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Open multi-application cards
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picture from http://fingerprints-security.net

“One card to rule them all”
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Open multi-application cards II

• One card can host multiple applications

• Applications are coming from different 
providers

• Applications can be installed or removed

• Applications can interact on the card to 
provide a given service  
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How to ensure their interactions are authorized?



The challenge
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The card has to verify that the policies of all 
applets are satisfied

•set of applications to run on card is unknown 
initially
• evolution occurs unexpectedly
• each application has its own policy on 
interactions
• approach must work for a smart card:

• run-time monitoring is not possible
• algorithms have to be small and fast  



An example
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An example
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How to ensure that new 
application will interact 
only with applications that 
allowed this interaction?
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Loading process on Java Card 2.x.x
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Application interactions on Java Card
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Why the current architecture does 
not work?

• Once an application is installed, it can do 
whatever (try to call anybody)

• So the callee must check who is calling

• The execution logic of an applet is currently 
interleaved with the access control logic

• This is

– not flexible

– error-prone
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The SxC Workflow
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Contracts for applet interactions
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Contract of a package

AppClaim AppPolicy

Provided services

Called services

Authorizations for 
services access

Functionally necessary 
services

<Interface token, method token> 

<Provider package AID, 

Interface token, method token> 

<Interface token, method token,

Authorized package AID> 

<Provider package AID, 

Interface token, method token> 



Example of a contract
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{ 0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 

0x0, 0x0, 0x6, 0x1, 0x2, 0x3, 0x4, 

0x5, 0x0, 0x0, 0x0, 0x01, 0x8, 

0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 

0x0, 0x0, 0x1, 0x0, 0x0 }

A simple applet: 1 provided service, which can be 
used by 1 applet; 1 called service

Totally 31 byte 

Contract of CoopLoyaltyApplet:

CreditInterface

PurseApplet

CoopLoyaltyApplet

CoopPointsInterface

sharePoints()

charge()



Security policy of the card
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Implementation of the SxC
framework

• We experimented the SxC approach by 
implementing the framework as a proof-of-
concept prototype that could be integrated 
with an industrial card

• The requirements for the prototype:

– The framework needs to be written in C

– Full memory footprint of the SxC prototype 
occupies up to 30 KB 
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Integrated with 
the Installer

Technical obstacles we have faced
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Obstacle 1: EEPROM for the Policy 
storage

• Only modifiable persistent memory can be used to 
store the policy after each evolution

• Only applet instances are entitled an access to the 
EEPROM

• The Claim Checker and the Policy Checker are 
implemented in C
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Solution: 

• We implemented the Policy storage as the Policy Applet.
• The communication between the Policy Applet and the C 
components is implemented through the APDU buffer (a 
temporary solution)  



Obstacle 2: Policy storage 
optimization

• AIDs are space-consuming objects

• The algorithms need to be fast
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Solution: 

• We organized the Policy storage efficiently 
using a fixed Policy structure and bit-vectors



Security Policy on the card
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Policy (fixed size)

All loaded contracts in an 
internal bit-arrays format

Policy on the card

Mapping

Maintains correspondence 
between on-card ID and 
AIDs
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applets not yet on the card

We assume 4 loaded applets, 8 services each

Small size and 
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Big size and 
(rare) slow 
operations 

Big size and 
(rare) slow 
operations 



Obstacle 3: contract delivery

• Contracts need to be embedded in CAP files
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Solution: 

• We embed contracts into Custom 
components
• Alternative solution would be to use the 
Static Field component



Obstacle 4: CAP file parsing 
efficiency

• Preferably each component should be 
parsed only once

• RAM usage optimization is necessary
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Solution: 

• We use specific 255 bytes temporary buffer for 
storing the computation data



The SxC architecture for loading
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The SxC prototype architecture 
implemented on a PC simulator
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Java Stub for plugging Java components

SxCInstaller

CAP file parsing

APIs library

Policy 
Checker

C

Java Card

Claim Checker

Policy Applet

CAP file parsing library 
contains APIs to access each 
CAP file component



Memory footprint of the prototype
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Component Memory (bytes) LOCs

SxCInstaller 6754 B 152 

Claim Checker 6522 B 162

Policy Applet 2282 B 101

Object 
files

Occupied 
EEPROM
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Industry-Academia validation
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Or How to validate the framework while 
protecting the smart card platform APIs

• The prototype relies on the CAP file parsing 
library 
• Thorough industrial testing with actual CAP 
file parsing APIs is being done



Future work

How the card can manage possible conflicts 
among applications?

O. Gadyatskaya  The SxC Framework for Java Card 32

Olga Gadyatskaya

01/2016

ePurse
App

University 
App

Shop  
Loyalty App 

1

Trento Bus 
App

What if ePurse App 
wants to be removed 
and Trento Bus App 
relies on it?
Alternatives:
- ePurse is forced to stay
- Trento Bus is disabled
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Thank You!

www.securechange.eu

or  visit http://disi.unitn.it/~gadyatskaya/

http://www.securechange.eu/
http://disi.unitn.it/~gadyatskaya/

