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Introduction

® Integration of distributed business process is an emerging problem. . .
# participants from different organizations
# heterogeneity among services
# autonomous evolution of processes

® Web Services (WS) offer the technology for business process integration:
# languages for WS interoperability (SOAP, WSDL, UDDI,...)
s In particular BPEL4WS (Business Process Execution Language)
# tools for the design and the execution of WS
® Nevertheless, there 1s a need for advanced techniques for supporting the most
complex aspects of business process integration:
# simulation and (formal) verification
# monitoring and diagnosis
# (automated) support for composition and evolution
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Outline

® Introduction to WS and related problems

® The need for business requirements

® A methodology for defining business requirements and for deriving executable code
® Verification of Business Requirements/Processes

® The tool supporting the methodology using SPIN

® Some experimental results

® Conclusions and Future works

SEFM 2004 26 - 30 September, 2004 Beijing - China -p-3



Web Services

® Several web services participate to a business interaction.
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WS: Executable Processes...

® WS languages (BPEL4WS) offers a set of core concepts for process description
that can be used for:
# the definition and the execution of the internal business process of a participant to
a business interaction.
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WS: ... and Interaction Protocols

® WS languages (e.g. BPEL4WS) offers a set of core concepts for process
description that can be used for:
# the definition and the execution of the internal business process of a participant to
a business interaction.
# the description and publication of the external business protocol that define the
interaction behavior of a participant.
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Verification for BPEL4WS

BPEL4AWS allows for several forms of basic verification tasks:
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Verification for BPEL4WS

BPEL4WS allows for several forms of basic verification tasks:
® At design time:
» [s the internal BPEL4WS process specification consistent with the published
protocol interfaces?
# Given two or more BPEL4WS interfaces aiming to communicate, do they define
a correct (e.g., deadlock free) protocol?
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Verification for BPEL4WS

BPEL4WS allows for several forms of basic verification tasks:
® At design time:

» [s the internal BPEL4WS process specification consistent with the published
protocol interfaces?

# Given two or more BPEL4WS interfaces aiming to communicate, do they define
a correct (e.g., deadlock free) protocol?
$ At execution time:
® Do the other participants respect the protocol interface that they have published?
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Verification for BPEL4WS

BPEL4WS allows for several forms of basic verification tasks:
® At design time:

» [s the internal BPEL4WS process specification consistent with the published
protocol interfaces?

# Given two or more BPEL4WS interfaces aiming to communicate, do they define
a correct (e.g., deadlock free) protocol?
$ At execution time:
® Do the other participants respect the protocol interface that they have published?

In order to do advanced verification based on specific properties on the behavior, a
requirements language is needed.
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Tropos: A Language for Business Requirements
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Tropos: A Language for Business Requirements

® Tropos is requirements-driven:

»# focus on early phases of requirements analysis, aiming to the understanding of the
operational environment of the software system
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Tropos: A Language for Business Requirements

® Tropos is requirements-driven:

»# focus on early phases of requirements analysis, aiming to the understanding of the
operational environment of the software system

® Tropos is agent-oriented:

# agents and related notions, such as goals and plans, are used in all phases of
software development

SEFM 2004 26 - 30 September, 2004 Beijing - China -p-8



Tropos: A Language for Business Requirements

® Tropos is requirements-driven:

»# focus on early phases of requirements analysis, aiming to the understanding of the
operational environment of the software system

® Tropos is agent-oriented:

# agents and related notions, such as goals and plans, are used in all phases of
software development

® Tropos has been applied in several case studies on information systems and
agent-based software systems

Ve P
), IFrst SEFM 2004 26 - 30 September, 2004  Beijing - China -p.8



Tropos: A Language for Business Requirements

® Tropos is requirements-driven:

»# focus on early phases of requirements analysis, aiming to the understanding of the
operational environment of the software system
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# agents and related notions, such as goals and plans, are used in all phases of
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Tropos: A Language for Business Requirements

® Tropos is requirements-driven:

»# focus on early phases of requirements analysis, aiming to the understanding of the
operational environment of the software system

® Tropos is agent-oriented:

# agents and related notions, such as goals and plans, are used in all phases of
software development

® Tropos has been applied in several case studies on information systems and
agent-based software systems

® Tropos offers a set of graphical notations and of analysis techniques to support
the designer in the development of the software system

® Formal Tropos extends Tropos with a formal specification language and with
verification based on Model Checking
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Proposed methodology: Tropos4WS$S
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Specifying Business Requirements: Case Study
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Specifying Business Requirements: Case Study
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Specifying Business Requirements: Case Study
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Specifying Business Requirements: Refinement
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Specifying Business Requirements: Refinement
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Specifying Business Requirements: Refinement
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Specifying Business Requirements: Refinement
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Formal Tropos

Formal Tropos:

® first-order linear-time temporal constraints on the evolutions of the model:
# (past and future) temporal operators: Go, Fo, Ho, Oa...
# quantification on class instances: Vc : C..., dc : C...

® focus on creation and fulfillment of activities:
# FT can describe the state diagram defining the behavior of services
# FT can describe the activity diagram defining the interaction of services
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Specifying Business Requirements: Formal Tropos
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Specifying Business Requirements: Formal Tropos
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Goal Dependency ReceiveAssistance Mode maintain
Depender Citizen Dependee HealthcareAgency

Task DoRequest Mode achieve
Super BeingAssisted Actor Citizen
Attribute result : boolean

Task InitialRequest Mode achieve
Super DoRequest Actor Citizen
Creation Trigger 3 dr: DoRequest(super = dr)

Task Providelnformation Mode achieve
Super DoRequest Actor Citizen
Creation Trigger
3 dr: DoRequest(super = dr A
3 ir: InitialRequest(ir.super = dr A Fulfilled (ir)))

Task WaitAnswer Mode achieve
Super DoRequest Actor Citizen
Attribute result : boolean
Creation Trigger
3 dr: DoRequest(super = dr A
3 pi: Providelnformation(pr.super = dr A Fulfilled (pr)))
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Specifying Business Requirements: Formal Tropos
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Goal Dependency ReceiveAssistance Mode maintain
Depender Citizen Dependee HealthcareAgency
Fulfillment condition V dr: DoRequest (
(dr.actor = depender A Fulfilled (dr) A dr.result) —
F 3 rs: ReceiveService (rs.actor = depender A Fulfilled (rs)))

Task DoRequest Mode achieve
Super BeingAssisted Actor Citizen
Attribute result : boolean
Fulfillment definition
3 wa:WaitAnswer(wa.super = self A Fulfilled (wa) A (result <+ wa.result))

Task InitialRequest Mode achieve
Super DoRequest Actor Citizen
Creation Trigger 3 dr: DoRequest(super = dr)

Task Providelnformation Mode achieve
Super DoRequest Actor Citizen
Creation Trigger
3 dr: DoRequest(super = dr A
3 ir: InitialRequest(ir.super = dr A Fulfilled (ir)))
Fulfillment definition
G (V ir: InfoRequest(Received (ir) — 3 i: Info(Sent (i)))

Task WaitAnswer Mode achieve

Super DoRequest Actor Citizen
Attribute result : boolean
Creation Trigger

3 dr: DoRequest(super = dr A

3 pi: Providelnformation(pr.super = dr A Fulfilled (pr)))

Fulfillment definition

3 r:Response(Received (r) A (result <> r.result))
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Formal Analysis of Requirements

Formal Tropos enables for the application of formal analysis.
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Formal Analysis of Requirements

Formal Tropos enables for the application of formal analysis.
® consistency check: “the specification admits valid scenarios”;
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Formal Analysis of Requirements

Formal Tropos enables for the application of formal analysis.
® consistency check: “the specification admits valid scenarios”;

® possibility check: “there is some scenario for the model that respects certain
possibility properties”;
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Formal Analysis of Requirements

Formal Tropos enables for the application of formal analysis.
® consistency check: “the specification admits valid scenarios”;

® possibility check: “there is some scenario for the model that respects certain
possibility properties”;

Possibility P1 /* It is possible to fulfill request */
3 dr: DoRequest (Fulfilled (dr))
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Formal Analysis of Requirements

Formal Tropos enables for the application of formal analysis.
® consistency check: “the specification admits valid scenarios”;

® possibility check: “there is some scenario for the model that respects certain
possibility properties”;

Possibility P1 /* It is possible to fulfill request */
3 dr: DoRequest (Fulfilled (dr))

® assertion validation: “all scenarios for the model respect certain assertion
properties’’;
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Formal Analysis of Requirements

Formal Tropos enables for the application of formal analysis.
® consistency check: “the specification admits valid scenarios”;

® possibility check: “there is some scenario for the model that respects certain
possibility properties”;

Possibility P1 /* It is possible to fulfill request */
3 dr: DoRequest (Fulfilled (dr))

® assertion validation: “all scenarios for the model respect certain assertion
properties’’;

Assertion A1 /* Service is received only upon a positive response */
V c: Citizen (V r: Response (Received (r) A r.receiver = ¢ — — r.result) —
V rs: ReceiveService (rs.actor = ¢ — — Fulfilled (rs)))

Assertion A2 /* If some agency provides assistance and the citizen
requests a service then the request should be fulfilled */
V dr: DoRequest (3 ra: ReceiveAssistance (ra.depender =
dr.actor A Fulfilled (ra) A V r: Request (r.sender =
dr.actor — r.receiver = ra.dependee)) — F Fulfilled (dr))
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Implementing Business Requirements in Promela

Task DoRequest Mode achieve
Super BeingAssisted Actor Citizen
Attribute result : boolean
Fulfillment definition
3 wa:WaitAnswer(wa.super = self A Fulfilled (wa) A
(result <+ wa.result))

Task InitialRequest Mode achieve
Super DoRequest Actor Citizen
Creation Trigger 3 dr: DoRequest(super = dr)

Task Providelnformation Mode achieve
Super DoRequest Actor Citizen
Creation Trigger
3 dr: DoRequest(super = dr A
3 ir: InitialRequest(ir.super = dr A Fulfilled (ir)))
Fulfillment definition
G (V ir: InfoRequest(Received (ir) — 3 i: Info(Sent (i)))

Task WaitAnswer Mode achieve

Super DoRequest Actor Citizen
Attribute result : boolean
Creation Trigger

3 dr: DoRequest(super = dr A

3 pi: Providelnformation(pr.super = dr A Fulfilled (pr)))

Fulfillment definition

3 r:Response(Received (r) A (result <+ r.result))

DoRequest process specification in Promela

bool waitResponse;
atomic{
CREATE ri: InitialRequest;
ri.super = self;
waitResponse = true};
atomic{
CREATEMESSAGE vRequest: Request;
Request_channel ! vRequest};
atomic{
FULFILL ir: InitialRequest [ir.super == self];
CREATE pi: ProvideInformation; pi.super = self};
do::atomic{ waitResponse ->
if::InfoRequest_channel ? vInfoRequest;
CREATEMESSAGE vInfo : Info;
vInfo.reference = vInfoRequest;
Info_channel ! vInfo;
: :Response_channel ? vResponse;
FULFILL pi: ProvideInformation [pi.super==self]
CREATE wa: WaitAnswer; wa.super = self;

waitResponse = false;
self.result = vResponse.result;
fi};
::else break;
od;
atomic{
FULFILL wait: WaitAnswer [wait.super == self];

FULFILL self};
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Implementing Business Requirements in BPEL4WS

Task DoRequest Mode achieve
Super BeingAssisted Actor Citizen
Attribute result : boolean
Fulfillment definition
3 wa:WaitAnswer(wa.super = self A Fulfilled (wa) A
(result <> wa.result))

Task InitialRequest Mode achieve
Super DoRequest Actor Citizen
Creation Trigger 3 dr: DoRequest(super = dr)

Task Providelnformation Mode achieve
Super DoRequest Actor Citizen
Creation Trigger
3 dr: DoRequest(super = dr A
3 ir: InitialRequest(ir.super = dr A Fulfilled (ir)))
Fulfillment definition

G (V ir: InfoRequest(Received (ir) — 3 i: Info(Sent (i)))

Task WaitAnswer Mode achieve
Super DoRequest Actor Citizen
Attribute result : boolean
Creation Trigger

3 dr: DoRequest(super = dr A

3 pi: Providelnformation(pr.super = dr A Fulfilled (pr)))

Fulfillment definition
3 r:Response(Received (r) A (result <> r.result))

<sequence name="DoRequestBody">
<assign name="Initialization"
event="Create ir:InitialRequest (ir.super=self) ">
<copy> <from expression="true()"/><to variable="waitResponse"/> </copy>
</assign>
<invoke operation="oRequest" inputVariable="vRequest"/>
<empty name="PhaseSwitch"
event="Fulfill ir:InitialRequest (ir.super=self) &
Create pi:ProvideInformation (pi.super=self)"/>
<while condition="getVariableData ('waitResponse’) ">
<pick name="WaitMessage">
<onMessage operation="oInfoRequest" variable="vInfoRequest">
<reply operation="oInfo" variable="vInfo"/>
</onMessage>
<onMessage operation="oResponse" variable="vResponse"
event="Fulfill pi:ProvideInformation (pi.super=self) &
Create wa:WaitAnswer (wa.super=self) ">
<assign name="LeaveLoop">
<copy> <from expression="false()"/><to variable="waitResponse"/> </copy>
<copy> <from variable="vResponse" part="result"/><to variable="result"/>
</assign>
</onMessage>
</pick>
</while>
<empty name="DoRequestFulfilled"
event="Fulfill wa:WaitAnswer (wa.super=self)"
constraint="Forall wa:WaitAnswer (wa.super=self —
G(wa.result<+self.result))"/>

</sequence>
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Encoding Formal Tropos in Promela

Task DoRequest
Actor Citizen
Super BeingAssisted
Attribute result : boolean
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Encoding Formal Tropos in Promela

Task DoRequest typedef DoRequestType{
Actor Citizen byte actor;
Super BeingAssisted byte super;
Attribute result : boolean bool result;
}
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Encoding Formal Tropos in Promela

Task DoRequest
Actor Citizen
Super BeingAssisted
Attribute result : boolean

typedef DoRequestType{
byte actor;
byte super;
bool result;
bool justcreated, exists;

bool justfulfilled, fulfilled;

1
DoRequestType DoRequest[2];
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Encoding Formal Tropos in Promela

Task DoRequest
Actor Citizen
Super BeingAssisted
Attribute result : boolean

typedef DoRequestType{
byte actor;
byte super;
bool result;
bool justcreated, exists;

bool justfulfilled, fulfilled;

1
DoRequestType DoRequest[2];

proctype DoRequestProc(byte id) {
.../* life cycle of class instance */
.../* encoded as a Promela process */

}
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Encoding Formal Tropos in Promela

, The life-cycle of a Class instance:
proctype ClassProc(byte id) {
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Encoding Formal Tropos in Promela

, The life-cycle of a Class instance:
proctype ClassProc(byte id) {

NotExists: ® NotExists: The initial status of class instances

do (only for actors).
/* Initial status for class instance */

»# It can stay 1n this state or go to next state.

od » Transition to next state only if conditions for

creation hold.
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Encoding Formal Tropos in Promela

proctype ClassProc(byte id) {
NotExists:
do

/* Initial status for class instance */

od
Exists:
do
/* start child sub classes */

od

The life-cycle of a Class instance:

® NotExists: The initial status of class instances
(only for actors).

»# It can stay 1n this state or go to next state.
»# Transition to next state only if conditions for
creation hold.
® Exists: The class instance exists.
» It can stay 1n this state or go to next state.
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Encoding Formal Tropos in Promela

proctype ClassProc(byte id) {
NotExists:
do

/* Initial status for class instance */

od
Exists:
do
/* start child sub classes */

od
Fulfilled:
do
/* stay here forever */

od

The life-cycle of a Class instance:

® NotExists: The initial status of class instances
(only for actors).

»# It can stay 1n this state or go to next state.
»# Transition to next state only if conditions for
creation hold.
® Exists: The class instance exists.
» It can stay 1n this state or go to next state.
® Fulfilled: The class instance is fulfilled (only
for tasks, goals, dep.)
»# It stay in this state.
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Encoding Formal Tropos in Promela

proctype DoRequestProc(byte id) {
Exists:
do :: atomic /* if the child subtask is not started yet,
assign relevant attributes and start it */
{(!InitialRequest[0].exists)— system_step();

InitialRequest[0].super = id;
InitialRequest[0].actor = DoRequest[id].actor;
InitialRequest[0].exists = true;
InitialRequest[0].justcreated = true;
run InitialRequestProc(0);};

. . . /* other child subtask may be started here */
:: atomic /* Modify non-constant attributes */
{system_step();
if :: DoRequest[id].result = true;
:: DoRequest[id].result = false;

The DoRequestProc instance: Exists

® Transition from NotExists to Exists
only if conditions hold.

o Class attributes initialized.
# justcreated and exists set to true.
® (lass can nondeterministically create
child goals, tasks, dependencies, ...
# Child attributes are 1nitialized.

# Child corresponding processes
started.

fi; /* The instance is fulfilled nondeterministically */ & In this phase the process nondeter-

if :: DoRequest[id].fulfilled = false;
:: DoRequest[id].fulfilled = true;

ministically modifies values of non-

DoRequest[id].justfulfilled = true; goto Fulfilled; CONStant attributes.

fi;}
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Encoding Formal Tropos in Promela

proctype DoRequestProc(byte id) {
Exists:

:: atomic /* Modify non-constant attributes */
{system_step();
if :: DoRequest[id].result = true;
:: DoRequest[id].result = false;
fi; /* The instance is fulfilled nondeterministically */
if :: DoRequest[id].fulfilled = false;
:: DoRequest[id].fulfilled = true;
DoRequest[id].justfulfilled = true; goto Fulfilled;
fi;}
od;
Fulfilled:
do :: atomic /* Modify non-constant attributes */
{system_step();
if :: DoRequest[id].result = true;
:: DoRequest[id].result = false;
fi;}

The DoRequestProc instance: Fulfilled
#® Transition from Exists to Fulfilled
nondeterministic.
» justfulfilled and fulfilled set to true.

® In this phase the process nondeter-
ministically modifies values of non-
constant attributes.
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Encoding Formal Tropos in Promela: Remarks

proctype DoRequestProc(byte id) {
Exists:
do :: atomic
/* if the child subtask is not started yet,
assign relevant attributes and start it */
{({InitialRequest[0].exists)— system_step();

. atomic /* Modify non-constant attributes */
{system_step();

od;
Fulfilled:
do :: atomic /* Modify non-constant attributes */
{system_step();

} od;

® All transitions from life-cycles performed
within an atomic statement to preserve FT
semantics.

® system_step() invoked each time a process
performs a step.

»# reset all attributes justcreated and
justfulfilled.

® other activities related to the verification
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Encoding Formal Tropos in Promela: Logic Specifications

® FT logic specifications C'; (creation, invariant, fulfillment constraints) exploited to
verify assertions and possibilities.
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Encoding Formal Tropos in Promela: Logic Specifications

® FT logic specifications C'; (creation, invariant, fulfillment constraints) exploited to
verify assertions and possibilities.
® For assertions
icT
must be valid
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Encoding Formal Tropos in Promela: Logic Specifications

® FT logic specifications C'; (creation, invariant, fulfillment constraints) exploited to
verify assertions and possibilities.

® For assertions

i€l
must be valid
® For possibilities
/\ C; NP
i€l

must be satisfiable
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Encoding Formal Tropos in Promela: Logic Specifications

® FT logic specifications C'; (creation, invariant, fulfillment constraints) exploited to
verify assertions and possibilities.

® For assertions

i€l
must be valid
® For possibilities
/\ C; NP
i€l

must be satisfiable
® Build a never claim for the formula to verify and submit it to SPIN.
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Encoding Formal Tropos in Promela: Logic Specifications

® FT logic specifications C'; (creation, invariant, fulfillment constraints) exploited to
verify assertions and possibilities.

® For assertions

i€l
must be valid
® For possibilities
/\ C; NP
i€l

must be satisfiable
® Build a never claim for the formula to verify and submit it to SPIN.
# Problem: on small cases the size of the formula prevents possibility to verify the
never claim.
s A reduced FT specification with 3 simple constraints and 5 classes generated a
file whose size was not manageable by the C compiler.

Ve P
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Encoding Formal Tropos in Promela: Logic Specifications

® Encode each FT constraint C; as a separate automata.

® Generate a new process constraint_verifier() where all automata are executed in
parallel.

® Add the constraint_verifier() to the final Promela specification.
® Enforce execution of constraint_verifier() after each system step.

® Restrict the verification to valid execution paths 1.e. to those execution sequences
where all constraints holds.
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Encoding Formal Tropos in Promela: Logic Specifications

/*G(p — Fq) %
accept_init:
if
z(—p)llg —
goto accept_init
2 (1) —
goto TO_S2
fi;
TO_S2:
if
g —
goto accept_init
(1) —
goto TO_S2

if /* label[n] preserves position reached at previous step */

:: label[n]==0 — goto Cn_accept_init
:: label[n]==1 — goto Cn_TO0_S2
fi;
/*G(p — Fq) %
Cn_accept_init:
if
2 (—p)||g — label[n] = 0;
accepted[n] = true;
2 (1) — label[n] =1;
accepted[n ] = false; all_accepted = false;
fi; goto Cn_checked;
Cn_TO0_S2:
if
;2 g — label[n] =0;
accepted[n] = true;
2 (1) — label[n] =1;
accepted[n] = false; all_accepted = false;
fi; goto Cn_checked;
Cn_checked:

SEFM 2004
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Encoding Formal Tropos in Promela: Logic Specifications

proctype constraint_verifier() { inline system_step() {
byte label[n] = 0; bool accepted[n] = false; byte next = 0; if :: constraints_done — constraints_done = false;
do :: constraints_done — break; :: else valid_step = false;
. else atomic fi;
{all_accepted = true; valid_step = false; next_accepted = false;
... /*All constraints automata go here */ ... /* Reset justcreated and justfulfilled flags */
valid_step = true; constraints_done = true; DoRequest[0].justcreated = false;
if :: accepted[next] — /* Look for acceptance again */ DoRequest[0].justfulfilled = false;
next_accepted = true; next = (next+1) % n; }
:: else
fi;}
od;}

® constraints_done 1s set to true each time process constraint_verifier() evolves, to
false each time the system_step() evolves.
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proctype constraint_verifier() { inline system_step() {
byte label[n] = 0; bool accepted[n] = false; byte next = 0; if :: constraints_done — constraints_done = false;
do :: constraints_done — break; :: else valid_step = false;
. else atomic fi;
{all_accepted = true; valid_step = false; next_accepted = false;
... /*All constraints automata go here */ ... /* Reset justcreated and justfulfilled flags */
valid_step = true; constraints_done = true; DoRequest[0].justcreated = false;
if :: accepted[next] — /* Look for acceptance again */ DoRequest[0].justfulfilled = false;
next_accepted = true; next = (next+1) % n; }
:: else
fi;}
od;}

® valid_step is true if each system step 1s followed by exactly one step of process
constraint_verifier() and if the execution 1s not blocked.

Zn. Irst SEEM 2004 26 - 30 September, 2004  Beijing - China —p.36



Encoding Formal Tropos in Promela: Logic Specifications

proctype constraint_verifier() { inline system_step() {
byte label[n] = 0; bool accepted[n] = false; byte next = 0; if :: constraints_done — constraints_done = false;
do :: constraints_done — break; :: else valid_step = false;
. else atomic fi;
{all_accepted = true; valid_step = false; next_accepted = false;
... /*All constraints automata go here */ ... /* Reset justcreated and justfulfilled flags */
valid_step = true; constraints_done = true; DoRequest[0].justcreated = false;
if :: accepted[next] — /* Look for acceptance again */ DoRequest[0].justfulfilled = false;
next_accepted = true; next = (next+1) % n; }
:: else
fi;}
od;}

® all_accepted store information whether all automata are visiting an acceptance state
simultaneously.
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Encoding Formal Tropos in Promela: Logic Specifications

proctype constraint_verifier() { inline system_step() {
byte label[n] = 0; bool accepted[n] = false; byte next = 0; if :: constraints_done — constraints_done = false;
do :: constraints_done — break; :: else valid_step = false;
. else atomic fi;
{all_accepted = true; valid_step = false; next_accepted = false;
... /*All constraints automata go here */ ... /* Reset justcreated and justfulfilled flags */
valid_step = true; constraints_done = true; DoRequest[0].justcreated = false;
if :: accepted[next] — /* Look for acceptance again */ DoRequest[0].justfulfilled = false;
next_accepted = true; next = (next+1) % n; }
:: else
fi;}
od;}

® next_accepted is set to true if accepted[next] 1s set to true. It is used to check that
all constraint automata visit acceptance states.
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Encoding Formal Tropos in Promela: Logic Specifications

proctype constraint_verifier() { inline system_step() {
byte label[n] = 0; bool accepted[n] = false; byte next = 0; if :: constraints_done — constraints_done = false;
do :: constraints_done — break; :: else valid_step = false;
. else atomic fi;
{all_accepted = true; valid_step = false; next_accepted = false;
... /*All constraints automata go here */ ... /* Reset justcreated and justfulfilled flags */
valid_step = true; constraints_done = true; DoRequest[0].justcreated = false;
if :: accepted[next] — /* Look for acceptance again */ DoRequest[0].justfulfilled = false;
next_accepted = true; next = (next+1) % n; }
:: else
fi;}
od;}

® next is updated such that all constraints are considered in turn.
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Encoding Formal Tropos in Promela: Logic Specifications

® The restriction of the verification to the valid execution paths is captured by the
following formula:

G(valid_step A F next_accepted A
G (next_accepted — G all_accepted))

® [t states that. ..
» the constraint automata are not blocked,
»# they visit acceptance states infinitely often,

»# 1f variable next_accepted stay true forever (execution over finite paths) then
variable all_accepted will stay true forever.
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The verification of FT thus 1s performed as:
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Encoding Formal Tropos in Promela: Logic Specifications

The verification of FT thus 1s performed as:
® for an assertions A we verify:

(G (valid_step A next_accepted A
G (next_accepted — G all_accepted))
— A

» It checks whether all the valid execution paths satisfy the assertion A.
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Encoding Formal Tropos in Promela: Logic Specifications

The verification of FT thus 1s performed as:
® for an assertions A we verify:

(G (valid_step A next_accepted A
G (next_accepted — G all_accepted))
— A

» It checks whether all the valid execution paths satisfy the assertion A.
® for a possibility P we verify:

(G(valid_step A next_accepted A
G(next_accepted — G all_accepted))
— P

»# If a counter-example 1s found for such formula, it is a witness for P.
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The T-TOoOL
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A counter-example produced by T-TOOL

[Citizen][SanitaryAgency |

SanitaryAgency 1
created

5 AR 1
| Prov1deFa1rI ProvideFairAssistance
I

crea

T I
I = 1

| HandleAss;ij HandleAssistanceRequest |
1]

DoRequest_lI DoRequest

BeingAssisted 1
created

created

InitialRequest_1
created

Request_1
created

Request_chan!0, 0

1" | InitialRequest_1
/ fulfilled
4‘———"‘— | ProvideInformation 1

" created

ReceiveRequest_1
created

EvaluateRequest_1
created

Request_chan?0, 0

ReceiveRequest
ReceiveRequest_1
fulfilled
EvaluateRequest
oy o [ Providemnswer |

created
Response_1
created

[ Response_1.result=1

Response_chan!0, 0

Response_chan?0, 0

ProvideInformation_1
fulfilled

WaitAnswer_ 1
created

WaitAnswer 1l.result=0

[ DoRequest_1.result=1 |
WaitAnswer_ 1
fulfilled
DoRequest_1
fulfilled
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Experimental Analysis

Logic specification translation

Direct Translation

Compositional Translation

I instance | 1..2 instances | 1 instance | 1..2 instances
1 constraint 0,01sec 0,01sec 0,01sec 0,01sec
3 constraints 0,03sec 3.,01sec 0,03sec 0,09sec
5 constraints 0,11sec MO 0,04sec 0,14sec
10 constraints | 10,65sec SF 0,04sec 0,16sec
30 constraints MO SF 0,07sec 0,20sec
45 constraints SF SF 0,15sec 0,41sec

SEFM 2004
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Experimental Analysis

Property verification results

SPIN results

1 instance 1..2 instances

Al | HC4 TO - 1284steps - 1382Mb | TO - 2857steps - 362Mb
BITSTATE | Valid(® - 21sec- 61Mb | TO - 3244steps - 1028Mb
3SPIN Valid® - 23sec - 69Mb | TO - 3207steps - 1178Mb

A2 | HC4 TO - 1393steps - 1382Mb | TO - 2857steps - 362Mb
BITSTATE | Invalid - 21sec - 52Mb TO - 3244steps - 1058Mb
3SPIN Invalid - 24sec - 64Mb TO - 3417steps - 1173Mb

P1 | HC4 Valid - 27sec - 68Mb TO - 2857steps - 362Mb
BITSTATE | Valid - 14sec - 41Mb TO - 3099steps - 956Mb
3SPIN Valid - 19sec - 56 Mb TO - 3312steps - 1143Mb

Hash factors: (@) 1.97 — (0) 3 35
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Experimental Analysis

Property verification results

NUSMY results

1 instance 1..2 instances

Al | BDD | Valid - 9sec - 6,0Mb TO - 235Mb
BMC | Undec.™*) - 7sec - 20,4Mb | Undec.*) - 106sec - 61,2Mb

A2 | BDD | Invalid - 11sec - 6,9Mb TO - 235Mb
BMC | Invalid - 0,6sec - 3,8Mb Invalid - 2sec - 11,3Mb

P1 | BDD | Valid - 10sec - 5,8Mb TO - 235Mb
BMC | Valid®**) - 0,7sec - 5,3Mb | Valid**) - 2sec - 16,0Mb

*) No counter-example found up to bound length 10

(*) Found example of length 4 satisfying P1
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Experimental Analysis

Implementation verification result

1 instance 1..2 instances

Al | HC4 TO - Sl6steps - 1442Mb | TO - 341steps - 1282Mb
BITSTATE | Valid(®) - 32sec - 83Mb | Valid® - 169sec - 316Mb
3SPIN Valid(®) - 14sec - 35Mb | Valid(¥) - 74sec - 171Mb

A2 | HC4 Invalid - 125sec - 206Mb | TO - 341steps - 1162Mb
BITSTATE | Invalid - 32sec - 71Mb Invalid - 1285sec - 2003Mb
3SPIN Invalid - 15sec - 32Mb MO - 673steps - 1141sec

P1 | HC4 Valid - 2sec - 9,1Mb TO - 341steps - 1282Mb
BITSTATE | Valid - 3sec - 10,1Mb Valid - 167sec - 306Mb
3SPIN Valid - 3sec - 12,0Mb Valid - 59sec - 148Mb

C | HC4 Invalid - 2sec - 9,1Mb TO - 341steps - 1282Mb
BITSTATE | Invalid - 3sec - 11,4Mb Invalid - 166sec - 306Mb
3SPIN Invalid - 3sec - 12,0Mb Invalid - 62sec - 151Mb

Hash factors: (@) 2.44 — (®) 1,66 — (¢) 6.06 — (4 1.61
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Conclusions

® We have proposed a framework for the specification and verification of early
requirements based on explicit state model checking and SPIN.
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Conclusions

® We have proposed a framework for the specification and verification of early
requirements based on explicit state model checking and SPIN.

® We have extend the scope of the verification to include the design of distributed
processes defined in Promela.

® We have proposed a novel, compositional encoding of the LTL constraints that
define the valid behaviors of the requirements model in the verification tasks.

® The preliminary experiments show that the approach is viable, even if the
performance is currently a rather serious limit for its applicability.

® Future work
» Optimize the model generator by integrating advanced abstraction techniques that
exploit, for instance, possible symmetries in the specification.
» Deeper investigation of the compositional approach for the verification of
complex LTL specifications.
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The End
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