Networking RP @ DISI

Fabrizio Granelli, Lab Coordinator
Networking RP: Focus

Research Topics:
- Protocol Design and Architectures
- Network Design and Dimensioning
- Traffic Modeling
- Cross-layering
- Performance Evaluation
- Flow and Congestion Control
- Switching and Switches Architectures
- Timing and Synchronization
- Network Measurement

Application Areas:
- **Optical Networks**
 - Architectures, switching, transparent (all-optical)
 - Wide Area Networks and Backbone Design
 - Ultra-High Bandwidth Switching
- **Wireless Networks**
 - Scheduling, QoS and resource management
 - Wireless mesh networks: WiFi, WiMax
 - Cellular: transmission, protocols and network design
 - MAC protocols
 - Ad-Hoc and mobile
 - Cognitive Networks
- **Peer-to-peer**
 - Overlay construction and management
 - Distributed signaling
 - Overlay to network mapping and cooperation

F. Granelli, Networking RP @DISI, 2008
Networking RP: People

- **Faculties (5):**
 - Fabrizio GRANELLI
 - Renato LO CIGNO
 - Yoram OFEK
 - Luca ABENI
 - Alessandro ZORAT
 - Lab Coordinator
 - Associate Professor
 - Professor
 - Assistant Professor
 - Professor

- **PostDocs, Research Assistants (6):**
 - Csaba KIRALY
 - Dzmitry KLIAZOVICH
 - Jasvir NAGRA
 - Matteo NARDELLI
 - Amitabh SAXENA
 - Danilo SEVERINA
 - Research Assistant
 - PostDoc
 - PostDoc
 - Research Assistant
 - PostDoc
 - Research Assistant

- **PhD Students (7):**
 - Yury AUDZEVICH
 - Nadhir BEN HALIMA
 - Gianluca CICCARELLI
 - Michele ENDRICI
 - Christian FACCHINI
 - Troung Huong THU
 - Olga ZADEDYURINA
 - PhD Student
 - PhD Student

F. Granelli, Networking RP @DISI, 2008
Networking RP: Ongoing Projects

- Discreet (Discreet Service Provision in Smart Environment)
- Profiles (PeeR-to-peer beyOnd FILE Sharing)
- RE-TRUST (Remote EnTrusting by RUntime Software auThentication)
- WOMEN (Wireless 802.16 Multi-antenna Mesh Networks) → now WORLD (Wireless multiplatfOrm mimo active access netwoRks for QoS-demanding muLtimedia Delivery)
- Mobility projects with North Carolina State, Tokyo Institute of Technology, UCLA

F. Granelli, Networking RP @DISI, 2008
Selected Topics

- Cross-Layering
- Performance Improvement in Wireless Networks
- Congestion Control
- GRID & Overlay Networks
- Design of Wireless Mesh Networks

F. Granelli, Networking RP @DISI, 2008
Why Cross-Layering?

- Missing requirements to ensure market convergence

Proper services (Killer applications)

New search technologies, advertising, peer-to-peer networks, personal and community communications

New terminals

At present moment aggressively pushed by Apple, Nokia, Motorola, Intel, and other vendors

High-performance Communications

Cross-Layer Design

F. Granelli, Networking RP @DISI, 2008
Cross-Layering

<table>
<thead>
<tr>
<th>Technology</th>
<th>Mobility</th>
<th>Data transfer performance</th>
<th>Energy consumption/battery life</th>
<th>Quality of Service</th>
<th>Cross-Layer Design Penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2G (GSM)</td>
<td>Fixed</td>
<td>9.6 - 57.6 bit/s</td>
<td>0.52 bit/s/Hz</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>3G (UMTS)</td>
<td>Global roaming</td>
<td>384 Kbps/2MB/s (s)</td>
<td>Up to 2.98 bit/s/Hz</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>3G LTE</td>
<td>Fixed</td>
<td>100 bit/s</td>
<td>0.56 bit/s/Hz</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Fixed WiMAX (802.16-2004)</td>
<td>Global roaming</td>
<td>11 bit/s</td>
<td>0.56 bit/s/Hz</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Mobile WiMAX (802.16e-2005)</td>
<td>Global roaming</td>
<td>2.3 MBs/s (max up to 100 MB/s)</td>
<td>0.56 bit/s/Hz</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>802.11b</td>
<td>Fixed</td>
<td>11 bit/s</td>
<td>0.56 bit/s/Hz</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>802.11a/g</td>
<td>Fixed</td>
<td>54 Mbit/s</td>
<td>2.7</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>802.11n</td>
<td>Fixed</td>
<td>250 Mbit/s</td>
<td>7.22</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Bluetooth (2.0)</td>
<td>Fixed</td>
<td>675 Mbit/s</td>
<td>6.55 bit/s/Hz</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>UWB</td>
<td>Fixed</td>
<td>675 Mbit/s</td>
<td>6.55 bit/s/Hz</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

F. Granelli, Networking RP @DISI, 2008
Cross-Layering

- The key is to understand the implications and possibilities of cross-layering

- Cross-Layer Modeling
 - No analytical model to capture cross-layer interactions

- Protocol Stack Optimization
 - To identify suitable design tools (beyond empirical…

F. Granelli, Networking RP @DISI, 2008
Performance Improvement in Wireless Networks

- Cellular Network (Main scenario)
 - Content Provider
 - Base Station
 - Wide-Area Network

- Ad-Hoc

- Battlefields

- Network on wheels

F. Granelli, Networking RP @DISI, 2008
Performance Improvement in Wireless Networks

- **Wireless** vs. **Wired**
 - Limited bandwidth
 - High latency
 - Channel losses
 - High mobility
 - Large bandwidth
 - Low latency
 - Congestion losses
 - Static environment

Poor Communication Protocol Performance

F. Granelli, Networking RP @DISI, 2008
Performance Improvement in Wireless Networks

- Cross-Layer ARQ

- ARQ agent generate TCP ACKs based on the link layer feedback

F. Granelli, Networking RP @DISI, 2008
Performance Improvement in Wireless Networks

Cross-Layer ARQ

Cross-Layer ARQ improvements

- Network capacity increase
- Robustness to high error rates
- Reduced round trip delay
- Improved congestion control
- Good fairness & coexistence

Evaluated analytically, by simulations, and on testbed

- Average improvement level tops 100%

F. Granelli, Networking RP @DISI, 2008
Active Queue Management at bottleneck routers

- A control-theory based optimization
- An Optimal Robust LQR-PID AQM Controller, which:
 - Maintains Queue Size at Routers
 - Improve Congestion
 - Supports QoS
 - Accommodates Load Variation
 - Adjust Change in Network Parameters
Cross-Layer Congestion Control

At every hop
- Compute bandwidth, delay
- Insert computed values into link layer header

At the receiver
- Echo capacity information to sender

At the sender
- Adjust outgoing TCP rate

Adjust rate based on the link capacity

F. Granelli, Networking RP @DISI, 2008
Cross-Layer Congestion Control

Evaluation outcomes

- Link layer capacity measurements are more efficient
- Cross-Layer Congestion Control is ~30% more productive than other state-of-art solutions
- Proper for upcoming standards (requires a new link layer frame)

F. Granelli, Networking RP @DISI, 2008
GRID & Overlay Networks

- To analyze the offered load by grid applications onto the networking infrastructure
- To enable grid overlays to be adaptive to availability and fluctuations of host and network resources
Design of Wireless Mesh Networks

- A Wireless Mesh Network testbed is currently running at DISI premises (802.11a/5GHz)

- The testbed is built using Linux-based programmable Aps

- An Open Platform for developing and validating

F. Granelli, Networking RP @DISI, 2008
Design of Wireless Mesh Networks
Design of Wireless Mesh Networks

F. Granelli, Networking RP @DISI, 2008
Research Outputs

- **Book Chapters and Journals**
 - Elsevier Computer Networks Journal (COMNET)
 - ACM / Springer Wireless Networks (WINET)
 - International Journal of Computer Research
 - Ad Hoc Networks Journal
 - Journal of Interconnection Networks (JOIN)

- **Conferences**

- **Patents**

- F. Granelli, Networking RP @DISI, 2008
International Contacts

- North Carolina State Univ. (Prof. M. Devetsikiotis)
- State Univ. of Campinas (Prof. N. Fonseca)
- Tokyo University of Technology (Prof. Tsuboi)
- Nokia Siemens Networks (Ing. S. Redana)
- UCLA (Prof. M. Gerla)

F. Granelli, Networking RP @DISI, 2008
Any questions?

- Fabrizio Granelli
 Networking RP Coordinator
 E-mail: granelli@disi.unitn.it

F. Granelli, Networking RP @DISI, 2008