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ABSTRACT
Requirement: Users of remoting systems (e.g., RPC and
Messaging) want to concentrate on the data being sent.
They should not have to use a different programming model
just to use a different protocol.

Problem: Remoting systems need to support alternate en-
codings, protocols and transports, either because of evolving
standards or through dynamic negotiation with a peer.

Solution: This paper has two main ideas. First, it clearly
partitions a remoting system into four main blocks: presen-
tation, encoding, protocol and transport. It identifies the
extensibility points, the responsibilities and interactions of
those blocks. Second, it shows how, for each message arriv-
ing on a connection accepted and created by an Acceptor,
the Acceptor acts as a factory for specific encoders and pro-
tocol handlers. Thus a remoting system can dynamically
adapt to new encodings, protocols and transports without
changing the programming model presented to the program-
mer.

Experience: We have used this model to adaptively al-
ternate between XML and binary encoding, protocol and
transport combinations in an RMI system. We show size
and performance results for these combinations.

Conclusion: This model isolates change from the remoting
system user while allowing common remoting infrastructure
to be extended and reused. The model does not degrade
performance.
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1. INTRODUCTION
One contribution of this paper is to clearly show the ma-

jor building blocks of a remoting system. The literature
often uses phrases like “extensible transports” or “changing
protocols.” Those phrases, while convenient, are overloaded
and too coarse-grained. This paper defines the major blocks
of a remoting system to be presentation, encoding, protocol
and transport. Once these blocks are defined we use this
architecture to enable a uniform programming model (pre-
sentation) to be used with remoting system infrastructure
that adapts or evolves to changing encodings, protocols and
transports.

RPC (or Remote Method Invocation - RMI) systems have
a programming model where one invokes a method on an re-
mote object just as one invokes a method on a local object.
The details of the communication are handled by the re-
moting infrastructure. Messaging systems are programmed
by adding data to a message structure and then giving that
structure to the messaging system infrastructure to send to
the receiver. Again, the details are handled by the infras-
tructure. This paper focuses on RPC and messaging sys-
tems, although it applies to other types of remoting systems
such as media streaming and group communication.

There are numerous RPC and messaging systems in ex-
istence. For example, Java specifies RMI, JavaIDL, RMI-
IIOP, and JAX-RPC RPC systems and JMS and JAXM
messaging systems. In Java, if one needs to communicate
using the WS-I profile one uses the JAX-RPC programming
model. If one wants to communicate using IIOP one uses
RMI-IIOP. This paper shows that it is unnecessary to have
different programming models just to use a particular pro-
tocol. This is accomplished, on the server-side, by using Ac-
ceptor as a factory for specific protocols (the second main
contribution of this paper).

Acceptor is a server-side (the role reacting to a message)
mechanism that enables a single programming model to be
used to communicate over a variety of encodings, proto-
cols and transports (EPT). It may be used to structure
new remoting systems or to enable existing systems, like
those above, to support evolving standards (e.g., JAX-RPC
switching from SOAP-encoding to Doc-Literal) or a non-
standard EPT such as JAX-FAST [1].

Acceptor is the server-side configuration point of the PEPt
remoting architecture [2, 3], analogous to ContactInfo [4],
PEPt’s client-side configuration point. The PEPt architec-
ture defines the fundamental building blocks of remoting
systems to be: Presentation, Encoding, Protocol and trans-
port. This paper refers to these blocks as a group as PEPt.


