by the place

and route tool was physically programmed into the FPGA, errors in the calcu-

lations occurred. After deep debugging, the source of the problem seemed to be

identified with the too high number of flip-flops connected to the same signal, i.e.

the number of components the signal was given as input to, was higher than the

fan out4 of the component generating that signal. The solution was found in the

transformation of the parallel accumulation typical of the FIR filter in a mix of

parallel and serial configuration, made possible by the fact that no immediate out-

put refresh is needed, but there’s the opportunity of splitting a complex operation

in several smaller duties (remember that the filtered measurement generated in the

ith 1PPS cycle will be used to build the output signal in the (i + 1)th one, so one

second later). The central point of the solution is to accomplish the accumulation

4Fanout is a measure of the ability of a logic gate output, implemented electronically, to drive
a number of inputs of other logic gates of the same type.
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Figure 4.8: The implemented FIR filter.

of the input in a parallel way for a number of flip-flops lower than the fan out

of the component providing the measurement; the operation is then brought on

serially by blocks of the previous said parallel accumulations until all the sums are

performed.

At the beginning a 32 input signal periods long sliding window was used, and

everything was working fine, despite unwanted output fluctuations due to the small

dimensions of the filter. But when its width was incremented, an unresolvable

problem came to the surface: the number of slices characterizing the FPGA was

not enough to fulfill the code’s space requirements.

Thus, the idea of an FIR filter was replaced by a more simple filter: instead

of using a number of accumulators equal to the length of the window, just one

accumulator was created, which the most recent measure was added to and the

most old one was subtracted from. But also this led to the same problem, because

in order to perform the subtraction, the system needed to keep in memory a number

of values equal to the window width.

Furthermore, even accepting the fluctuations compromising the output, the in-

ternally built 1PPS signal was affected by strong drifting if compared with the

Tekelec’s Epsilon Board II’s one. Obviously, this condition could not be accept-

able.



4.4. FIR FILTER 59

4.4.2 PID controller

The above described situation strongly required the implementation of some sort of

feedback in order to eliminate the drift. This was achieved with a PID controller,

whose mechanism is here following described: it takes the last measured value of the

GPS-1PPS signal and compares it with the length stored in memory; the difference

(called “error” signal) is then used to adjust the same 1PPS output length with

three contributions, whose initials form the name of the controller:

P - a proportional one, obtained multiplying the last error by the correspondent

weight KP : conceptually, its task is to handle the intrinsic drift affecting the

digital system;

I - an integral one, obtained accumulating the error multiplied by the correspon-

dent weight KI : its purpose is to adjust the output 1PPS length in case the

oscillator’s frequency changes;

D - a derivative one, obtained multiplying the difference between the last delay

and the second to last one by the correspondent weight KD: it takes action

to inhibit rapid changes of the delay trying to reduce the output oscillations

and overshoot;

These terms concur in the output calculation as described by the following

equation:

y [n] = KP · e[n] +

+ KI ·
∑+∞

i=0 e [n− i] +

+ KD · (e[n]− e[n− 1]) ;

(4.5)

where e[n] represents the signed delay, measured in master clock periods, from

the internally reconstructed 1PPS signal to the one provided by the GPS receiver

(considering their rising edges as start and end points).

Equation 4.5 was translated in VHDL language in the way presented by figure

4.9.

The delay measurement was accomplished through a Finite State Machine

(FSM) enabling a counter during the interval delimited by the rising edges of

the two 1PPS signals.
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Figure 4.9: The implemented PID controller.

The recovery of the reminder described in chapter 3 was substituted with a

rounding operation in order to eliminate the interference that seemed to be com-

promising the effects of both the PID controller and the reminder recovery proce-

dure. This effect was due to the fact that the system did not take into account the

accumulating fractional part when measuring the delay. The length of the 1PPS

signal, before being provided to the square wave generator, which of course has to

receive an integer number of clock periods, is rounded in the following way:

- if the fractional part is smaller than 0.5, then the length is rounded to the

immediately inferior integer;

- if the fractional part is larger than 0.5, then the length is rounded to the

immediately superior integer;

- if the fractional part is equal to 0.5, then the length is rounded to the imme-

diately inferior integer if the LSB of the bit string representing the integer

part is ’0’, viceversa it is rounded to the immediately superior integer if the

LSB of the bit string representing the integer part is ’1’.

Such an algorithm was implemented in order to avoid redundancies which are

know to cause numerical problems in digital environments: we can consider that,

in case of fractional part equal to 0.5, there is equiprobability in the value assumed

by the LSB of the integer part.
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Another aspect that was considered was that the implementation of dividers in

the FPGA consumes a lot of resources, so the applied weights were all set equal to

powers of 2, allowing the division to be performed through simple, fast and space

saving right shift operations5. Of course, in this way it was not possible to ana-

lytically determine the weights that have to be applied; therefore, an exhaustive

research has been done by introducing in the code a disturbance in the accumu-

lator which led to an extension of the output’s length of 1µs. Using an operating

frequency equal to 50MHz, the response to the stimulus did not oscillate around

zero but tended to it in a negative exponential way (refer to figure 4.10) with the

following weights:

- P = 2−3 = 1
8
;

- I = 2−5 = 1
32

;

- D = 2−∞ = 0;

Moreover, with these weights, the time needed for stabilization was among the

lowest ones.

In a PID controller, the derivative part should partecipate to the control, but

in our case its contibution is not helpful: the reason could be identified with the

fact that jitter affects the reference signal, and the use of a derivative dependent

component leads to unwanted fluctuations.

In this way, the system seemed to be working correctly since no drift affected

the FPGA output; however the operating frequency seems not to be sufficient to

drastically reduce the jitter, as will be described in the measurements exhibited in

chapter 5.

5When using N-based representation, the result of a left or a right shift applied to a number
corresponds respectively to a multiplication or division of that number by the base N.
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(a) “Bad” step response.

(b) “Good” step response..

Figure 4.10: Step responses of the PID controller.
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Final results

The system so far described has been tested with the following configuration: the

oscilloscope connected to the internet via Ethernet; Tekelec’s Epsilon Board

OEM II is applied to one input, while the other one is dedicated to the signal that

has to be analyzed. In order to achieve the highest precision in the measurement,

the Epsilon Board OEM II is left connected to the antenna for 24 hours be-

fore starting the acquisition, allowing it to generate a high accuracy output, whose

frequency and phase are locked to the UTC 1PPS signal provided by the receiver

internal to the board. Then, the antenna cable is disconnected to avoid further ad-

justments by the closed-loop feedback control system: in such a way the provided

output is characterized by really stable frequency, despite this results in a drifting

behavior (with respect to the signal coming from the satellites) that can be easily

eliminated in the post-acquisition phase through data filtering. The oscilloscope is

then triggered by the rising edge of one of the two inputs (usually the one of the

Epsilon Board OEM II was used) and the delay between the two pulses is mea-

sured. The so obtained value is then sent to a laptop in which the “Oscilloscope’s

data acquisition.vi” software was running. In such a way, data monitoring and

analysis was performed, through the help of jitter vs. time graphs and histograms.

The whole process is managed by the LabVIEW VI, which moreover saves the data

into a text file for eventual future analysis.

Several measurements have been carried out, in order to understand the behav-

ior of the system when changing its configuration, i.e. the PID coefficients.
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Input statistics
Max [ns] Min [ns] σ2 [ns2]

73.4 -67.7 416.5

Table 5.1: Acquisitions results - U-BLOX ’s LEA-4T GPS-1PPS

With the FPGA working at 50MHz and the PID coefficients set according to

the analysis explained in chapter 4.3, the PID controller seems to filter the jitter

as wanted, despite the fact that firstly 20ns of resolution are lost in the sampling

operation, secondly the filtering operation entails a 0
+1

difference, thus it can be

possible that the difference between the incoming 1PPS and the output one length

is up to 20ns per second. Moreover the controller does not react instantaneously,

but requires some time to update the output’s length. The speed with which the

system responds is higher with bigger coefficients, but this implies also a higher

sensitivity to the jitter: there’s the need to reach a compromise between stability

and reactivity. In fact, the whole system is characterized by two factors: the first

one is connected to the crystal oscillator connected to the FPGA, which features

short-term stability (i.e. it is not affected by any jitter) but tends to drift; the

second one is connected to the GPS-1PPS signal, featuring long-term stability

(since its generated by the combination of the signals provided by atomic clocks

in the satellites) but affected by jitter. Thus, the PID controller’s purpose is to

delegate the control of the long-term stability to the GPS-1PPS signal and the

low-term one to the crystal oscillator. We can imagine there exist a threshold in

the frequency domain which separates the operating ranges of the two elements

and that can be moved forwards or backwards by setting the PID coefficients in

the proper way.

Moreover, the effect of filtering result can be improved by increasing the oper-

ating frequency: the VHDL code implemented in the Spartan3 FPGA, featuring a

−4 speed grade, works fine at this speed and as confirmed by the results shown in

figure

In tables 5.1 5.2 and 5.3 there’s a summary of the results obtained from the

acquisitions, while in figure 5.1 there’s a comparison between the 1PPS signal

provided by the GPS receiver and the ones provided by the FPGA, working at

50MHz and at 70MHz respectively.
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PID coefficients Output statistics
P I Max [ns] Min [ns] σ2 [ns2]
-2 -5 43.7 -38.4 158.0
-3 -5 69.7 -65.2 347.3
-4 -4 63.8 -51.9 215.1
-4 -5 54.8 -53.6 213.6
-4 -6 61.2 -76.6 281.9
-5 -4 70.2 -55-5 299.9

Table 5.2: Acquisitions results - Operating frequency: 50MHz

PID coefficients Output statistics
P I Max [ns] Min [ns] σ2 [ns2]
-3 -5 61.2 -59.8 227.4
-3 -6 53.7 -43.9 160.7
-3 -7 58.5 -51.4 168.9
-3 -8 85.7 -77.2 245.7
-4 -4 88.3 -62.4 375.2
-4 -5 53.2 -47.7 142.6
-4 -6 50.7 -60.9 159.9
-4 -7 74.8 -54.8 149.7
-4 -8 83.9 -83.0 261.1
-5 -7 85.2 -98.4 225.7

Table 5.3: Acquisitions results - Operating frequency: 70MHz
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(a) GPS-1PPS

(b) PID controlled 1PPS with FPGA operating at 50MHz

(c) PID controlled 1PPS with FPGA operating at 50MHz

Figure 5.1: 1000 seconds long acquisitions of 1PPS signals delay.



Chapter 6

Conclusions

This work provides a description of the implementation of a GPS board, whose

purpose is to provide high accuracy timing signals to an optical Multi Terabit/s

switch prototype, part of the IP-FLOW project. One of this project’s aims is to

propose a way to solve the switch and link bottlenecks problem that the internet

network is going to experience as a consequence of the high definition media stream-

ing diffusion over the common internet user population. The technology which the

whole system relies on is the so called Fractional Lambda Switching (FλS), based

on the Pipeline Forwarding mechanism, which allows to solve the problem along

with QoS guarantees. This is achieved through the exploitation of Common Time

Reference (CTR), which is extracted from a GPS module supplying an FPGA with

Universal Coordinated Time (UTC) one pulse per second (1PPS) signal in order

to generate high precision timing signals used to drive the switch. In such a way it

is possible to reach both frequency and phase synchronization within few nanosec-

onds all throughout the network. The fact that the GPS board is FPGA-based

entails low cost realization and integration with other functions, but with limited

characteristics in relation to operating frequency and space for the related logic.

6.1 Final remarks

The thesis project required the implementation of software programs to automate

data acquisition and data processing: a communication via Ethernet with an os-
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cilloscope was established to collect the measured delay between signals provided

by different GPS receivers and the realized GPS board. The requested output

signals were a stable and accurate 1PPS signal and a 10MHz clock aligned with

the 1PPS one. Unfortunately, the low resolution that characterize the FPGA (in

the order of tens of nanoseconds) and the noise affecting the GPS signal required

the implementation of a filter to be applied to the input signal. Since such kind of

operation implies the use of sophisticated and as a consequence resource expensive

algorithms which can not fit into an FPGA; thus, divisions were replaced with right

shifts (thus forcing divisions by powers of two) to save space into the device. The

filtering issue has been the most difficult to resolve since the realization of an FIR

filter revealed itself to be space wasting and drift affected, despite the high stability

of the output. The solution was found in the integration of a PID controller, which

allowed to reduce the jitter power as the FIR did, but without being affected by

drift.

Several measurements have been taken, trying to find the best configuration

for the coefficients that characterize the controller. Better improvements were ob-

tained increasing the operating frequency from 50MHz to 70MHz, but in both cases

even slight tuning on the PID controller’s coefficients led to completely different

performance.

However, the minimum accuracy requirements needed for by the switch pro-

totype were fulfilled and the board was successfully integrated into the testbed.

With the best PID coefficients tuning the system managed to almost halve the

jitter amplitude and to riduce its variance by a factor of 13over5.

6.2 Further developments

Several other steps can be done to improve the generated output quality.

Further research activity such as estimating the spectral densities of the fluc-

tuations of local clock and GPS receiver could be planned in order to minimize

the fluctuations of the output 1PPS signal by changing the coefficients of the PI

controller determined in an analytical way. Furthermore, some other improvements

related to the VHDL code optimization will be implemented in order to reach a

higher maximum operating clock frequency. In fact, such a clock frequency increase



6.2. FURTHER DEVELOPMENTS 69

is expected to improve also the accuracy of the synchronization circuit, leading to

a further reduction of the jitter.

Other tests that can be carried out are connected to the realization of a dynamic

controller, i.e. capable of changing the PID coefficients in a dynamic way according

to the input behavior. Moreover, other approaches are possible: the FPGA used

during the realization of this thesis is not the top of the range in terms of both

the available space for logic and speed grade; thus, the use of a bigger and faster

device could open new doors for the implementation of different types of controllers,

notwithstanding a higher cost has to be paid.

Another interesting aspect that should be considered is how the designed device

reacts if the jitter affecting the GPS receiver’s output is much stronger. In fact, the

actual cost of the whole GPS board is now dominated by the receiver; therefore,

the use of a cheaper despite less performing should be taken into account.



70 CHAPTER 6. CONCLUSIONS



Bibliography

[1] D. Agrawal, M. Baldi, M. Corra, G. Fontana, G. M. T. H. Truong, V. T.

Nguyen, Y. Ofek, D. Severina, and O. Zadedyurina. Multi-terabit per second

scalable switch prototype. Technical report, University of Trento (Italy), 2006.

[2] D. Agrawal, M. Baldi, M. Corra, G. Fontana, T. H. Truong, G. Marchetto,

V. T. Nguyen, Y. Ofek, D. Severina, and O. Zadedyurina. A scalable approach

for supporting streaming media: Design, implementation and experiments.

Submitted for Pubblication at INFOCOM 2007.

[3] D. Agrawal, M. Baldi, M. Corra, G. Fontana, T. H. Truong, G. Marchetto,

V. T. Nguyen, Y. Ofek, D. Severina, and O. Zadedyurina. Ultra scalable utc-

based pipeline forwarding switch for streaming ip traffic. IEEE International

Conference on Computer Communications (Infocom), 2006.

[4] D. Agrawal, M. Baldi, M. Corra, G. Fontana, T. H. Truong, G. Marchetto,

V. T. Nguyen, Y. Ofek, D. Severina, and O. Zadedyurina. Scalable switching

testbed not“stopping” the serial bit stream based on off-the-shelf components.

2007. Submitted for Pubblication at ICC 2007 Optical Networks and Systems

Symposium.

[5] D. Agrawal, M. Corra, V. T. Nguyen, Y. Ofek, D. Severina, and O. Zadedyu-

rina. Utc based controller for scalable time driven switching. IEEE Globecom

2006.

[6] M. Baldi, G. Marchetto, F. Risso, G. Galante, R. Scopigno, F. Stirano, V. T.

Nguyen, Y. Ofek, D. Severina, and O. Zadedyurina. Time driven priority

71



72 BIBLIOGRAPHY

router implementation and first experiments. International Conference on

Communications (ICC), 2006.

[7] M. Baldi and Y. Ofek. Fractional lambda switching - principles of operation

and performance issues. “TRANSACTIONS of The Society for Modeling and

Simulation International”, 80(10):527–544, 2004.

[8] S. Bregni. Synchronization of Digital Telecommunications Networks. John

Wiley & Sons, Inc., New York, NY, USA, 2002.

[9] L. Gasparini, O. Zadedyurina, G. Fontana, D. Macii, A. Boni, and Y. Ofek.

An effective digital circuit for jitter reduction of gps synchronization signals.

Submitted for presentation to the IEEE Interbational workshop on Advanced

Methods for Uncertainty Estimation in Measurement (AMUEM), Trento, July

2007.

[10] In-Stat. URL: www.instat.com.

[11] C.-S. Li, Y. Ofek, A. Segall, and K. Sohraby. Pseudo-isochronous cell switching

in atm networks. In INFOCOM, pages 428–437, 1994.

[12] C.-S. Li, Y. Ofek, and M. Yung. Time-driven priority flow control for real-time

heterogeneous internetworking. In INFOCOM, pages 189–197, 1996.

[13] G. Marchetto. Prototypal implementation of a time-driven priority router.

Master’s thesis, Politecnico di Torino, Apr 2004.

[14] G. M. Mario Baldi. Pipeline forwarding of packets with a network-distributed

common time reference. Submitted for Pubblication at INFOCOM 2007.

[15] U. Meyer-Baese and U. M. Baese. Digital Signal Processing with Field Pro-

grammable Gate Arrays with Cdrom. Springer-Verlag New York, Inc., Secau-

cus, NJ, USA, 2001.

[16] Y. Ofek. The IP-FLOW project. URL: http://dit.unitn.it/ip-flow.

[17] Y. Ofek. Generating a fault tolerant global clock using high-speed control

signals for the metanet architecture. IEEE Transactions on Communications,

42(5):2179–2188, 1994.



BIBLIOGRAPHY 73

[18] Tektronix. Tektronix TDS3000 & TDS3000B Series Digital Phosphor Oscil-

loscopes - Programmer Manual. URL: www.tek.com.

[19] E. Union and E. S. Agency. Galileo - European Satellite Navigation System.

URL: http://ec.europa.eu/dgs/energy transport/galileo/index en.htm.

[20] J. R. Vig. Introduction to quartz frequency standards. Technical Report

SLCET-TR-92-1 (Rev. 1), Army Research Laboratory, Oct. 1992.


