
Security-by-Contract for Open
Multi-Application Smart Cards

O.Gadyatskaya, F. Massacci (University of Trento)

B. Chetali, Q.-H. Nguyen (Trusted Labs, Gemalto)

e-Smart’2011

September 21-23, Sophia-Antipolis

Plan of the talk

• Motivations

• Java Card

• The Security-by-Contract solution

• Technical obstacles for prototype
implementation

• The implementation highlights

• Conclusions

O. Gadyatskaya The SxC Framework for Java Card 2

Plan of the talk

• Motivations

• Java Card

• The Security-by-Contract solution

• Technical obstacles for prototype
implementation

• The implementation highlights

• Conclusions

O. Gadyatskaya The SxC Framework for Java Card 3

Open multi-application cards

O. Gadyatskaya The SxC Framework for Java Card 4

picture from http://fingerprints-security.net

“One card to rule them all”

Olga Gadyatskaya

01/2016

Open multi-application cards II

• One card can host multiple applications

• Applications are coming from different
providers

• Applications can be installed or removed

• Applications can interact on the card to
provide a given service

O. Gadyatskaya The SxC Framework for Java Card 5

How to ensure their interactions are authorized?

The challenge

O. Gadyatskaya The SxC Framework for Java Card 6

The card has to verify that the policies of all
applets are satisfied

•set of applications to run on card is unknown
initially
• evolution occurs unexpectedly
• each application has its own policy on
interactions
• approach must work for a smart card:

• run-time monitoring is not possible
• algorithms have to be small and fast

An example

O. Gadyatskaya The SxC Framework for Java Card 7

Olga Gadyatskaya

01/2016

ePurse
App

University
App

Shop
Loyalty App

1

Trento Bus
App

An example

O. Gadyatskaya The SxC Framework for Java Card 8

Olga Gadyatskaya

01/2016

ePurse
App

University
App

Shop
Loyalty App

1

Trento Bus
App

Shop
Loyalty
App 2

How to ensure that new
application will interact
only with applications that
allowed this interaction?

Plan of the talk

• Motivations

• Java Card

• The Security-by-Contract solution

• Technical obstacles for prototype
implementation

• The implementation highlights

• Conclusions

O. Gadyatskaya The SxC Framework for Java Card 9

Loading process on Java Card 2.x.x

O. Gadyatskaya The SxC Framework for Java Card 10

Integrated Circuit

Native OS

Installer

JCRE

JCVM
(Interpreter)

Native API

Java Card API

CAP
file

Applet BApplet A Firewall

.java

.class

Compiler

Converter

Instance

Application interactions on Java Card

O. Gadyatskaya The SxC Framework for Java Card 11

Applet BApplet A

Firewall

Run-time

Shareable
Interface

service 1

service 2

Why the current architecture does
not work?

• Once an application is installed, it can do
whatever (try to call anybody)

• So the callee must check who is calling

• The execution logic of an applet is currently
interleaved with the access control logic

• This is

– not flexible

– error-prone

O. Gadyatskaya The SxC Framework for Java Card 12

Plan of the talk

• Motivations

• Java Card

• The Security-by-Contract solution

• Technical obstacles for prototype
implementation

• The implementation highlights

• Conclusions

O. Gadyatskaya The SxC Framework for Java Card 13

The SxC Workflow

O. Gadyatskaya The SxC Framework for Java Card 14

Contract

CAP

Bytecode Contract
matches
Bytecode?

Loading

Claim Checker

Yes

Policy Checker

Contract
matches
Policy?

Yes

NoNo

Linking and
Installation

Stop
Free the memory

Retrieve
Policy

Policy Storage

Policy App1 Policy App N…

Update
Policy

Integrated with
the Installer

Contracts for applet interactions

O. Gadyatskaya The SxC Framework for Java Card 15

Contract of a package

AppClaim AppPolicy

Provided services

Called services

Authorizations for
services access

Functionally necessary
services

<Interface token, method token>

<Provider package AID,

Interface token, method token>

<Interface token, method token,

Authorized package AID>

<Provider package AID,

Interface token, method token>

Example of a contract

O. Gadyatskaya The SxC Framework for Java Card 16

{ 0x0, 0x1, 0x0, 0x0, 0x0, 0x1,

0x0, 0x0, 0x6, 0x1, 0x2, 0x3, 0x4,

0x5, 0x0, 0x0, 0x0, 0x01, 0x8,

0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,

0x0, 0x0, 0x1, 0x0, 0x0 }

A simple applet: 1 provided service, which can be
used by 1 applet; 1 called service

Totally 31 byte

Contract of CoopLoyaltyApplet:

CreditInterface

PurseApplet

CoopLoyaltyApplet

CoopPointsInterface

sharePoints()

charge()

Security policy of the card

O. Gadyatskaya The SxC Framework for Java Card 17

Olga Gadyatskaya

01/2016

ePurse
App

University
App

Shop
Loyalty App

1
Shop

Loyalty App
2

Policy

ePurse App
Contract

University
App Contract

Shop Loyalty
App 1

Contract

Shop Loyalty
App 2

Contract

Collection of all loaded applets’ contracts

Plan of the talk

• Motivations

• Java Card

• The Security-by-Contract solution

• Technical obstacles for prototype
implementation

• The implementation highlights

• Conclusions

O. Gadyatskaya The SxC Framework for Java Card 18

Implementation of the SxC
framework

• We experimented the SxC approach by
implementing the framework as a proof-of-
concept prototype that could be integrated
with an industrial card

• The requirements for the prototype:

– The framework needs to be written in C

– Full memory footprint of the SxC prototype
occupies up to 30 KB

O. Gadyatskaya The SxC Framework for Java Card 19

Integrated with
the Installer

Technical obstacles we have faced

O. Gadyatskaya The SxC Framework for Java Card 20

Contract

CAP

Bytecode Contract
matches
Bytecode?

Loading

Claim Checker

Yes

Policy Checker

Contract
matches
Policy?

Yes

NoNo

Linking and
Installation

Stop
Free the memory

Retrieve
Policy

Policy Storage

Policy App1 Policy App N…

Update
Policy

Policy Storage
requires access

to EEPROM

Contract delivery
needs to be

secure

Policy Storage
organization
needs to be

efficient

CAP file parsing
needs to be

efficient

1
2

3 4

Obstacle 1: EEPROM for the Policy
storage

• Only modifiable persistent memory can be used to
store the policy after each evolution

• Only applet instances are entitled an access to the
EEPROM

• The Claim Checker and the Policy Checker are
implemented in C

O. Gadyatskaya The SxC Framework for Java Card 21

Solution:

• We implemented the Policy storage as the Policy Applet.
• The communication between the Policy Applet and the C
components is implemented through the APDU buffer (a
temporary solution)

Obstacle 2: Policy storage
optimization

• AIDs are space-consuming objects

• The algorithms need to be fast

O. Gadyatskaya The SxC Framework for Java Card 22

Solution:

• We organized the Policy storage efficiently
using a fixed Policy structure and bit-vectors

Security Policy on the card

O. Gadyatskaya The SxC Framework for Java Card 23

Policy (fixed size)

All loaded contracts in an
internal bit-arrays format

Policy on the card

Mapping

Maintains correspondence
between on-card ID and
AIDs

WishList

MayCall

Possible future
authorizations for applets
not yet on the card

Called services from
applets not yet on the card

We assume 4 loaded applets, 8 services each

Small size and
(frequent)

efficient
operations

Big size and
(rare) slow
operations

Big size and
(rare) slow
operations

Obstacle 3: contract delivery

• Contracts need to be embedded in CAP files

O. Gadyatskaya The SxC Framework for Java Card 24

Solution:

• We embed contracts into Custom
components
• Alternative solution would be to use the
Static Field component

Obstacle 4: CAP file parsing
efficiency

• Preferably each component should be
parsed only once

• RAM usage optimization is necessary

O. Gadyatskaya The SxC Framework for Java Card 25

Solution:

• We use specific 255 bytes temporary buffer for
storing the computation data

The SxC architecture for loading

O. Gadyatskaya The SxC Framework for Java Card 26

Integrated Circuit

Native OS

Installer

JCRE

JCVM
(Interpreter)

Native API

Java Card API

Applet BApplet A
Firewall

Claim
Checker

Policy
Checker

SxC

Policy Applet

CAP file
with

contract

.java

.class

Compiler

Converter

Contract

Plan of the talk

• Motivations

• Java Card

• The Security-by-Contract solution

• Technical obstacles for prototype
implementation

• The implementation highlights

• Conclusions

O. Gadyatskaya The SxC Framework for Java Card 27

The SxC prototype architecture
implemented on a PC simulator

O. Gadyatskaya The SxC Framework for Java Card 28

Java Stub for plugging Java components

SxCInstaller

CAP file parsing

APIs library

Policy
Checker

C

Java Card

Claim Checker

Policy Applet

CAP file parsing library
contains APIs to access each
CAP file component

Memory footprint of the prototype

O. Gadyatskaya The SxC Framework for Java Card 29

Component Memory (bytes) LOCs

SxCInstaller 6754 B 152

Claim Checker 6522 B 162

Policy Applet 2282 B 101

Object
files

Occupied
EEPROM

Plan of the talk

• Motivations

• Java Card

• The Security-by-Contract solution

• Technical obstacles for prototype
implementation

• The implementation highlights

• Conclusions

O. Gadyatskaya The SxC Framework for Java Card 30

Industry-Academia validation

O. Gadyatskaya The SxC Framework for Java Card 31

Or How to validate the framework while
protecting the smart card platform APIs

• The prototype relies on the CAP file parsing
library
• Thorough industrial testing with actual CAP
file parsing APIs is being done

Future work

How the card can manage possible conflicts
among applications?

O. Gadyatskaya The SxC Framework for Java Card 32

Olga Gadyatskaya

01/2016

ePurse
App

University
App

Shop
Loyalty App

1

Trento Bus
App

What if ePurse App
wants to be removed
and Trento Bus App
relies on it?
Alternatives:
- ePurse is forced to stay
- Trento Bus is disabled

O. Gadyatskaya The SxC Framework for Java Card 33

Thank You!

www.securechange.eu

or visit http://disi.unitn.it/~gadyatskaya/

http://www.securechange.eu/
http://disi.unitn.it/~gadyatskaya/

