
A Lightweight Approach for QoS–Aware Service
Composition

Gerardo Canfora,
Massimiliano Di Penta

RCOST - Research Centre on
Software Technology
University of Sannio,

Department of Engineering
Palazzo ex Poste, Via Traiano

82100 Benevento, Italy

canfora@unisannio.it,
dipenta@unisannio.it

Raffaele Esposito,
Maria Luisa Villani

RCOST - Research Centre on
Software Technology
University of Sannio,

Department of Engineering
Palazzo ex Poste, Via Traiano

82100 Benevento, Italy

r.esposito@unisannio.it,
villani@unisannio.it

ABSTRACT
One of the most challenging issues of service–centric software en-
gineering is the QoS–aware composition of services. The aim is
to search for the optimal set of services that, composed to create a
new service, result in the best QoS, under the user or service de-
signer constraints. During service execution, re-planning such a
composition may be needed whenever deviations from the QoS es-
timates occur. Both QoS–aware composition and re-planning may
need to be performed in a short time, especially for interactive or
real–time systems. This paper proposes a lightweight approach for
QoS–aware service composition that uses genetic algorithms for
the optimal QoS estimation. Also, the paper presents an algorithm
for early triggering service re-planning. If required re-planning is
triggered as soon as possible during service execution. The per-
formances of our approach are evaluated by means of numerical
simulation.

Categories and Subject Descriptors
K.6.3 [Management Of Computing And Information Systems]:
Software process; G.1.6 [Numerical Analysis]: Constrained op-
timization; H.3.5 [Information Storage And Retrieval]: Web-
based services

General Terms
Algorithms, Measurement

Keywords
Quality of Service, Web Service Composition, Genetic Algorithms

1. INTRODUCTION
Web services constitute a promising technology landscape for soft-
ware engineering. During the last 20 years, component based soft-
ware engineering aimed at the application of principles used for

years in other engineering disciplines to software development ac-
tivities. In fact, electronics, mechanics and other engineering sys-
tems are commonly built by assembling pre-defined components,
such as memories, CPUs, etc.

In the same way, the spread of reusable software components avoids
software engineers to “re-invent the wheel” each time. Building
software systems by “gluing” components enables them to con-
centrate more on the problems their systems aims to solve. This
scenario changes when moving from component-based systems to
service-centric systems, where a functionality is realized by search-
ing, composing and executing services. In the particular case of
web services, this is done by using a set of XML-based standards,
known as UDDI, WSDL and SOAP [16].

The service-centric systems scenario poses several additional chal-
lenges with respect to component-based software engineering. First
and foremost, in a component-based software system components
are physically integrated and, except for distributed systems, they
are executed as a whole in the end-user’s environment. This is not
usually the case of web services as they are executed on the service
provider server, thus raising issues on the run-time service (and of
course network) availability and performances.

Secondly, several services may be available with the same func-
tion (we call themsemantically equivalent services), however they
surely exhibit different Quality of Service (QoS). According to Std.
ISO 8402 [9] and ITU [10], QoS may be defined in terms of at-
tributes such as price, response time, availability, reputation (fur-
ther details can be found in Cardoso’s PhD thesis [2]). Moreover, it
may be possible to have some domain-specific QoS attributes (e.g.,
a temperature service could have QoS attributes such as precision
or refresh frequency). The choice between different but semanti-
cally equivalent services is a function of such QoS attributes: one
may decide to choose the cheapest service, the fastest, or maybe a
compromise between the two. Moreover, an user may specify con-
straints on the values of some attributes (e.g., the price cannot be
higher than a given value), which could influence the choice. On
the other hand, the service provider can estimate ranges for the QoS
attribute values as part of the contract with potential users. Also, the
QoS guarantees for the same service could be customer-dependent,
and so they would apply each to a different instance of that ser-
vice. For example, an user that buys a service at a given price is not

1


