

DISI - Via Sommarive 14 - 38123 Povo - Trento (Italy)
http://www.disi.unitn.it

IMPLEMENTATION

REQUIREMENTS AND

SPECIFICATION OF THE POLICY

CHECKER COMPONENT

Olga Gadyatskaya, Fabio Massacci and

Anton Philippov

February 2011

Technical Report # DISI-11-455

Version 1.0

Technical report: Implementation
Requirements and Specification of the Policy

Checker Component ∗

Olga Gadyatskaya, Fabio Massacci and Anton Philippov

May 23, 2011

Abstract

Multi-application smart cards running on the Java Card technol-
ogy can become an open environment for applications coming from
different providers and collaborating in order to enable more sophis-
ticated and user-oriented smart card solutions. While this is a dream
of a lot of smart card vendors, in reality we do not see such cards
around. One of the reasons for the absence of these cards is a neces-
sity for a flexible security enforcement solution which will ensure that
each provider’s security policy for application interactions is satisfied
on the card. We have proposed the Security-by-Contract approach
for loading time application certification which enables such security
mechanism on a smart card.

Security-by-Contract framework for Java smart cards consists of
two components: the Claim Checker and the Policy Checker. Each
application arrives on the smart card with its contract, which is a
model of the application’s security-related behavior. At the loading
time the Claim Checker ensures that the contract is compliant with the
application code, while the Policy Checker verifies that the contract
matches the security policy of the platform.

This technical report proposes a representation of the contract
and the security policy objects on Java Card. Related algorithms
for the Policy Checker and the maintenance of these objects are also

∗Work partially supported by the EU under grant EU-FP7-FET-IP-Secure Change

presented. The approach allows significant time and space savings,
which are very important for such resource-constrained environment
as a smart card.

2

1 Introduction

As a case study we consider an open multi-application smart card running
on the Java Card technology [3]. These cards can host multiple applications
from different vendors written in a subset of the Java language. Applications
can be loaded on the card asynchronously and without common agreement
among all the stakeholders. Ideas for this type of cards and possible scenarios
of its usage and benefits have been discussed by the research community for
quite some time now [12, 1, 11, 6].

An important aspect of these cards is collaborations between different
applications. The added value of on-card application interactions is alluring.
Loyalty cards, transportation cards are typical and widespread examples of
an open multi-application platform which can bring benefits to the card users.

1.1 Why Internal Data Structures Are Needed?

The main objective of the current report is to define representation of the
contract and the security policy objects, and to provide necessary updates of
the PolicyChecker algorithms taking into account the representation defined.
The definitions of application contract and security policy in [5, 4] did not
detail how these objects could be provided on Java Card. Moreover, different
properties are expected from the contract object delivered with application
code and contract/policy objects implemented on the card. Indeed, appli-
cation providers would like contracts to be easy to write and they probably
would not want to study a new language for writing contracts. Also applica-
tion providers do not know in advance which other applications can be in the
system (or will arrive later). Thus contract provided on the card needs to
be specified worldwide uniquely. That means, in terms of application identi-
fiers (AIDs) and method tokens from export files (with corresponding AIDs).
Tokens are discussed further in Section 2.3.

On the other hand, the contract and the policy objects on the card do
not need to be worldwide unique. But it is important that they require as
few memory as possible. One AID needs up to 16 bytes (by ISO standards).
Thus we propose to explore bit vectors for representing applications and their
services instead of using full AID and method tokens for the internal policy
object. This internal object also speeds-up computations performed by the
PolicyChecker on the card. The drawback of the suggested approach is extra
time and memory required for maintenance of the mapping tables (that will

3

allow transformations from external contract objects to internal and back).
The remainder of the report is structured as follows. The Java Card tech-

nology is briefly outlined in Section 2. The Security-by-Contract framework
is introduced in Section 3. Preliminary details about application contract
and our running example are provided in Section 3.2. As the Contract is sup-
plied with the application code we then proceed with a discussion in Section 4
how the actual contract can look like when it is received. Then Section 5
introduces our ideas for on-card objects and the mapping table which stores
correspondence between received contract object and internal one. Section 6
presents the objects which can represent the contract and the security policy
objects on the card. The modified on-card algorithms for the PolicyChecker
are described in Section 7. We then discuss operations necessary for the pol-
icy update in Section 8. We analyze the complexity of given algorithms and
discuss scaling of the model in Section 9.

2 The Java Card Technology

Java Card is a popular middleware for multi-application smart cards, which
allows post-issuance installation and deletion of applications. Moreover, Java
Card brings conveniences of the Java language to such small devices as smart
cards. Application providers develop applets (Java Card applications) in a
subset of Java language. This subset is object-oriented, but misses some
traditional data types (for example, float or long), even int is supported
optionally. Also such features as dynamic class loading or finalization are not
supported by Java Cards. Full description of the Java Card language and the
Java Card virtual machine (JCVM) is provided in the official specifications
by Sun (now Oracle) [7, 8, 10].

Currently smart cards in the field run on Java Card version 2.2.2. Also a
new specification for Java Card 3.0.3 is available. Third generation of Java
Card supports Classic and Connected editions. Classic edition is, essentially,
the same version as the second generation Java Cards. Connected edition
supports new types of applications and new protocols for accessing them, but
is not yet welcomed by the smart card vendors due to, among all, security
concerns. Thus we concentrate on Java Card 2.2.2 version. However, the
approach we propose in the future can be ported also for the third generation
of Java Cards.

4

Figure 1: Java Card Architecture

2.1 Java Card Platform Architecture

The architecture of the Java Card platform is depicted on the Fig. 1. The
architecture comprises several layers which include device hardware, an em-
bedded operating system (native OS), the Java Card run-time environment
(JCRE) and the applications installed on top of it [3]. Important parts of
JCRE are Java Card virtual machine (JCVM) (its Interpreter part) and an
Installer, which is an entity responsible for loading and installation of appli-
cations. The Installer is an optional component, but without it post-issuance
application loading is impossible. Applications on Java Card are separated
by a firewall.

Applets are supplied on the card in packages. The source code of a
package is converted by the application providers into class files and then
(using a Converter which is actually an off-card part of the JCVM) into
a CAP file. The CAP file is transmitted onto a smart card, where it is
processed, linked and transformed into a platform-specific executable format
(defined by the platform developer). Application providers do not need to
consider different on-card executable formats, as they are just required to

5

supply a correct (compliant with the Java Card specifications) CAP file.
Then, upon finalization of linking process, the applet instances are installed.

A CAP file consists of several components, which typically arrive on a card
in a known order [10, Chap. 6]. The information in each of the component
is organized in a way which allows any implementation of the Installer and
the JCVM to process the received CAP file.

2.2 Interactions between Applets

The Java Card Virtual Machine is a subset of the standard Java Virtual
Machine (JVM) [10]. It also imposes some restrictions on the method invo-
cations. Applications from one package belong to the same context. If two
applets belong to different packages, their contexts are different. The Java
Card firewall confines applet’s actions to its designated context [8]. Thus,
normally, an applet can reach only objects belonging to its own context. The
only applet’s objects accessible through the firewall are methods of specific
shareable interfaces, also called services. A shareable interface is either the
javacard.framework.Shareable interface or an interface that extends the
javacard.framework.Shareable.

If an application A implements some services, it is called a server. An
application B that tries to call any of these services is called a client. A
typical scenario of a service usage starts with a client’s request to the JCRE
for a reference to A’s object (that is implementing shareable interface). The
firewall passes this request to application A, which decides if the reference can
be granted or not. If the decision is positive, the reference is passed through
the firewall and is stored by the client for further usage. The client can now
invoke any method declared in the shareable interface which is implemented
by the referenced object. During invocation of a service a context switch
will occur, thus allowing invocation of a method of the application A from a
method of the application B. A call to any other method, not belonging to
the shareable interface, will be stopped by the Java Card firewall [3, 8].

In order to realize this scenario the client has necessarily to import the
shareable interface of the server. As well the client needs to obtain specific
export file of the server, which lists shared interfaces and services and contains
their tokens. The server’s export file is necessary for conversion of the client’s
package into a CAP file. In a CAP file all methods are referred to by their
tokens, thus during conversion from class files into a CAP file the client
needs to know correct tokens for services it invokes from other applications.

6

As shareable interfaces and export files do not contain any implementation,
it is safe to distribute them.

As all applet interactions inside one package are not controlled by the
firewall and due to the fact that a package is loaded in one pass (thus it is
not possible to load a malicious applet in one package with an honest one),
we consider that one package contains only one applet. Further we will say
that some applet is loaded on the card meaning that the package containing
this applet is loaded.

2.3 Tokens and Token-based Linking

Tokens are used by the JCRE for linking on the card in the same fashion
as Unicode strings are used for linking in standard Java class files. For
externally visible elements, such as shareable interfaces and their methods,
tokens are declared in the export file of the package. If applet A wants to
provide some services, it has to make its export file available for all potential
clients. Applet B in its source code refers to services by their Unicode string
names, but when it is converted into CAP file these names are replaced with
tokens from A’s export file [10]. Thus it is possible to identify provided and
called services in terms of tokens correctly and uniquely.

A service s is generally defined as a tuple 〈A, I, t〉, where A is unique
application identifier (AID) of an application that provides the service s, I is
a token for a shareable interface where the service is defined and t is a token
for the service s in the interface I. Further we will sometimes omit an AID
A from the discussion and will refer to a service as a tuple 〈I, t〉.

3 Security-by-Contract for Java Cards

The Security-by-Contract framework for smart cards provides an extension
of the Java Card architecture with two components: the ClaimChecker and
the PolicyChecker. The loading time verification process is performed by
these components, which separate the duties. The proposed architecture is
depicted on the Fig. 2, the additions to the JCRE are in long dashed blue
rectangles.

In the Security-by-Contract (S×C) approach every applet arrives on the
card equipped with its contract. The contract contains information regard-
ing provided and called services and an applet’s policy. On the card the

7

Figure 2: Security-by-Contract Extended Architecture

ClaimChecker verifies during installation process that the contract is com-
pliant with the applet’s bytecode. Then the PolicyChecker ensures that the
contract is compliant with the card’s security policy, which is provided jointly
by all the stakeholders by combining their own policies related to the service
usage. If one of the components finds inconsistences, the applet’s installation
process is stopped and it is rejected from the card. Consequently, only honest
applications with compatible contracts can be installed on the card.

3.1 The S×C Framework Description

We will denote contract object delivered on the card as ContractExt and
internal contract and policy objects as ContractInt and Policy correspondingly.

The following workflow will be performed by the Security-by-Contract
(S×C) framework in case of loading of a new application:

1. A package A is sent to the card together with its contract ContractExtA.

2. The ClaimChecker ensures that the ContractExtA is compliant with the
actual code (specification is provided in [4]).

8

3. The PolicyChecker transforms the object ContractExtA into internal ob-
ject ContractIntA using techniques we specify in this work.

4. The PolicyChecker runs verification algorithms to make sure that the
contract ContractInt is compliant with the platform policy Policy.

5. If the PolicyChecker returned TRUE, the application A is installed on
the platform and the security policy is updated correspondingly (to
include ContractIntA.)

6. If the PolicyChecker returned FALSE, the installation process is stopped.
The card returns to the previous state (it is possible due to Java Card
transaction possibilities [9]).

In this technical report we present the main ideas behind the Security-
by-Contract (S×C) framework for smart cards focusing mainly on the Policy
Checker component. The detailed specifications of the formal models and the
components can be found in the deliverables of the Secure Change project
[5], [4].

3.2 Contracts

The main goal of the S×C framework is to verify at loading time absence of
non-authorized service invocations. Service for us is a method of an interface
which extends Shareable. Applications from different packages can access
services of each other, but cannot access other methods. In the proposed
solution each application declares in its Contract for each service which ap-
plications are authorized to call it. During installation of an applet B it can
turn out that B may call a service A.s of some applet A (which is present
on the card). In this case, if B is not authorized by A to call s, then B’s
loading process is stopped and B is rejected.

We use the following notations in the sequel.

• A is a set of applications installed on the smart card platform, A ∈ A
is an application;

• S is a set of services provided together by all the applications A on the
card, s ∈ S is a service, A.s is a service of application A.

• wp() is the Weierstrass symbol.

9

The ContractA of an application A in our approach is defined as following:

Definition 3.1 (Contract) For application A its ContractA is a tuple
〈ClaimA,AppPolicyA〉, where

• ClaimA = 〈ProvidesA,CallsA〉, and ProvidesA,CallsA ∈ wp(S);

• AppPolicyA = 〈secrulesA, funcrulesA〉, and secrulesA : S → wp(A),
funcrulesA ∈ wp(S).

We assume dom(secrulesA) ⊆ ProvidesA and funcrulesA ⊆ CallsA.

Thus, ProvidesA is a declared set of the services that applet A supplies.
CallsA is a declared set of services that applet A can invoke. It is a task of
the ClaimChecker to ensure that ProvidesA and CallsA are declared truthfully.

secrulesA is a set of authorizations granted by A. If a pair (s, B) is in
secrulesA, then B can call s without limitations. funcrulesA declares function-
ally necessary services.

The security policy in our approach is a collection of the contracts of all
applets installed on the card.

Definition 3.2 (Platform Security Policy) Security policy of the plat-
form P consists of the contracts of all the applications A on the platform:
P={ContractA}∀A∈A

Thus, when an update happens on the platform (an application is in-
stalled, updated or removed) the security policy P needs to be updated
correspondingly.

3.2.1 Received and Internal Objects

The definition 3.1 describes a formal model of an application contract. In
the current report we will mainly discuss representation ContractInt of this
model explored on the card and transformation from received contract object
ContractExt into internal object ContractInt.

We denote fields of the contracts objects as Provides, Calls, secrules and
funcrules, as these notations are compatible with the Contract model. Thus
we will refer to these fields as, for example, ContractInt.Provides or
ContractExt.Secrules. When the object (ContractExt or ContractInt) will be
obvious from the context, we will use simpler notations Provides or secrules.

10

The security policy object on the card will be denoted as Policy. As we
will explain further it also has fields Provides, Calls, secrules and funcrules.
We will refer to these fields as Policy.Provides or Policy.Secrules. If the context
will be self-evident, we may as well refer to them just as Provides or secrules.

We expect that ContractExtA of an application A will be received by the
card during A’s loading process. Thus ContractExtA is a Java object packed
together with the bytecode of A (CAP file).

For the purposes of this report it is sufficient to discuss contracts delivered
on the card as classes of the applets. We reference the contract fields as, for
example, AppletName.ContractExt.Calls. Concrete implementation though
will require some more elaboration on the contracts.

It is known that all the services are listed in the export file of A. They
are represented there as Unicode strings in the UTF-8 format and also their
tokens are present. It is expected that if some other application B will have a
call to some of these services, then B needs to know the services’ names and
also to import A’s export file. Application identifier (AID) is also listed in the
export file. In the CAP file only the tokens for services are present. Thus, as
the ClaimChecker has to verify compliance of the application bytecode with its
contract, we have chosen to use tokens for service naming in the ContractExt.
We recall, that each service can be uniquely identified by a tuple 〈AID, I, t〉,
where AID is the package AID and I and t are the Export file tokens for the
interface and the method.

Example 1 Our running example is a multi-application smart card described
in [2]. We assume two stakeholders on the platform: Bank and Transport.
Two applications belong to Bank, these are EMV and ePurse. Application
jTicket belongs to Transport.

We assign the following identifiers to the packages and applications on
the card:

• EMV package AID: [0x01, 0x01, 0x01, 0x01, 0x01],

• ePurse package AID: [0x01, 0x01, 0x01, 0x01, 0x01, 0x02],

• Transport package AID: [0x02, 0x02, 0x02, 0x02, 0x02],

Application EMV has one service transaction, ePurse has one service payment
and jTicket has no services. Application jTicket provides to the card holder

11

certain number of tickets for public transportation. Tickets can be bought us-
ing ePurse, and the act of ticket purchasing requires the invocation of service
ePurse.payment by jTicket.

The Bank owner allows data exchanges between applets EMV and ePurse,
and between ePurse and jTicket, but not between EMV and jTicket. On the
other hand, Transport owner not only allows data exchange between ePurse
and jTicket, but she actually needs this exchange, otherwise her application
is useless.

4 ContractExt Object Received with an Applet

Further we provide details of ContractExt Java object (for each ContractExt
field), which for now we describe as a subclass of the applet object. We
assume that all the tables are of dynamic (not fixed) size.

4.1 ContractExt Fields in the Applet Code

ContractExt.Provides Field.

We represent the Provides set as a byte array. Each cell contains a token that
corresponds to the provided service. We note that for the ProvidesA set AID
of the application A is listed in the Header component of the CAP file and
needs to be extracted from there for further usage.

Example 2 Application ePurse provides only one service payment and it will
have token 〈0, 0〉 in the export file (tokens of the interface and the method).
Therefore, ePurse.ContractExt.Provides = [0x00, 0x00].

Application jTicket does not provide any services and its jTicket.ContractExt.Provides
object will be empty.

ContractExt.Calls Field.

The set Calls needs to contain all the called services. For each of the called
services we have the server’s package AID and the service tokens. Thus the
identifier of the method composed in this way is unique. We can define
method identifier as a 18 bytes array (filling empty bytes with zeros). Below
is a table that represents the Calls set.

12

Table 1: ContractExt.Calls
Callee Package AID: byte array Callee Method ID:tokens

Example 3 Application jTicket calls service payment in ePurse application.
ePurse has package AID [0x01, 0x01, 0x01, 0x01, 0x01, 0x02] and payment has
token 〈0x00, 0x00〉. Therefore, jTicket.ContractExt.Calls will look as follows:

Callee Package AID: byte array Callee Method ID:tokens
[0x01, 0x01, 0x01, 0x01, 0x01, 0x02] 0x00, 0x00

ContractExt.Secrules Field.

The secrulesA authorization set needs to contain for all the services of applet
A the set of applets that are authorized to call it (in terms of package AIDs).
But for the implementation purposes it’s better that we give for each applet
in the system which services it may call. Thus, later the search in the policy
object will be faster. The secrules table is below.

Caller Package AID: byte array Callee Method ID: tokens
Application that wants to use a method

Example 4 Application ePurse allows jTicket to use its service payment.
jTicket has AID [0x02, 0x02, 0x02, 0x02, 0x02, 0x01] and payment has token
〈0x00, 0x00〉. Therefore, ePurse.ContractExt.Secrules will be represented as
following table:

Caller Package AID: byte array Callee Method ID: tokens
[0x02, 0x02, 0x02, 0x02, 0x02, 0x01] 0x00, 0x00

ContractExt.Funcrules Field.

The funcrulesA contain all the necessary services for applet A. As the funcrules
are subset of Calls the representation for them are the same.

13

5 Mapping

Every applet presented on the card has a unique AID which is too big to
operate with frequently on a smart card. As our main goal is to speed up
the computations and to reduce the amount of memory needed, we will use
the bit vectors. The main assumption required is limitation of the number
of applets loaded on the system.

We expect that each card can contain at most 8 loaded packages. This
is justified by modern multi-application smart cards, as they usually contain
2-3 applets. Each applet can contain at most 8 services. Thus the set of
provided services can be written using just 1 byte per applet. If the system
is bigger than 8 loaded packages or some applet wants to provide more than
8 services, the model can be scaled at run-time. Scaling process will be
discusses in Section 9. Our representation also eases updates of the system.
If some applet is deleted we will not need to restructure the policy.

Thus once the ContractExt object is received by the card it will be trans-
formed. Further we provide details of mapping for AIDs and services into
our internal representation.

5.1 Mapping Object

All the mapping information is stored in a Java object Mapping on the card.
The information about the mapping of AIDs is stored in the field Applications

of the object Mapping. Applications object is a fixed length Java array of byte
arrays. Elements of Applications array are AIDs. Its structure is illustrated
in table below:

AID:byte array Internal ID:byte

Second column is optional and unnecessary for the implementation since
elements of Java arrays are numbered by default. It is provided in the report
for better understanding of the structures described. Thus, in total for 8
applications on the card Applications will require 136 bytes.

Example 5 If there are 3 applets: EMV, ePurse, jTicket installed on the
card, the Mapping.Applications object will have the following structure:

14

AID:byte array Internal ID:byte
[0x01, 0x01, 0x01, 0x01, 0x01, 0x01] 0
[0x01, 0x01, 0x01, 0x01, 0x01, 0x02] 1
[0x02, 0x02, 0x02, 0x02, 0x02, 0x01] 2

null 3
null 4
null 5
null 6
null 7

For every application we define a mapping table for its services. For every
services in the application we assign a number in a range from 0 to 7. Given
that all the applications are now numbered, we store the information about
mapping of services in the field Services of the object Mapping. Services
is a fixed size Java array of byte arrays. For every application from the
Applications objects there is an array of services it provides. Therefore, an
element of the Services object is structured as follows:

Method ID:token Internal Method ID:byte

Again, the column ”Internal Method ID” is left for the sake of better
illustration and is unnecessary for the implementation. The structure of the
Services object is illustrated in the table below:

Table 2: Services object on the card

Service 0: token Service 1:token . . . Service 7:token
Application 0 . . .
Application 1 . . .

.
Application 7 . . .

Total size of Services is 8*8*2 = 128.

15

Example 6 Application EMV has one service transaction that has the token
0x00 and therefore, will be assigned the number 0. Application ePurse has
one service payment that has the token 0x00 and therefore, will be assigned
the number 0.

For the card with applications EMV, ePurse and jTicket loaded, the Mapping.Services
object will have the structure provided in the table 3

Table 3: Example of Mapping.Services object

Service 0 S. 1 S. 2 S. 3 S.4 S. 5 S. 6 S. 7
Application 0 0x01 null null null null null null null
Application 1 0x01 null null null null null null null
Application 2 null null null null null null null null
Application 3 null null null null null null null null
Application 4 null null null null null null null null
Application 5 null null null null null null null null
Application 6 null null null null null null null null
Application 7 null null null null null null null null

5.2 WishListServices Object

If during the installation of an applet there are services mentioned in Calls
that are not on the card, we put them in the array WishListServices.

Callee Package AID: byte
array

Callee Method ID: tokens Caller Internal ID: byte

Application that contains
the desired method, but
not on the card yet

Application on the card
that wants to use the
method

Potentially there can be any number of wished services. For 8 wished services
the WishListServices object will require 8*(17+3+17) = 296 bytes.

16

5.3 MayCallApplets Object

If in Sec.Rules applet allows the access for applets that are not on the card
at the moment, we put them in the array MayCallApplets.

Caller Application ID Callee Application ID Callee Method ID

Again, there can be any number of authorizations for application not yet on
the card. For 16 such authorizations the MayCallApplets object will require
16*(17+17+3) = 592.

When application is being installed, we check the tables and update the
card policy (if needed). If applet (service) is removed, and there are some
applications having it in secrules(Calls), then we update the tables. Policy
update is specified in the section 8.

In total, the Mapping object will require 1276 bytes (under assumption of
the specified bounds on the MayCallApplets and WishListServices objects).

6 Internal representation of Contract and Pol-

icy Objects on the Card

For every application installed on the card, a ContractExt object that comes
with the application is transformed into a new Java object ContractInt. Fur-
ther we provide details for each of the ContractInt fields. Then we proceed
with specification of the security policy object Policy on the card. ContractInt
object will be incorporated into the Policy object and will be used in the
checks of the PolicyChecker algorithms.

6.1 ContractInt Fields

ContractInt.Funcrules and ContractInt.Calls Bit Representation.

The ContractInt.Calls and the ContractInt.Funcrules are Java byte arrays. Ev-
ery element of these arrays is a bit array. Each bit is a flag for a service that
application calls.

Example 7 For application jTicket the ContractInt.Funcrules object will have
the following structure:
[00000000, 00000001, null, null, null, null, null, null]

17

ContractInt.Provides Bit Representation.

The Provides is represented on the card as a bit array with 1 set on i-th place
if service number i is provided. Internal number for services is defined during
this service installation (or appearance in someone’s Calls set).

6.2 ContractInt.Secrules Bit Representation

Representation of the secrules is similar to the sets previously described.
secrules is a byte array, where each byte represents an application. The bit
number j in the byte ContractInt.Secrules[i] is set to 1 if the applet grants to
applet i an access to the service j.

Example 8 For the ePurse application the ContractInt.Secrules object will
have the following structure:
[00000001, 00000001, 00000001, null, null, null, null, null]

6.3 Transformation of Received ContractExt object to
Internal ContractInt

Both representations consist of 4 objects: Provides, Calls, secrulesand funcrules.
We will show how each of them transforms, when arrives on the card.

Transformation of Provides.

Object ContractExt.Provides is an array of bytes, where each byte is a name of
service it provides. When the applet arrives on the card each method name
is mapped to an internal byte number in a range from 0 to 7. Let the arrived
application have internal number a. The following algorithm transforms an
initial ContractExt.Provides array to an internal object ContractInt.Provides:

for i := 0 to 7 do
i f (Mapping . S e r v i c e s [a] [i] != null)

ContractInt . Provides = ContractInt . Provides | (1<< i) ;

Transformation of ContractExt.Funcrules and ContractExt.Calls into In-
ternal Objects.

1. Map AIDs and method IDs of initial objects to the internal represen-
tation.

18

2. For every row in the initial object set a corresponding bit to 1 in the
internal object.

Transformation of ContractExt.Secrules.

1. Map AIDs and method IDs of initial objects to the internal represen-
tation.

2. For every row in the initial object set a corresponding bit to 1 in the
internal object.

In total, an internal contract object ContractInt will require 25 bytes.

6.4 Policy Object Policy on the Card

Before introducing algorithms for policy maintenance we will describe how
the internal policy object Policy actually looks like.

Policy object on the card is a static Java object Policy which has 4 fields:
Provides, Calls, secrules and funcrules. These fields unify the corresponding
sets of each installed application contract.

Although Java Card 2.2.2 does not support multidimensional arrays, some
properties are represented as 2-dimensional arrays. Every array is of fixed
size and can be easily transformed to 1-dimensional array during the imple-
mentation process.

Policy.Secrules Field.

Policy.Secrules is a Java array of byte arrays. Elements of Policy.Secrules are
the ContractInt.Secrules objects collected of all the applications installed on
the card.

Thus Policy.Secrules has the following structure:

Caller Application 0 Caller Application 1 . . .
Callee Application 0 . . . 11000100
Callee Application 1 00100101

. . .

Application j can use 0..7 services of each application i.

19

Policy.Funcrules and Policy.Calls Fields.

Policy.Funcrules and Policy.Calls are Java arrays of byte arrays. Elements of
Policy.Funcrules and Policy.Calls are the ContractInt.Funcrules and the ContractInt.Calls
objects collected from all the applications installed on the card.

Policy.Funcrules and Policy.Calls have the following structure:

Callee Application 0 Callee Application 1 . . .
Caller Application 0 . . . 11000100
Caller Application 1 00100101

. . .

Application i can call 0..7 services in each application j.

Policy.Provides Field.

Policy.Provides is a Java array of byte arrays. Elements of Policy.Provides are
the ContractInt.Provides objects collected of all the applications installed on
the card.

Policy.Provides has the following structure:

Application Services bit array

Totally, the Policy object will require 200 bytes.

7 The PolicyChecker Algorithms

We proceed as follows. For each type of the update first we recall the algo-
rithms defined for the PolicyChecker in the deliverables D6.3 and D6.4 [5, 4].
Then we provide listings of the PolicyChecker algorithms modified for the
proposed on-card models.

7.1 The PolicyChecker for a New Application

Definition 7.1 (Policy Checker for New Applet) An Optimized PolicyChecker
(or just PolicyChecker) is an algorithm for verification of new application B,
that returns true iff the conditions below are true for all applications A ∈ A
on the platform:

20

1. B ∈ secrulesA(ProvidesA ∩ CallsB);

2. funcrulesB ⊆
⋃

A∈A
ProvidesA;

3. A ∈ secrulesB(ProvidesB ∩ CallsA);

The algorithm can be implemented as a sequence of procedures, each of
which checks one of the above mentioned conditions. Let application A have
a mapping number a and new application B have a mapping number b. We
remind that for the PolicyChecker algorithms we will need to use Policy and
ContractIntB objects.

Let us also define iCheck as a boolean variable such that the algorithm
returns true if iCheck == 1 and false otherwise. It has value 1 by initial-
ization.

Check B ∈ sec.rulesA(ProvidesA ∩ CallsB).

The procedure must check that for every application A on the card, all the
services, such that application B calls and A provides, are allowed for B to
call. In other words, for every application A on the card the procedure must
do the following:

1. Find the set S1 of services that A provides and B calls from A.

2. Find the set S2 of services that A allows B to call.

3. If S1 6= S2 than return false.

The procedure can be implemented as follows:

Listing 1: PolicyChecker for a New Application.1

for a := 0 to 7 do
i f ((byte) Po l i cy . s e c r u l e s [a] [b] & ((byte) Po l i cy . Provides [a]
& (byte) ContractInt . Ca l l s [a]) !=
(byte) Po l i cy . Provides [a] & (byte) ContractInt . Ca l l s [a]))

then iCheck := 0 ;

21

Check funcrulesB ⊆
⋃
A

ProvidesA.

funcrulesB = ContractInt.Funcrules looks like [00011000, ..., 00100010] (1 byte
per application, bit is a flag for service). ProvidesA = Policy.Provides[a] looks
like: 00011111(bit is a flag for service).

The procedure that checks the condition can be implemented as follows:

Listing 2: PolicyChecker for a New Application.2

for i := 0 to 7 do
i f (ContractInt . Funcrules [i] & Po l i cy . Provides [i] !=

ContractInt . Funcrules [i])
then iCheck := 0 ;

Check A ∈ secrulesB(ProvidesB ∩ CallsA).

ProvidesB = ContractInt.ProvidesB is a bit field. CallsA is a cell in the table
Policy.Calls.

Table 4: Policy.Calls table

Calls in Application 0 Calls in Application 1 . . .
Application 0 00000000 00000001 . . .
Application 1 00100100 00110001 . . .

.

7.2 The PolicyChecker for Removal of an Applet

Definition 7.2 (Policy Checker for Removal of an Applet) A PolicyChecker
for verification of security of the platform after removal of an application
B ∈ A is an algorithm , that returns true iff the conditions below are true
for all applications A ∈ A, A 6= B on the platform:

• ProvidesB ∩ {
⋃

A∈A
funcrulesA} = ∅; .

22

ProvidesB ∩
{⋃

funcrulesA
}
.

Listing 3: The PolicyChecker for Removal of an Applet

for a := 0 to 7 do
i f ((Po l i cy . FuncRules [a] [b] & Po l i cy . Provides [b]) != 0)
then iCheck := 0 ;

7.3 The PolicyChecker for Update of an Applet

Definition 7.3 (Policy Checker for Updated Applet) A PolicyCheckerfor
verification of update in the application B ∈ A is an algorithm, that returns
true iff the conditions below are true for all applications A ∈ A, A 6= B on
the platform:

1. Addition of a service s to ProvidesB: A ∈ sec.rulesB(s ∩ CallsA);

2. Removal of a service s from ProvidesB: s /∈
⋃

A∈A
funcrulesA;

3. Addition of a service s to CallsB: B ∈ sec.rulesA(ProvidesA ∩ s);

4. Removal of a service s from CallsB: return true;

5. Addition of an authorization rule for some application C to a service s
of B in secrulesB: return true;

6. Removal of an authorization rule for some application C to a service s
of B from secrulesB: s /∈ CallsC;

7. Addition of a service s to funcrulesB: s ∈
⋃

A∈A
ProvidesA

8. Removal of a service s from funcrulesB: return true;

Addition of a service s to ProvidesB.

Check: A ∈ secrulesB(s ∩ CallsA)

for a:= 0 to 7 do
i f (Po l i cy . Ca l l s [a] [b] & (1 << s) != 0)
then i f (Po l i cy . S e c r u l e s [b] [a] & (1 << s) != 0)

then iCheck := 0 ;

23

Removal of a service s from ProvidesB.

Check: s /∈
⋃

A funcrulesA

for a := 0 to 7 do
i f ((Po l i cy . Funcrules [a] [b] & (1 << s) != 0)
then iCheck := 0 ;

Addition of a service s to CallsB.

Check: B ∈ secrulesA(ProvidesA ∩ s);

i f (Po l i cy . Provides [a] & (1 << s) != 0)
then i f (Po l i cy . S e c r u l e s [a] [b] & (1 << s) != 0)

then iCheck := 0 ;

Removal of a service s from CallsB.

This update does not break security of a platform, thus no check is performed.

Addition of an authorization rule for some application C to a ser-
vice s of B in secrulesB.

This update does not break security of a platform, thus no check is performed.

Removal of an authorization rule for some application C to a service
s of B in secrulesB.

Check: S /∈ CallsC

i f (Po l i cy . Ca l l s [c] [b] & (1 << s) != 0)
then iCheck := 0 ;

Addition of a service s to funcrulesB.

Check: s ∈
⋃

A∈A ProvidesA
We don’t have standalone service s in the model, it’s always in some

application A: A.s. So we need to check only that A provides that service.

i f (Po l i cy . Provides [a] & (1 << s) == 0)
then iCheck := 0 ;

24

Removal of a service s from funcrulesB.

This update does not break functionality of a platform, thus no check is
performed.

8 Policy Update

In this section we provide listings of algorithms that are necessary for Policy
object update. These algorithms are specified separately for each kind of
update (scaling necessity is not expected).

8.1 New Application

Following is the script of the algorithm for installation of a new application
B.

1. Make a copy of the objects Policy, WishListServices, MayCallApplets and
Mapping.

2. Associate a number with a new application: iterate through applica-
tions mapping table Mapping.Applications and find the first empty spot.

3. Map methods: simply associate with numbers in natural order 0..M.

4. Convert ContractExtB object on the applet to the card contract for-
mat ContractIntB (using the mapping tables Mapping.Applications and
Mapping.Services)

(a) If there are services mentioned in ContractExt.CallsB that are not
on the card, update the WishListServices object.

(b) If there are applications mentioned in ContractExt.SecrulesB that
are not on the card, update MayCallApplets object.

5. Search in WishListServices and MayCallApplets for AID of B, update
Policy object on the card.

6. Run the PolicyChecker algorithms for new application installation.

25

(a) If the PolicyChecker returns false, restore Policy, WishListServices,
MayCallApplets and Mapping from the backup copies, stop instal-
lation.

(b) If Policy Checker returns true, update Policy object on the card:
fill in corresponding rows in Policy.Calls, Policy.Provides, Policy.Secrules,
Policy.Funcrules tables), delete copied objects, proceed with in-
stallation.

8.2 Removal of an Application

Further we provide a script of an algorithm for removal of already installed
application B.

1. Upon receiving a request for removal of an application B, find a map-
ping number b of this applet in the Mapping.Applications.

2. Run corresponding PolicyChecker algorithm. If the PolicyChecker re-
turns false, stop removal.

3. Search in Policy.Secrules for occurrences of application B authorization
by some application. If found, for every occurrence do:

(a) Delete occurrence from the Policy.Secrules object;

(b) Add information about authorization to MayCallApplets object;

4. Search in Policy.Calls for occurrences of calls to services of B. If found,
for every occurrence do:

(a) Delete occurrence from Policy.Calls object;

(b) Add information about potential call to WishListServices object;

5. Delete rows of the applet B from Policy.Provides, Policy.Calls, Policy.Secrules,
Policy.Funcrules objects;

6. Delete rows of the applet B from Mapping.Applications, Mapping.Services
objects.

26

8.3 Update of an Existing Application

Below we provide a specification of the algorithm for an update of existing
application B. We consider an atomic updates now, for a sequence of atomic
updates all corresponding checks need to be incorporated.

0. Upon receiving a request for update of an application B, find a mapping
number b of this applet in the Mapping.Applications. If b is not found,
then stop update.

Then, depending on what the case is, do one of the following:

1. Addition of a service s to ProvidesB

(a) Make a copy object of Policy, WishListServices and Mapping.

(b) Search in the WishListServices and MayCallApplets objects for an
occurrence of s and update the Policy object if an occurrence is
found;

(c) Add the service s to Mapping.Services in the first available cell in
the row Mapping.Services[b];

(d) Run corresponding PolicyChecker algorithm. If PolicyChecker re-
turns false, restore objects from copies and stop update.

(e) Add the internal ID of s to Policy.Provides[b] object;

2. Removal of a service s from ProvidesB

(a) Run corresponding PolicyChecker algorithm. If PolicyChecker re-
turns false, stop update.

(b) Clear cell s in Policy.Provides[b];

(c) Search Policy.Calls for occurrence. If found, for every occurrence
do:

i. Delete occurrence from Policy.Calls;

ii. Add to related information to WishListServices object;

(d) Clear cell s in Mapping.Services object;

3. Addition of a service A.s to CallsB

27

(a) If the applet A is present in Mapping.Applications under number [a]
and s is present in Mapping.Services[a] under number [s], then run
corresponding PolicyChecker algorithm. If PolicyChecker returns
false, stop update. If PolicyChecker returns true, add internal
ID of s to Policy.Calls[b];

(b) If there is no A on the card or s is not in ProvidesA, then add A.s
to WishListServices.

4. Removal of a service A.s from CallsB:

(a) If the applet A is present in Mapping.Applications under number
[a] and is present in Mapping.Services[a] under number [s], then
clear bit s in Policy.Calls[b][a].

(b) If there is no applet A on the card or A does not provide service
s, then search WishListServices for occurrences of A.s and delete
if found.

5. Addition of an authorization rule for some application C to a service s
of B in secrulesB:

(a) If s is not present in Policy.Provides[b], then add the correspondent
rule to MayCallAppletsand stop update;

(b) If the applet C is present in Mapping.Applications, then set the bit
s in Policy.Secrules[b][c] to 1;

(c) If the applet C is not on the card, add the correspondent rule to
MayCallApplets;

6. Removal of an authorization rule for some application C to a service s
of B from secrulesB:

(a) If the applet C is not on the card, search MayCallApplets for oc-
currences of B.s and remove if found.

(b) If the applet C is present on the card, then run corresponding
PolicyChecker algorithm. If PolicyChecker returns false, stop up-
date;

(c) Set the bit s in Policy.Secrules[b][c] to 0;

7. Addition of a service A.s to funcrulesB:

28

(a) If the applet A is present in Mapping.Applications under number
[a] and s is listed in Policy.Provides[a], then run corresponding
PolicyChecker algorithm. If PolicyChecker returns false, stop up-
date;

(b) Add internal ID of s to Policy.Funcrules[b];

8. Removal of a service s from funcrulesB:

(a) Clear cell in Policy.Funcrules[b];

9 Scaling and Analysis of the Model

If more than 8 applets arrive or an applet provides more than 8 services,
the model is scaled at runtime by doubling the correspondent data objects.
This creates a limit of 16 for a number of running applications or a number
of services per applet. If at some point it will not be enough, the model is
scaled again.

9.1 Analysis of costs of the algorithms

We define the following constants for the general case:

• N is the current size of the Mapping.Applications object (the maximum
of active applications);

• M is the current maximum of the number of services per application;

• P is the maximum number of applications one applet can call,
P ∼ O(N);

• R is the maximum number of applications one applet can allow access
to, R ∼ O(N);

• U is the maximum size of MayCallApplets, constant;

• W is the maximum size of WishListServices, constant.

These constants define complexity bounds for our algorithms. Further
we provide a set of tables with analyzes of algorithmic costs for each type of
update. We also investigate an average case example.

29

• Number of operations needed to install new application is provided in
the Table 5. These estimates are derived from a simple refinement of
the high level algorithms used in Sections 8.1, 6.3;

• Number of operations necessary for removal of an application is pro-
vided in the Table 6. These estimates are derived from a simple refine-
ment of the high level algorithms used in Sections 8.2;

• Number of operations for each atomic update of an application is pro-
vided in the Table 7.These estimates are derived from a simple refine-
ment of the high level algorithms used in Sections 8.3;

• For the low complexity example, when N = 8, M = 8, P = 16, R = 16,
U = 50, W = 50, number of operations for install, delete and update
of an application is provided in the Table 8.

9.2 Intuitive explanation of costs of the algorithms

In this section we try to explain the results provided in the Table 8 for the
low complexity case.

Removal of a service s from ProvidesB requires more operations than
adding a service s to ProvidesB because, when removing a service, we need
to check all contracts for occurrences of s and for every occurrence perform
a search and update of WishListServices. When adding a service, we need to
perform a search in WishListServices just one time.

Addition of a service A.s to CallsB requires the number of operations of the
same order of magnitude as removal, because both algorithms perform sim-
ilar searches in Mapping.Applications, Mapping.Services and MayCallApplets
objects. Addition of a service to CallsB requires also an execution of the
PolicyChecker algorithm, that is not executed when a service is being re-
moved, but its cost is significantly less than the cost of the searches in
Mapping.Applications, Mapping.Services and MayCallApplets objects.

Removal of a service s from ProvidesB requires significantly more oper-
ations than removal of a service A.s from CallsB, because the removal of
a service from ProvidesB means actually removing a service from the card,
which may cause functionality conflicts with other applications and thus re-
quires execution of a few checks. Removal of a service from CallsB can cause
no conflicts with other applications, thus it is quick.

30

Table 5: Costs of the algorithm for the new application installation

Operation Maximum number of operations Complexity

Mapping of the AID N O(N)
Mapping of services IDs M O(M)

Converting ContractExt to Contract:
FuncRules ((N − 1)×M)(N + M + 3) O(MN2 + M2M)

Calls (incl. update of
WishListServices)

(P ×M)(N + M + 3) + W O(MN2 + M2N)

SecRules (incl. update of
MayCallApplets)

(R×M)(N + 3) + U O(MN2)

Provides M × 4 O(M)

Searching in U × (N + M + 3)+
WishListServices and
MayCallApplets for the
AID and updating Policy

+W × (M + N + 3) O(M + N)

Verifying Contract with
PolicyChecker

N × 4 + N × 2 + N × 4 O(N)

Overall complexity: O(MN2 + M2N)

Addition of an authorization rule for some application C to a service s of
B in secrulesB requires the number of operations of the same order of mag-
nitude as removal of an authorization rule, because both algorithms perform
similar searches in Mapping.Applications and MayCallApplets objects. Re-
moval of an authorization rule requires also an execution of the PolicyChecker
algorithm, that is not executed when an authorization rule is being added, its
cost is significantly less than the cost of the searches in Mapping.Applications
and MayCallApplets objects.

References

[1] R. Akram, K. Markantonikas, and K. Mayes. A paradigm shift in the
smart card ownership model. In Proc. of ICCSA 2010, volume 6019 of

31

Table 6: Costs of the algorithm for the removal of an application

Operation Maximum number of operations Complexity

Run PolicyChecker N × 2 O(N)
Remove links in
Policy.SecRules & update
MayCallApplets

N × (M × (3M + U) + 2) O(M2N))

Remove links in
Policy.Calls & update
WishListServices

N × (M × (3M + W) + 2) O(M2N)

Clear Policy.Provides,
Policy.Calls, Policy.SecRules,
Policy.FuncRules correspon-
dent rows

1 + N × 3 O(N)

Clear references in
Mapping.Services and
Mapping.Applications

M + 1 O(M)

Overall complexity: O(M2N)

LNCS. SV, 2010.

[2] A. Armenteros, B. Chetali, M. Felici, V. Meduri, Q-H. Nguyen,
A. Tedeschi, F. Paci, and E. Chiarani. D1.1 Description of the scenar-
ios and their requirements. SecureChange EU project public deliverable,
www.securechange.eu, 2010.

[3] Z. Chen. Java Card Technology for Smart Cards: Architecture and Pro-
grammer’s Guide. Addison-Wesley Longman Publishing Co., Inc., 2000.

[4] A. Fontaine, O. Gadyatskaya, F. Massacci, J. Bernet, F. Bouquet, and
Q.H. Nguyen. D6.4 impact analysis of new security requirements. Se-
cureChange EU project public deliverable, www.securechange.eu, 2010.

[5] A. Fontaine, S. Hym, I. Simplot-Ryl, O. Gadyatskaya, F. Massacci,
F. Paci, J. Jurgens, and M. Ochoa. D6.3 compositional technique to
verify adaptive security at loading time on device. SecureChange EU
project public deliverable, www.securechange.eu, 2010.

32

[6] P. Girard. Which security policy for multiplication smart cards? In
USENIX Workshop on Smartcard Technology. USENIX Association,
1999.

[7] Sun Microsystems. Application programming interface specification.
Java CardTM platform, version 2.2.2. Specification 2.2.2, Sun Microsys-
tems, 2006.

[8] Sun Microsystems. Runtime environment specification. Java CardTM

platform, version 2.2.2. Specification 2.2.2, Sun Microsystems, 2006.

[9] Sun Microsystems. Runtime environment specification. Java CardTM

platform, version 2.2.2. Specification 2.2.2., Sun Microsystems, 2006.

[10] Sun Microsystems. Virtual machine specification. Java CardTM plat-
form, version 2.2.2. Specification 2.2.2, Sun Microsystems, 2006.

[11] Oracle. Java Card platform: A week in the life of Jack Link,
http://www.oracle.com/technetwork/java/javacard/week-140205.html.
Available on the web, Retrieved on Febr. 2011.

[12] D. Sauveron. Multiapplication smart card: Towards an open smart
card? ISTR, 2009.

33

Table 7: Costs of the algorithms for the update of an application

Type of update PolicyChecker Policy update Complexity
algorithm algorithm

Addition of a service s to
ProvidesB

N × 7 W + M + 3 O(M + N)

Removal of a service s from
ProvidesB

N × 4 4 + N × (W + 8) + 1 O(N)

Addition of a service A.s to
CallsB

7 M + N + W + 3 O(M + N)

Removal of a service A.s
from CallsB

0 M + N + W + 4 O(M + N)

Addition of an authoriza-
tion rule for some applica-
tion C to a service s of B in
secrulesB

0 N + U + 3 O(N)

Removal of an authorization
rule for some application C
to a service s of B from
secrulesB

4 N + U + 4 O(N)

Addition of a service A.s to
funcrulesB

4 N + M + 3 O(M + N)

Removal of a service A.s
from funcrulesB

0 4 O(1)

Overall complexity: O(M + N)

34

Table 8: Costs of the algorithms for the low complexity case
Procedure Number of operations

Install new application 7032
Remove an application 9554
Add a service s to ProvidesB 117
Remove a service s from
ProvidesB

508

Add a service A.s to CallsB 76
Remove a service A.s from
CallsB

70

Add of an authorization
rule for some application
C to a service s of B in
secrulesB

61

Remove an authorization
rule for some application C
to a service s of B from
secrulesB

66

Add a service A.s to
funcrulesB

23

Remove a service A.s from
funcrulesB

4

35

