
Server-side Encoding, Protocol and Transport Extensibility
for Remoting Systems

Harold Carr
Sun Microsystems, Inc.

harold.carr@sun.com

ABSTRACT
Requirement: Users of remoting systems (e.g., RPC and
Messaging) want to concentrate on the data being sent.
They should not have to use a different programming model
just to use a different protocol.

Problem: Remoting systems need to support alternate en-
codings, protocols and transports, either because of evolving
standards or through dynamic negotiation with a peer.

Solution: This paper has two main ideas. First, it clearly
partitions a remoting system into four main blocks: presen-
tation, encoding, protocol and transport. It identifies the
extensibility points, the responsibilities and interactions of
those blocks. Second, it shows how, for each message arriv-
ing on a connection accepted and created by an Acceptor,
the Acceptor acts as a factory for specific encoders and pro-
tocol handlers. Thus a remoting system can dynamically
adapt to new encodings, protocols and transports without
changing the programming model presented to the program-
mer.

Experience: We have used this model to adaptively al-
ternate between XML and binary encoding, protocol and
transport combinations in an RMI system. We show size
and performance results for these combinations.

Conclusion: This model isolates change from the remoting
system user while allowing common remoting infrastructure
to be extended and reused. The model does not degrade
performance.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Design

Keywords
Middleware, Adaptive, RPC, RMI, Messaging, IIOP, SOAP

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSOC’04, November 15–19, 2004, New York, New York, USA.
Copyright is held by Sun Microsystems, Inc..

1. INTRODUCTION
One contribution of this paper is to clearly show the ma-

jor building blocks of a remoting system. The literature
often uses phrases like “extensible transports” or “changing
protocols.” Those phrases, while convenient, are overloaded
and too coarse-grained. This paper defines the major blocks
of a remoting system to be presentation, encoding, protocol
and transport. Once these blocks are defined we use this
architecture to enable a uniform programming model (pre-
sentation) to be used with remoting system infrastructure
that adapts or evolves to changing encodings, protocols and
transports.

RPC (or Remote Method Invocation - RMI) systems have
a programming model where one invokes a method on an re-
mote object just as one invokes a method on a local object.
The details of the communication are handled by the re-
moting infrastructure. Messaging systems are programmed
by adding data to a message structure and then giving that
structure to the messaging system infrastructure to send to
the receiver. Again, the details are handled by the infras-
tructure. This paper focuses on RPC and messaging sys-
tems, although it applies to other types of remoting systems
such as media streaming and group communication.

There are numerous RPC and messaging systems in ex-
istence. For example, Java specifies RMI, JavaIDL, RMI-
IIOP, and JAX-RPC RPC systems and JMS and JAXM
messaging systems. In Java, if one needs to communicate
using the WS-I profile one uses the JAX-RPC programming
model. If one wants to communicate using IIOP one uses
RMI-IIOP. This paper shows that it is unnecessary to have
different programming models just to use a particular pro-
tocol. This is accomplished, on the server-side, by using Ac-
ceptor as a factory for specific protocols (the second main
contribution of this paper).

Acceptor is a server-side (the role reacting to a message)
mechanism that enables a single programming model to be
used to communicate over a variety of encodings, proto-
cols and transports (EPT). It may be used to structure
new remoting systems or to enable existing systems, like
those above, to support evolving standards (e.g., JAX-RPC
switching from SOAP-encoding to Doc-Literal) or a non-
standard EPT such as JAX-FAST [1].

Acceptor is the server-side configuration point of the PEPt
remoting architecture [2, 3], analogous to ContactInfo [4],
PEPt’s client-side configuration point. The PEPt architec-
ture defines the fundamental building blocks of remoting
systems to be: Presentation, Encoding, Protocol and trans-
port. This paper refers to these blocks as a group as PEPt.


