
Implicit: A recommender system that uses
implicit knowledge to produce suggestions

Alexander Birukov, Enrico Blanzieri, Paolo Giorgini
University of Trento

Department of Information and Communication Technology
14 via Sommarive, Povo(TN), Italy 38050

{aliaksandr.birukou,enrico.blanzieri,paolo.giorgini}@dit.unitn.it

Abstract

The number of accessible web pages in Internet in-
creases every day and it becomes more and more
difficult to deal with such a huge source of infor-
mation. In literature many approaches have been
proposed to provide users with high-quality links
extracted from the thousands of irrelevant ones. In
this paper, we presentImplicit, a system that com-
bines recommender system and multi-agent system
approaches and is intended to be used within a com-
munity of people with similar interests. It comple-
ments the results obtained by search engines with
suggestions obtained by means of implicit knowl-
edge of the members of the community. Within the
system, agents interact one another, share knowl-
edge and use similarities among users’ behaviors in
order to increase quality of the recommendations.

1 Introduction
Although searching the Internet is a day-to-day task for many
people, the problem of providing effective access to the infor-
mation available on-line is still open. Due to the huge number
of pages on the World Wide Web it is difficult to discover rel-
evant and (or) interesting pages among those provided by a
search engine. Therefore, web search is often a rather time-
consuming task.

There exist several approaches aimed at solving the stated
problem. Search engines are a common and prevailing tool
for searching the Web. However, they have several shortcom-
ings. For instance, a query can produce a huge quantity of
the pages. Another drawback is a lack of personalization,
namely that sometimes “different users may merit different
answers to the same query”[Gori and Witten, 2005]. The first
shortcoming could be alleviated by formulating an appropri-
ate query for a search engine. Such a reformulation requires,
however, a certain intuition and experience of the user. To
overcome the lack of personalization, we see the need of sup-
porting the user rather than simply responding to a keyword,
which is context-free and impersonal.

Another solution is the use of Internet agents to assist the
web browsing. In this field, we find personal assistants that
collect observations of their users’ behavior in order to rec-
ommend previously unseen relevant web pages. There exist

also multi-agent systems, where personal agents collaborate
with one another to improve the quality of the suggestions.
This approach overcomes the shortcomings of the search en-
gine approach from the personalization point of view. On the
other hand, there are other drawbacks like the low number of
suggestions generated or even the absence of them in the case
of a keyword that has been previously unseen for the personal
assistant agent. Sometimes personal agents require extra ef-
fort from the user, e.g. specifying his/her area of interests or
answering additional questions.

Recommender systems can be also considered as tools for
the effective access to the available information. They canbe
classified as content-based, collaborative filtering, or hybrid
systems. Content-based systems produce recommendations
by analyzing the content of previously browsed pages and us-
ing the obtained information to find pages with similar con-
tent. Collaborative filtering systems calculate similarity be-
tween the different users and provide the user with the pages
that have been selected by the similar users. Hybrid recom-
mender systems exploit both approaches to a certain extent.
However, the majority of the recommender systems need user
feedback and those systems that collect this feedback in ex-
plicit form force user to perform some extra work, like rating
the items.

In this paper we presentImplicit, a multi-agent recom-
mender system. It combines Internet agents and a recom-
mender system.Implicit uses a search engine in order to
obtain a certain number of suggestions for any entered key-
word. Personal agents communicate and collaborate in order
to produce recommendations more suitable in the context of
the current community1. Thus, we complement search engine
results with the recommendations produced by the agents.
This helps us to add personalization without decreasing sig-
nificantly the number of the pages. As in many recommender
systems we attempt to learn the user needs from the observa-
tions of his/her behavior.

This paper differs from the previous work in the field of
recommender systems and advances the state of the art in the
following ways. The system described here is designed to
be used within a small organizational community of people,

1Here we do not give any precise definition of thecommunity.
We refer to thecommunityin a general sense, a group of people
working in the same environment and having common interests.

SICS

GoogleAPI

SICS

GoogleAPI

SICS

GoogleAPI

User 2

User 1

AMS DF ARB

Search
Engine

User k

Agent k

Agent 2

User interface

Java servlets

Java servlets

User interface

Java servlets

User interface

html/php
html/php

html/phpExternal platform

Agent 1

Figure 1: The architecture of the system.Personal agentsprocess

queries fromusersand interact with each other to exchange links;SICSis a part of the

personal agent that is responsible for the recommendation creation process;GoogleAPI

allows to query Google search engine; anAgent Management System (AMS)exerts su-

pervisory control over the platform. It provides agent registration, search, deletion and

other services; aDirectory Facilitator (DF)provides agents with other personal agents’

IDs. An Agent Resource Broker (ARB)deals with links to the services available on the

other platforms.

but is not intended for big groups or emergent online commu-
nities. We use the universal filtering framework to produce
different types of suggestions: links, which are shown to the
user, and agents IDs, which are used internally to identify
agents to contact. In order to access the information provided
by the system, the user does not need to install ad-hoc plugins
or a new browser, it is just necessary to register and then load
the system homepage. Moreover, we use implicit feedback
collection mechanism that requires no additional work from
the user. The system structure is rather general in a sense that
different data mining techniques can be implemented within
the described framework. The methodology given here, once
tested, can be moved to another domain, different from web
search (see for instance[Sariniet al., 2004]).

The rest of the paper is structured as follows. Section 2
describes theImplicit system in detail and Section 3 contains
some experimental results on the use of our system. Final
Sections 4 and 5 reviews related work and concludes the pa-
per, respectively.

2 Structure of the System
In this section we present a detailed description ofImplicit.
The system exploits the notion of Implicit Culture[Blanzieri

and Giorgini, 2000] to produce suggestions by means of pe-
culiarities found in the community in which it works. Each
user of the system has a dedicated personal agent whose
task is to assist the user during his/her search and to provide
him/her with the links in response to the entered keyword. For
this purpose agents contact a search engine and produce rec-
ommendations by means of the Systems for Implicit Culture
Support (SICS) module. This module uses implicit knowl-
edge of the community members to find links that are con-
sidered relevant. Hereafter, byrelevantlinks we mean links
that are relevant to a certain keyword, from the agent’s point
of view. From the user’s point of view, these links point to
the relevant web pages. The framework that produces these
links is universal in a sense that it is also exploited in order to
discover which agents it would be useful to contact to obtain
more relevant links. The general architecture of the systemis
represented in Figure 1.

Implicit consists of the client part and the server part. There
is an html/php user interface on the client side. On the server
side there are Java servlets and a multi-agent platform imple-
mented using JADE (Java Agent Development Framework)
[Bellifemineet al., 2001]. JADE is a framework for develop-
ing multi-agent systems according to FIPA2 standards. Here
we present basic terms used in JADE and in our system.

A personal agentis an agent running on the server side that
receives search tasks from its user and then produces recom-
mendations in response to a query. The process of generating
suggestions consists of several parts, implemented as behav-
iors. A behavioris a procedure that implements tasks, or in-
tentions, of an agent. The agent is able to execute each task
in response to different internal and external events. Behav-
iors are logical activity units that can be composed in vari-
ous ways to achieve complex execution patterns and that can
be concurrently executed. Ascheduleris an internal agent
component that automatically manages the scheduling of be-
haviors and determines which behavior to run now and what
action to perform as a consequence. Aninboxis a queue of in-
coming messages (ACL) from the user and from other agents.
In order to produce recommendations agent uses itsresources
that consist ofbeliefsandcapabilities. An agent’s beliefs are
the information available to the agent (e.g. information on
user actions) and the capabilities are particular functionalities
used in the behaviors (e.g. the SICS module). The structure
of the personal agent is represented in Figure 2.

The basic sequence of actions while searching is as fol-
lows: a user logs into the system and enters a keyword. The
interface generates a query message and sends it to the agent.
When the agent receives the query message from the inter-
face, it starts Search behavior. Search behavior produces re-
sults by means of internal (information about previous user
searches) and external (communication with the agents) re-
sources and these results are shown to the user.

The agent’s Search behavior consists of the Google search
behavior and the Platform search behavior, which comprises
the Internal search behavior and the External search behavior.
During the Google search behavior the agent process query

2FIPA. Foundation for Intelligent Physical Agents.
http://www.fipa.org/.

Σaction of users

Executed action
New link

actions of users
Executed

q
u

eu
e

q
u

eu
e

filter

o
b

s

Pool

kernel

Proposer

module
Satisfaction

Executed

agent resources

BELIEFS

Composer

CAPABILITIES

agent

ACL messages

private
inbox

of behaviours

scheduler

be
ha

vi
ou

r
n

event detection

(i.e. agent intention)

active agent
behaviour

be
ha

vi
ou

r
2

be
ha

vi
ou

r
1

EVENT
internal/external

Figure 2: The internal architecture of the personal agent.Agent executes abehaviorin response to different internal and external events. Ascheduler

manages execution of the behaviors. ACL messages received from the user or from other agents are stored ininbox. Theresourcesconsisting ofbeliefs(information available to the

agent) andcapabilities(available functionality) are used to produce suggestions. Thesatisfaction moduleselects links to thepool using behavior patterns produced by theinductive

modulefrom the observations on executed actions. Theproposerselects the best link from the pool.

to Google search engine[Brin and Page, 1998] using Google
Web API. As soon as the agent receives the answer, it shows
the obtained links to the user and starts the Internal search
behavior. In the Internal search the goal of the SICS module
is to generate the http, ftp or resource links based on the past
user actions. All the generated links are stored in the mem-
ory and the External search behavior is started. This behav-
ior also uses the SICS, but the goal of the SICS in this case
is to propose agents to contact. If there are no suggestions
then agent contacts Directory Facilitator. Directory Facilita-
tor (DF) according to the FIPA standards is a special agent
that provides yellow pages service on the agent platform. Ac-
tually, in our case, DF simply provides the agent with the IDs
of other personal agents on the platform. Having filled the
list of agents to contact, personal agent starts an interaction
— it sends a query to every member of the list. When all the
agents are contacted the External search behavior queries new
agents that were suggested during the search and so on. When
all suggested agent queries have been answered the system
shows all the obtained links to the user.

In the present implementation, the agent performs the three
types of search in the following order: first the Google search,
then the Internal search and finally, the External search.
Agents may also query each other and in this case the re-
spondent does not use the capability of contacting a search
engine, because the questioner has this capability too. Agent-
responder runs the Internal search behavior and uses its own
observation history in order to produce links that the user of
the agent-questioner will probably accept. It also starts the
External search behavior in order to recommend to the ques-
tioner other agents to contact. The techniques used within
these two behaviors are the same and are implemented within
the SICS module.

Observ.

user

user
user

user

user

Composer
Observer

Inductive

Module

DB

Figure 3: The System for Implicit Culture Support.The basic

architecture for the System for Implicit Culture Support consists of the following three

basic components: theobserverthat stores in a database (DB) the information about the

executed user actions in order to make it available for othercomponents; theinductive

modulethat analyzes the executed actions in order to discover patterns of user behaviors;

thecomposerthat produces the links to suggest the user

The basic architecture for the SICS is shown in Figure 3
and consists of the following three basic components: theob-
server moduleis the part of the SICS that watches and records
the actions performed by the user during the use of the sys-
tem; theinductive module, analyzes the stored observations
and implements data mining techniques to discover patterns
in the user behavior; thecomposerexploits the information
collected by the observer and analyzed by the inductive mod-
ule in order to produce better suggestions to its user or to

other agents.
The SICS architecture requires the solution of two learn-

ing problems: a problem of browsing patterns learning (in-
ductive module) and a problem of prediction of links the user
will accept (composer). The inductive module problem is a
rather standard learning problem: inducing the behavior pat-
terns of the groups from the observations. The problem is not
solved yet. The solution of the composer problem exploits the
principles of instance-based learning (namely, memory-based
or lazy learning). For more general description of these two
problems see the work of Blanzieri et. al[2004].

The structure of the SICS allows the system to find out
relevant links from the observations and to discover rele-
vant agents using the same mechanism. The SICS calculates
the similarity between the community members in order to
produce suggestions. Therefore, it personalizes user’s web
search to a certain extent. For more detailed description of
the SICS module, we refer the reader to the paper of Blanzieri
et. al[2004].

Agents use Agent Communication Language (ACL) and
standard FIPA protocols for link and agent ID exchange.
There is also a feedback protocol for the exchange of infor-
mation about accepted/rejected links. A feedback from one
agent to another is sent as the result of the user browsing be-
havior. We illustrate the use of communication protocols by
the following short example. More detailed description of the
message passing and communication between agents an be
found in[Birukov et al., 2005].

For instance, a user searches information about“train
timetable” and asks his/her personal agent,pagent. Pa-
gent starts the Google search, the Internal and the Ex-
ternal searches. After the Google search has fin-
ished the user has information about the links (we con-
sider only the first three links for this example) pro-
vided by Google: www.nationalrail.co.uk/planmyjourney,
www.thetrainline.comand www.railtrack.co.uk. The Inter-
nal search is then started in which the SICS module uses
data mining techniques to select agents that performed sim-
ilar actions and then selects the link accepted for the key-
word “train timetable” by the agent with the highest simi-
larity. During the External search behavior the SICS module
selects agents that performed similar actions and chooses an
agent likely to propose a link that will be accepted by the
user. Let us suppose that SICS suggested the linkwww.fs-
on-line.itduring the Internal search and another agent to con-
tact,agent1, during the External search. The personal agent
sends a request toagent1using FIPA Iterated Contract Net
Protocol. Agent1receives the request frompagentand uses
its SICS module in order to produce suggestions. Let us con-
sider that the Internal search behavior ofagent1produced the
link www.trenitalia.itselected from the links accepted by the
agent1’s user in the past. As a result,pagentreceives the link
www.trenitalia.itand shows it to the user. If the user accepts
the link www.trenitalia.it thenpagentstores the information
that this link has been accepted and sends this information
(using feedback protocol) toagent1because it providedpa-
gentwith www.trenitalia.it. When the user leavesImplicit or
starts a new search all the unaccepted links are considered
rejected and all the agents involved in the dialog receive the

communication. In our example, if the user does not accept
www.trenitalia.it thenagent1receives the message that this
link is rejected. One of the benefits of our approach is that
feedback is collected without any effort from the user, such
as giving ratings to the items or specifying his/her interests.

It is possible to have some special agents in the platform.
Although each agent encapsulates the ability of contactingthe
external search engine, it is also possible to use agents called
wrappers for transferring the queries to other search engines
like Yahoo! or Vivisimo. The Agent Resource Broker (ARB)
is the special agent whose main purpose is to provide per-
sonal agents with the links to the services available on other
platforms (wrappers for example). The system can use some
sort of the locally available knowledge, e.g. “yellow pages”
reference or bookmarks.

3 Experimental Results
In this section we present the experimental results obtained
with the proposed platform. We also define the measures
(precision and recall) estimating the quality of the recommen-
dations produced by the SICS.

The aim of the experiment is to understand how the inser-
tion of a new member into the community affects the rele-
vance, in terms of precision and recall, of the links produced
by the SICS. We also want to check the hypothesis that after
a certain number of interactions, personal agents will be able
to propose links accepted in previous searches.

In our experiment, interaction between agents and mod-
els of users replaces interaction between agents and actual
users. A user model contains sequence of search keywords
and results about link acceptance. The results are among the
first m links provided by Google for each keyword and the
rank of the list is adopted as an identifier. The links provided
by Google for a certain keyword are reordered very quickly,
therefore before the experiment we store the links in a dataset.
During the simulation we use the dataset instead of contact-
ing Google. User profile is a set of probabilities of choosing
a specified link for a specified keyword. The profile is built
usingn keywordsk1, k2, . . . , kn and determining the prob-
abilities p(j|ki) of choosing thej-th link, j ∈ {1, . . . , m}
while searching with thei-th keyword. We assume that the
user accepts one and only one link during search for the key-

word ki, so
m∑

j=1

p(j|ki) = 1. The user profile can be seen as

a set of association rules with a probability of acceptance of
a certain link for a given keyword search. In our experiment
the number of keywordsn is equal to 10, the number of the
links provided by Google,m is equal to 10, the user profile is
represented in Table 1.

We use the following performance-related notions in order
to evaluate the quality of the suggestions:
• Link is considered to berelevant to a particular keyword

if the probability of its acceptance, as specified in the
user profile, is greater than some pre-defined relevance
threshold.

• Precision is the ratio of the number of relevant links sug-
gested to the total number of irrelevant and relevant links
suggested.

Table 1: Basic profile.The probabilities of acceptance links for a set of

keywords. Links are numbered1..10.
Google rank of the link

keyword 1 2 3 4 5 6 7 8 9 10
tourism 0 0 0.05 0.4 0.05 0.2 0.1 0.05 0.1 0.05
football 0.05 0 0.1 0.3 0.3 0.1 0.1 0.05 0 0

java 0.35 0.3 0.05 0.05 0.05 0.05 0.05 0.1 0 0
oracle 0.1 0.1 0.45 0.2 0 0.05 0.05 0 0 0.05

weather 0 0.3 0 0 0.5 0 0 0.1 0.1 0
cars 0 0 0.05 0.4 0.05 0.2 0.1 0.05 0.1 0.05
dogs 0.05 0 0.1 0.3 0.3 0.1 0.1 0.05 0 0

music 0.35 0.3 0.05 0.05 0.05 0.05 0.05 0.1 0 0
maps 0.1 0.1 0.45 0.2 0 0.05 0.05 0 0 0.05

games 0 0.3 0 0 0.5 0 0 0.1 0.1 0

• Recall is the ratio of the number of relevant links pro-
posed to the total number of relevant links.

We compute recall in a slightly different way. The total
number of relevant links is adjusted by adding a number of
relevant links proposed by the agents to a number of relevant
links presented in the user profile. We do it despite the fact
that in reality the links from the agents already exist in the
user profile, because in this way model of interactions be-
comes more similar to a real-life situation, where users (and
their agents as well) have different collections of links. How-
ever, with such an interpretation of recall, the quality of sys-
tem suggestions is underestimated.

Assuming that all the users are members of the same com-
munity and have similar interests, the profile for each user is
derived from the basic profile given in Table 1. In order to
make the users different, we add noise uniformly distributed
in [0.00,...,0.05] to each entry of the profile. Then we renor-
malize entries in order to keep the sum of each row equal to
one. Following this procedure we generate five different pro-
files.

From our set of 10 keywords for each agent we generate
25 sequences of 25 keywords by extraction with repetition.
Each sequence is used for a search session modelling the user
query behavior. We also need to model the user acceptance
behavior. Given a keyword in the sequence of keywords, an
accepted result is generated randomly according to the distri-
bution specified in the profile. Other links obtained from the
agents are marked as rejected.

In a simulation we run 25 search sessions for each agent in
the platform. At the end of each session the observation data
were deleted. The search sessions were repeated several times
in order to control the effect of the order of the keywords and
link acceptance. We run five simulations for 1,2,3,4 and 5
agents. With one agent in the platform, the agent acts alone
without interactions with the others. With five agents thereis
a small community where agents interact with each other. We
set the relevance threshold used to determine the relevanceof
links equal to 0.1.

We compute precision and recall of the links proposed by
the agents. In Figure 4, line 1 represents precision of the
links produced by the personal agent only. The SICS module
incorporated in the agent produces these links by analyzing
stored observations. Line 2 represents precision of the links
proposed by all the agents including the personal one. The
agents were discovered at the External search stage or pro-
vided by the DF. In Figure 5 we have analogous curves for

1 2 3 4 5

0.64

0.66

0.68

0.7

0.72

0.74

precision

Nagents

2

1

1 - Personal agent

2 - All the agents

Figure 4: Average precision of 25 simulations with different
number of agents.

1 2 3 4 5

0.08
0.1

0.12
0.14
0.16
0.18
0.2

0.22
0.24

recall

Nagents

2

1

1 - Personal agent

2 - All the agents

Figure 5: Average recall of 25 simulations with different
number of agents.

recall.
From these figures we can note that the increase of com-

munity members causes the increase of the agents’ recall. It
is probably conditioned by the fact that when we have more
agents we also have more interactions between them. The
agents provide each other with only one link. The growth of
the number of links provided by the agents during the search
results in an increase of the percentage of relevant links pro-
posed by the agents and causes an increase of recall. More-
over, the increase of recall appears without a decrease of pre-
cision and the precision keeps on a rather high level — from
0.63 to 0.75. The value of recall is also rather good and
changes from 0.09 to 0.23. Because we limit ourselves to the
small number of agents, the growing number of interactions
does not really influence the characteristics. We also studied
the statistical significance of the difference between agents
with the same profile and in different simulations. We per-
formedt-Tests with Bonferroni correction, namely dividing
p-value by the number of tests we have performed, in order
to control type I error. These tests prove that the average re-
call for 4 and 5 agents is consistently better (p < 0.01) than
the average recall of the simulations with smaller number of
agents. The results also prove the hypothesis that after a cer-
tain number of interactions, agents are able to propose links
based on the past user actions.

In other words the obtained results prove that our method
of complementing search engine with recommendations, pro-
duced as a result of collaboration, makes sense and allows a
more qualitative web search.

For the moment we did not run yet any experiment for

a number of agents bigger than five. Therefore this paper
contains only preliminary experimental results. We suppose,
though we can not strongly claim that after a number of
agents reaches a certain level, the increase of the commu-
nity members causes only a moderate increment of the per-
formance characteristics.

4 Related Work
In this section we briefly discuss related work.

A market-based recommender system is presented by Wei
et. al [2003]. It is a multi-agent system where agent acts
on behalf of its user and sells the slidebar space where rec-
ommendations can be displayed. Other agents participate in
this auction in order to show their links on this slidebar. The
agent-initiator of the auction chooses the most profitable of-
fers and displays them to the user. Providers of the links ac-
cepted by the user receive reward. Agents adopt multiple het-
erogeneous recommendation methods and try to make better
suggestions in order to increase their profit. The paper fo-
cuses more on the dynamic market behavior than on the rec-
ommendation quality evaluation.

A multi-agent recommender system is considered by Yu
and Singh[2002]. MARS is a referral system for knowledge
management that assigns software agent to each user. The
agents interact in order to produce answers to the queries of
their users. The agents are also able to give each other re-
ferrals to other users. There is a complex model of interac-
tions in the system in a sense that it is important from who
the query comes — there could be a different set of actions
for the different agents. The system uses pre-determined on-
tologies, shared among all the agents, to facilitate knowledge
sharing between them, while we emphasize the implicit sup-
port of knowledge by managing documents, links and refer-
ences to people. Differently from our system, the agents do
not answer all questions but only those related to their own
user interests. The paper is focused more on knowledge (in
general) search rather than on web search. Finally, the sys-
tem is mail-based whileImplicit is a web-based system that
adopts FIPA standards and JADE platform.

Balabanović and Shoham present a recommender system
Fab[Balabanović and Shoham, 1997] that combines collabo-
rative and content-based filtering techniques. Personal selec-
tion agents analyze content of browsed web-pages and cor-
responding user ratings in order to maintain users profiles.
Obtained profiles are compared using collaborative filtering
algorithms and previously unseen items are recommended.
Oppositely to using implicit feedback, the authors of this pa-
per use explicit ratings, what requires a user to spend some
time after browsing. Agents in Fab are divided into collec-
tion agents, who proactively gather pages relevant to a num-
ber of topics, and selection agents, who are dealing with dis-
carding already browsed pages from the batch of the recom-
mendations. The difference between Fab andImplicit is that
our system filters not only links, but also agents. The frame-
work we present is more general in a sense that different data
mining algorithms can be implemented in order to produce
recommendations. The ideas described in this paper can be
deployed within different domains, e.g. Sarini et. al[Sarini

et al., 2004] describe application of Implicit Culture ideas
to support the work of biologists in their laboratories. Yet
another difference is that profiles inImplicit are not stored
somewhere explicitly, but are spread around the agents and
there is no explicit items ranking.

Freyne et. al[Freyneet al., 2004] describe I-SPY meta-
search engine that re-rank search results by taking into ac-
count previous searches of the similar users. The system
architecture differs from the architecture ofImplicit signifi-
cantly, but the goals and the techniques are very similar. The
engine uses adapters in order to query several external search
engines. These queries then pass through the component that
re-rank search results according to the hit matrix of previ-
ous searches. The system tends to capture preferences of the
users and therefore adapts to the community where it is de-
ployed. While I-SPY has fully centralized architecture,Im-
plicit is technically centralized, but conceptually it is distrib-
uted due to the fact that profiles are spread around the agents.
It uses collaboration between the agents to improve results.
We also focus more on an organizational community rather
than on an emergent or online one.

A collaborative multi-agent web mining system “Collab-
orative Spiders” is given by Chau et. al[2003]. There
are different types of agents responsible for retrieving web
pages, performing post-retrieval analysis, interacting with
users, sharing information about user search sessions, per-
forming profile matching and carrying out retrieval and analy-
sis tasks according to a schedule. Before a search the user has
to specify the area of the interests and privacy or publicity
of the search. One of the sufficient differences between this
system andImplicit is that the user should analyze excessive
output looking through a number of similar already finished
search sessions.

Zhu et. al [2005] present WebICLite - a recommender
system that uses behavior models to predict relevant web
pages. They conceptualize web browsing as a search for a
specific well-defined information need and make assumption
that this need can be identified from the pages visited by the
user and from the actions that he/she performs on the pages.
Several specific algorithms for identifying information-need-
revealing patterns are considered and compared. The algo-
rithms are used in order to turn the inferences about the user
information needs into the queries for a standard search en-
gine which does the actual retrieval of recommended pages.
The system is browser-integrated and reformulates a query
of the user without any collaboration and communication be-
tween different users.

Macedo et. al[2003] apply a recommender system ap-
proach to assist and to augment the natural social process
of asking for recommendations from other people. Web-
Memex is a system that provides recommendations based on
the browsing history of the people well-known to the users.
To obtain the list of such users, a contact list from Yahoo Mes-
senger is used. The system allows the user to keep privacy of
web search by hiding his/her browsing for a certain time. The
recommendations generated within the system are based on
the links between the related documents visited by the users.
On the server side there are no agents, but components that
capture user behavior and generate recommendations.

5 Conclusion and Future Work
In this paper we have presented an agent-based recommender
system that extracts implicit knowledge from user browsing
behavior. The knowledge is necessary to suggest links or
agents to a group of people and to their personal agents. Per-
sonal agents use universal mechanism to produce suggestions
about links and agents IDs. Learning capabilities are used by
agents to produce results even without an interaction. Inter-
actions allow a user to use the already acquired experience of
the members of his/her community. This increases the quality
of the search. The process of collecting feedback and produc-
ing recommendations is completely hidden from the user and
therefore does not require any kind of extra work from the
user.

Implicit can be modified in several ways. It could be en-
hanced with the capability of analyzing content of visited
web pages. In this way it would combine content-based and
collaborative approaches. Classification of the users on “ex-
perts” and “novices” could also be implemented in order to
take into account information about the author of the recom-
mendation.

We use rather simple user model in this paper in order to
test our system, and results presented here are preliminary.
In the future, we plan to conduct some experiments with the
participation of the real users.

6 Acknowledgements
This research is partially supported by COFIN Project “In-
tegration between learning and peer-to-peer distributed ar-
chitectures for web search (2003091149004)”. The authors
would like to thank anonymous reviewers for their helpful
comments.

References
[Balabanović and Shoham, 1997] Marko Balabanović and

Yoav Shoham. Fab: content-based, collaborative recom-
mendation.Commununications of the ACM, 40(3):66–72,
1997.

[Bellifemineet al., 2001] Fabio Bellifemine, Agostino
Poggi, and Giovanni Rimassa. Developing multi-agent
systems with a fipa-compliant agent framework.Software
- Practice and Experience, 31(2):103–128, 2001.

[Birukov et al., 2005] Alexander Birukov, Enrico Blanzieri,
and Paolo Giorgini. Implicit: An agent-based recommen-
dation system for web search. InProceedings of the 4th In-
ternational Conference on Autonomous Agents and Multi-
Agent Systems, 2005.

[Blanzieri and Giorgini, 2000] Enrico Blanzieri and Paolo
Giorgini. From collaborative filtering to implicit culture:
a general agent-based framework. InProceedings of the
Workshop on Agents and Recommender Systems, Barcel-
lona, 2000.

[Blanzieriet al., 2004] Enrico Blanzieri, Paolo Giorgini,
Fausto Giunchiglia, and Claudio Zanoni. Implicit culture-
based personal agents for knowledge management.Lec-
ture Notes in Artificial Intelligence, 2926:245–261, 2004.

[Brin and Page, 1998] Sergey Brin and Lawrence Page. The
anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems, 30(1–7):107–117,
1998.

[Chauet al., 2003] Michael Chau, Daniel Zeng, Hsinchun
Chen, Michael Huang, and David Hendriawan. Design
and evaluation of a multi-agent collaborative web mining
system.Decision Support Systems, 35(1):167–183, 2003.

[Freyneet al., 2004] Jill Freyne, Barry Smyth, Maurice
Coyle, Evelyn Balfe, and Peter Briggs. Further experi-
ments on collaborative ranking in community-based web
search. Artificial Intelligence Review, 21(3-4):229–252,
2004.

[Gori and Witten, 2005] Marco Gori and Ian Witten. The
bubble of web visibility. Communications of the ACM,
48(3):115–117, 2005.

[Macedoet al., 2003] Alessandra Alaniz Macedo, Khai N.
Truong, Jose Antonio Camacho-Guerrero, and Maria
da Graca Pimentel. Automatically sharing web experi-
ences through a hyperdocument recommender system. In
HYPERTEXT ’03: Proceedings of the fourteenth ACM
conference on Hypertext and hypermedia, pages 48–56,
New York, NY, USA, 2003. ACM Press.

[Sariniet al., 2004] Marcello Sarini, Enrico Blanzieri, Paolo
Giorgini, and Claudio Moser. From actions to suggestions:
supporting the work of biologists through laboratory note-
books. InProceedings of 6th International Conference on
the Design of Cooperative Systems (COOP2004), pages
131–146, French Riviera, France, 2004. IOSPress.

[Wei et al., 2003] Yan Zheng Wei, Luc Moreau, and
Nicholas R. Jennings. Recommender systems: a market-
based design. InAAMAS ’03: Proceedings of the second
international joint conference on Autonomous agents and
multiagent systems, pages 600–607, New York, NY, USA,
2003. ACM Press.

[Yu and Singh, 2002] Bin Yu and Munindar P. Singh. An
agent-based approach to knowledge management. In
CIKM ’02: Proceedings of the eleventh international con-
ference on Information and knowledge management, pages
642–644, New York, NY, USA, 2002. ACM Press.

[Zhuet al., 2005] Tingshao Zhu, Russ Greiner, Gerald
Haubl, Bob Price, and Kevin Jewell. Behavior-based rec-
ommender systems for web content. InIUI ’05: Pro-
ceedings of the 10th international conference on Intelli-
gent user interfaces. Workshop: Beyond Personalization
2005, New York, NY, USA, 2005. ACM Press.

