Formal Verification of Requirements using SPIN:
A case Study on Web Services

Marco Roveri

roveri @irst.itc.it
http://sra.itc.it/people/roveri
joint work with R. Kazhamiakin and M. Pistore

ITC-irst — Automated Reasoning System Division
Via Sommarive 18, 38050 Trento

Italy

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p. 1

Introduction

® Integration of distributed business process is an emerging problem. . .
participants from different organizations
heterogeneity among services
autonomous evolution of processes

® Web Services (WS) offer the technology for business process integration:
languages for WS interoperability (SOAP, WSDL, UDDI,...)
s In particular BPEL4WS (Business Process Execution Language)
tools for the design and the execution of WS
® Nevertheless, there 1s a need for advanced techniques for supporting the most
complex aspects of business process integration:
simulation and (formal) verification
monitoring and diagnosis
(automated) support for composition and evolution

SEFM 2004 26 - 30 September, 2004 Beijing - China -p-2

Outline

® Introduction to WS and related problems

® The need for business requirements

® A methodology for defining business requirements and for deriving executable code
® Verification of Business Requirements/Processes

® The tool supporting the methodology using SPIN

® Some experimental results

® Conclusions and Future works

SEFM 2004 26 - 30 September, 2004 Beijing - China -p-3

Web Services

® Several web services participate to a business interaction.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p-4

WS: Executable Processes...

® WS languages (BPEL4WS) offers a set of core concepts for process description
that can be used for:
the definition and the execution of the internal business process of a participant to
a business interaction.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p-5

WS: ... and Interaction Protocols

® WS languages (e.g. BPEL4WS) offers a set of core concepts for process
description that can be used for:
the definition and the execution of the internal business process of a participant to
a business interaction.
the description and publication of the external business protocol that define the
interaction behavior of a participant.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p-6

Verification for BPEL4WS

BPEL4AWS allows for several forms of basic verification tasks:

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p.7

Verification for BPEL4WS

BPEL4WS allows for several forms of basic verification tasks:
® At design time:
» [s the internal BPEL4WS process specification consistent with the published
protocol interfaces?
Given two or more BPEL4WS interfaces aiming to communicate, do they define
a correct (e.g., deadlock free) protocol?

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p.7

Verification for BPEL4WS

BPEL4WS allows for several forms of basic verification tasks:
® At design time:

» [s the internal BPEL4WS process specification consistent with the published
protocol interfaces?

Given two or more BPEL4WS interfaces aiming to communicate, do they define
a correct (e.g., deadlock free) protocol?
$ At execution time:
® Do the other participants respect the protocol interface that they have published?

SEFM 2004 26 - 30 September, 2004 Beijing - China -p-7

Verification for BPEL4WS

BPEL4WS allows for several forms of basic verification tasks:
® At design time:

» [s the internal BPEL4WS process specification consistent with the published
protocol interfaces?

Given two or more BPEL4WS interfaces aiming to communicate, do they define
a correct (e.g., deadlock free) protocol?
$ At execution time:
® Do the other participants respect the protocol interface that they have published?

In order to do advanced verification based on specific properties on the behavior, a
requirements language is needed.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p-7

Tropos: A Language for Business Requirements

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p-8

Tropos: A Language for Business Requirements

® Tropos is requirements-driven:

»# focus on early phases of requirements analysis, aiming to the understanding of the
operational environment of the software system

SEFM 2004 26 - 30 September, 2004 Beijing - China -p-8

Tropos: A Language for Business Requirements

® Tropos is requirements-driven:

»# focus on early phases of requirements analysis, aiming to the understanding of the
operational environment of the software system

® Tropos is agent-oriented:

agents and related notions, such as goals and plans, are used in all phases of
software development

SEFM 2004 26 - 30 September, 2004 Beijing - China -p-8

Tropos: A Language for Business Requirements

® Tropos is requirements-driven:

»# focus on early phases of requirements analysis, aiming to the understanding of the
operational environment of the software system

® Tropos is agent-oriented:

agents and related notions, such as goals and plans, are used in all phases of
software development

® Tropos has been applied in several case studies on information systems and
agent-based software systems

Ve P
), IFrst SEFM 2004 26 - 30 September, 2004 Beijing - China -p.8

Tropos: A Language for Business Requirements

® Tropos is requirements-driven:

»# focus on early phases of requirements analysis, aiming to the understanding of the
operational environment of the software system

® Tropos is agent-oriented:

agents and related notions, such as goals and plans, are used in all phases of
software development

® Tropos has been applied in several case studies on information systems and
agent-based software systems

® Tropos offers a set of graphical notations and of analysis techniques to support
the designer in the development of the software system

SEFM 2004 26 - 30 September, 2004 Beijing - China -p-8

Tropos: A Language for Business Requirements

® Tropos is requirements-driven:

»# focus on early phases of requirements analysis, aiming to the understanding of the
operational environment of the software system

® Tropos is agent-oriented:

agents and related notions, such as goals and plans, are used in all phases of
software development

® Tropos has been applied in several case studies on information systems and
agent-based software systems

® Tropos offers a set of graphical notations and of analysis techniques to support
the designer in the development of the software system

® Formal Tropos extends Tropos with a formal specification language and with
verification based on Model Checking

s | TC

=\ s

W2
inmI4

SEFM 2004 26 - 30 September, 2004 Beijing - China -p-8

Proposed methodology: Tropos4WS$S

Internal

- External

Formal: Tropos

BPEL4

1
1
|
R < LI
I 1

| 1
1
1

Business
Requirements

WS+FT

Business
Processes

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p-9

Specifying Business Requirements: Case Study

SEFM 2004 26 - 30 September, 2004 Beijing - China -p. 10

Specifying Business Requirements: Case Study

Receive\ —¥
Assistancg

Fa

Provide
Assistapce

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p- 11

Specifying Business Requirements: Case Study

Receive\ —¥
[\

ssistancg

Fa
Provide
Service

Service
Provider

Provide
Service

Provide
Assistayce

SEFM 2004 26 - 30 September, 2004 Beijing - China -p. 12

Specifying Business Requirements: Case Study

Receive\ —¥
Assistancg

Provide
Assistayce

Fa
Provide
Service

Service
Provider

Provide Being
Service /\ Payed

Payment |¢—
—fComen

SEFM 2004 26 - 30 September, 2004 Beijing - China -p. 13

Specifying Business Requirements: Case Study

ssistancg

Receive\ —¥
[\

Provide
Assistayce

Fa
Provide
Service

Service
Provider

Provide Being
Service /\ Payed

SEFM 2004 26 - 30 September, 2004 Beijing - China -p. 14

Specifying Business Requirements: Case Study

Receive\ —¥
[\

ssistancg

Provide
Assistayce

Fa
Provide
Service

Service

Provide Being
Service /\ Payed

SEFM 2004 26 - 30 September, 2004 Beijing - China -p. 15

Specifying Business Requirements: Refinement

: Receive
Being Assistance
Assisted
Provide Fair
Assistance

Strategic Level

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p. 16

Specifying Business Requirements: Refinement

Being
Assisted

Strategic Level

Receive
Service

Activity Level

__

SEFM 2004

26 - 30 September, 2004 Beijing - China

-p. 17

Specifying Business Requirements: Refinement

- -
-
-
-
-

©
>
()
_I 7
O ’
c» /
2 . .
o / Provide Fair
&) Assistance
/
U 7
/ /
. = ———— - - - - =
II !
1
1
1
1
1
1
I
— \
(O]
3 .
0 Ask Additional
> \
E \\ Info

\
Provide
Answer

N\
N
N

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p. 18

Specifying Business Requirements: Refinement

/
/
, Provide Fair
/[Receive Assistance
K Service
/
! /

0 S U

Strategic Level

,’ .y Pay ‘\
X Initial |
! Request ‘l
1 |
— 1 ! \
(O |
5 | I .
a0 I Ask Additional
> ! 1
=0 1 Info
= '
“— \ 1
O \
<C \\ /l \
\ / .
\ / Provide
\ /
\)/ Answer
/
/ \
7 \
N\ 7/ A
D oo e o _______| O I 0 I R M __
> AN - N
3 ~ R P s N N
> Sel 47 Request Se
o) R RS
@ .
[2]
3 Info |
> Reque
» Info
Response [«

SEFM 2004 26 - 30 September, 2004 Beijing - China

Formal Tropos

Formal Tropos:

® first-order linear-time temporal constraints on the evolutions of the model:
(past and future) temporal operators: Go, Fo, Ho, Oa...
quantification on class instances: Vc : C..., dc : C...

® focus on creation and fulfillment of activities:
FT can describe the state diagram defining the behavior of services
FT can describe the activity diagram defining the interaction of services

SEFM 2004 26 - 30 September, 2004 Beijing - China -p.20

©
>
(0]
|
Q
(@]
[0]
o /
= /
U) /
/
1
/
1
i
1
1
| Initial
. Request
1
_—
[
> \
(0] .
_ Provide
20 Information
=)
- \
o \
< \
\
\
\
\
\
\
Do e e e]
>
(0]
| ~
[0} R
o - -
]
0
(7]
(0]
=

Specifying Business Requirements: Formal Tropos

;

Receive
Request

sk Additional
Info

Provide
Answer
N
A

SEFM 2004

26 - 30 September, 2004 Beijing - China

-p.21

Specifying Business Requirements: Formal Tropos

Goal Dependency ReceiveAssistance Mode maintain
Depender Citizen Dependee HealthcareAgency

R Receive
g Assistance

]
> .
g Task DoRequest Mode achieve
?.J) Super BeingAssisted Actor Citizen
g Attribute result : boolean
n
P RN NS N e .
| ' Task InitialRequest Mode achieve
) . \ .
' Initial 1 Super DoRequest Actor Citizen
. Request A Request
I I
T : ‘ . : .
3 Provide Ask Additional Task Providelnformation Mode achieve
2 Information ; Info Super DoRequest Actor Citizen
'*3 \ I/ \
< \\ / \
\\ ,’/ Provide
" K Answer
O - - — == = A oo ______,_//_ ______________ N _‘. _________
> ~ . N
3 S i S .
o} DT B @7 S~ Task WaitAnswer Mode achieve
ﬁ o Super DoRequest Actor Citizen
o .
= @‘7 Attribute result : boolean

SEFM 2004 26 - 30 September, 2004 Beijing - China

Specifying Business Requirements: Formal Tropos

° .
Q .
(0]
|
Q
(@]
[0]
o /
= /
U) /
/
1
/
1
i
1
1
| Initial
1
, Request
1
_—
[
> \
(0] .
_ Provide
20 Information
=)
- \
o \
< \
\
\
\
\
\
\
—_ AY
O- - - == = e e o=]
> ~
(0] N
| RS
[0} R
o - -
]
0
(7]
(0]
=

Receive
Assistance

Receive
Request

Ask Additional
Info

Provide
Answer
N
N

e

SEFM 2004

Goal Dependency ReceiveAssistance Mode maintain
Depender Citizen Dependee HealthcareAgency

Task DoRequest Mode achieve
Super BeingAssisted Actor Citizen
Attribute result : boolean

Task InitialRequest Mode achieve
Super DoRequest Actor Citizen
Creation Trigger 3 dr: DoRequest(super = dr)

Task Providelnformation Mode achieve
Super DoRequest Actor Citizen
Creation Trigger
3 dr: DoRequest(super = dr A
3 ir: InitialRequest(ir.super = dr A Fulfilled (ir)))

Task WaitAnswer Mode achieve
Super DoRequest Actor Citizen
Attribute result : boolean
Creation Trigger
3 dr: DoRequest(super = dr A
3 pi: Providelnformation(pr.super = dr A Fulfilled (pr)))

26 - 30 September, 2004 Beijing - China

-p.23

Specifying Business Requirements: Formal Tropos

e Receive
e g Assistance

©
>
(0]
|
Q
(@]
[0]
T /
= /
U.) /
/
1
/
A0) e e e e e e e e e - e e e e e e m e m - - o
! I
! Il
! i
1
e 1 .
b Initial | Receive
! Request | Request
]
— : ! 1
[l I
q>) \ i ! .
= Provide ! Ask Additional
20 Information ' Info
=]
= ! \
(8]
< \\ I/ \
/ .
\ ' Provide
\ /
\ ’ Answer
\ /7
\ /7
/7 N
4 A
_ \ ’ S
[J .4 i
> N N
o N - 7 S ~
P S. | 4- Request >
o} R =
]
)]
® Info
= Reque
» Info
Response

SEFM 2004

Goal Dependency ReceiveAssistance Mode maintain
Depender Citizen Dependee HealthcareAgency
Fulfillment condition V dr: DoRequest (
(dr.actor = depender A Fulfilled (dr) A dr.result) —
F 3 rs: ReceiveService (rs.actor = depender A Fulfilled (rs)))

Task DoRequest Mode achieve
Super BeingAssisted Actor Citizen
Attribute result : boolean
Fulfillment definition
3 wa:WaitAnswer(wa.super = self A Fulfilled (wa) A (result <+ wa.result))

Task InitialRequest Mode achieve
Super DoRequest Actor Citizen
Creation Trigger 3 dr: DoRequest(super = dr)

Task Providelnformation Mode achieve
Super DoRequest Actor Citizen
Creation Trigger
3 dr: DoRequest(super = dr A
3 ir: InitialRequest(ir.super = dr A Fulfilled (ir)))
Fulfillment definition
G (V ir: InfoRequest(Received (ir) — 3 i: Info(Sent (i)))

Task WaitAnswer Mode achieve

Super DoRequest Actor Citizen
Attribute result : boolean
Creation Trigger

3 dr: DoRequest(super = dr A

3 pi: Providelnformation(pr.super = dr A Fulfilled (pr)))

Fulfillment definition

3 r:Response(Received (r) A (result <> r.result))

26 - 30 September, 2004 Beijing - China -p.24

Formal Analysis of Requirements

Formal Tropos enables for the application of formal analysis.

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p.25

Formal Analysis of Requirements

Formal Tropos enables for the application of formal analysis.
® consistency check: “the specification admits valid scenarios”;

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p.25

Formal Analysis of Requirements

Formal Tropos enables for the application of formal analysis.
® consistency check: “the specification admits valid scenarios”;

® possibility check: “there is some scenario for the model that respects certain
possibility properties”;

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p.25

Formal Analysis of Requirements

Formal Tropos enables for the application of formal analysis.
® consistency check: “the specification admits valid scenarios”;

® possibility check: “there is some scenario for the model that respects certain
possibility properties”;

Possibility P1 /* It is possible to fulfill request */
3 dr: DoRequest (Fulfilled (dr))

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p.25

Formal Analysis of Requirements

Formal Tropos enables for the application of formal analysis.
® consistency check: “the specification admits valid scenarios”;

® possibility check: “there is some scenario for the model that respects certain
possibility properties”;

Possibility P1 /* It is possible to fulfill request */
3 dr: DoRequest (Fulfilled (dr))

® assertion validation: “all scenarios for the model respect certain assertion
properties’’;

2. Irst SEFM 2004 26 - 30 September, 2004 Beijing - China —p.25

Formal Analysis of Requirements

Formal Tropos enables for the application of formal analysis.
® consistency check: “the specification admits valid scenarios”;

® possibility check: “there is some scenario for the model that respects certain
possibility properties”;

Possibility P1 /* It is possible to fulfill request */
3 dr: DoRequest (Fulfilled (dr))

® assertion validation: “all scenarios for the model respect certain assertion
properties’’;

Assertion A1 /* Service is received only upon a positive response */
V c: Citizen (V r: Response (Received (r) A r.receiver = ¢ — — r.result) —
V rs: ReceiveService (rs.actor = ¢ — — Fulfilled (rs)))

Assertion A2 /* If some agency provides assistance and the citizen
requests a service then the request should be fulfilled */
V dr: DoRequest (3 ra: ReceiveAssistance (ra.depender =
dr.actor A Fulfilled (ra) A V r: Request (r.sender =
dr.actor — r.receiver = ra.dependee)) — F Fulfilled (dr))

SEFM 2004 26 - 30 September, 2004 Beijing - China -p.25

Implementing Business Requirements in Promela

Task DoRequest Mode achieve
Super BeingAssisted Actor Citizen
Attribute result : boolean
Fulfillment definition
3 wa:WaitAnswer(wa.super = self A Fulfilled (wa) A
(result <+ wa.result))

Task InitialRequest Mode achieve
Super DoRequest Actor Citizen
Creation Trigger 3 dr: DoRequest(super = dr)

Task Providelnformation Mode achieve
Super DoRequest Actor Citizen
Creation Trigger
3 dr: DoRequest(super = dr A
3 ir: InitialRequest(ir.super = dr A Fulfilled (ir)))
Fulfillment definition
G (V ir: InfoRequest(Received (ir) — 3 i: Info(Sent (i)))

Task WaitAnswer Mode achieve

Super DoRequest Actor Citizen
Attribute result : boolean
Creation Trigger

3 dr: DoRequest(super = dr A

3 pi: Providelnformation(pr.super = dr A Fulfilled (pr)))

Fulfillment definition

3 r:Response(Received (r) A (result <+ r.result))

DoRequest process specification in Promela

bool waitResponse;
atomic{
CREATE ri: InitialRequest;
ri.super = self;
waitResponse = true};
atomic{
CREATEMESSAGE vRequest: Request;
Request_channel ! vRequest};
atomic{
FULFILL ir: InitialRequest [ir.super == self];
CREATE pi: ProvideInformation; pi.super = self};
do::atomic{ waitResponse ->
if::InfoRequest_channel ? vInfoRequest;
CREATEMESSAGE vInfo : Info;
vInfo.reference = vInfoRequest;
Info_channel ! vInfo;
: :Response_channel ? vResponse;
FULFILL pi: ProvideInformation [pi.super==self]
CREATE wa: WaitAnswer; wa.super = self;

waitResponse = false;
self.result = vResponse.result;
fi};
::else break;
od;
atomic{
FULFILL wait: WaitAnswer [wait.super == self];

FULFILL self};

SEFM 2004 26 - 30 September, 2004 Beijing - China

7

-p.26

Implementing Business Requirements in BPEL4WS

Task DoRequest Mode achieve
Super BeingAssisted Actor Citizen
Attribute result : boolean
Fulfillment definition
3 wa:WaitAnswer(wa.super = self A Fulfilled (wa) A
(result <> wa.result))

Task InitialRequest Mode achieve
Super DoRequest Actor Citizen
Creation Trigger 3 dr: DoRequest(super = dr)

Task Providelnformation Mode achieve
Super DoRequest Actor Citizen
Creation Trigger
3 dr: DoRequest(super = dr A
3 ir: InitialRequest(ir.super = dr A Fulfilled (ir)))
Fulfillment definition

G (V ir: InfoRequest(Received (ir) — 3 i: Info(Sent (i)))

Task WaitAnswer Mode achieve
Super DoRequest Actor Citizen
Attribute result : boolean
Creation Trigger

3 dr: DoRequest(super = dr A

3 pi: Providelnformation(pr.super = dr A Fulfilled (pr)))

Fulfillment definition
3 r:Response(Received (r) A (result <> r.result))

<sequence name="DoRequestBody">
<assign name="Initialization"
event="Create ir:InitialRequest (ir.super=self) ">
<copy> <from expression="true()"/><to variable="waitResponse"/> </copy>
</assign>
<invoke operation="oRequest" inputVariable="vRequest"/>
<empty name="PhaseSwitch"
event="Fulfill ir:InitialRequest (ir.super=self) &
Create pi:ProvideInformation (pi.super=self)"/>
<while condition="getVariableData ('waitResponse’) ">
<pick name="WaitMessage">
<onMessage operation="oInfoRequest" variable="vInfoRequest">
<reply operation="oInfo" variable="vInfo"/>
</onMessage>
<onMessage operation="oResponse" variable="vResponse"
event="Fulfill pi:ProvideInformation (pi.super=self) &
Create wa:WaitAnswer (wa.super=self) ">
<assign name="LeaveLoop">
<copy> <from expression="false()"/><to variable="waitResponse"/> </copy>
<copy> <from variable="vResponse" part="result"/><to variable="result"/>
</assign>
</onMessage>
</pick>
</while>
<empty name="DoRequestFulfilled"
event="Fulfill wa:WaitAnswer (wa.super=self)"
constraint="Forall wa:WaitAnswer (wa.super=self —
G(wa.result<+self.result))"/>

</sequence>

SEFM 2004 26 - 30 September, 2004 Beijing - China -p.27

Encoding Formal Tropos in Promela

Task DoRequest
Actor Citizen
Super BeingAssisted
Attribute result : boolean

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p.28

Encoding Formal Tropos in Promela

Task DoRequest typedef DoRequestType{
Actor Citizen byte actor;
Super BeingAssisted byte super;
Attribute result : boolean bool result;
}

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p.28

Encoding Formal Tropos in Promela

Task DoRequest
Actor Citizen
Super BeingAssisted
Attribute result : boolean

typedef DoRequestType{
byte actor;
byte super;
bool result;
bool justcreated, exists;

bool justfulfilled, fulfilled;

1
DoRequestType DoRequest[2];

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p.28

Encoding Formal Tropos in Promela

Task DoRequest
Actor Citizen
Super BeingAssisted
Attribute result : boolean

typedef DoRequestType{
byte actor;
byte super;
bool result;
bool justcreated, exists;

bool justfulfilled, fulfilled;

1
DoRequestType DoRequest[2];

proctype DoRequestProc(byte id) {
.../* life cycle of class instance */
.../* encoded as a Promela process */

}

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p.28

Encoding Formal Tropos in Promela

, The life-cycle of a Class instance:
proctype ClassProc(byte id) {

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p.29

Encoding Formal Tropos in Promela

, The life-cycle of a Class instance:
proctype ClassProc(byte id) {

NotExists: ® NotExists: The initial status of class instances

do (only for actors).
/* Initial status for class instance */

»# It can stay 1n this state or go to next state.

od » Transition to next state only if conditions for

creation hold.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p-29

Encoding Formal Tropos in Promela

proctype ClassProc(byte id) {
NotExists:
do

/* Initial status for class instance */

od
Exists:
do
/* start child sub classes */

od

The life-cycle of a Class instance:

® NotExists: The initial status of class instances
(only for actors).

»# It can stay 1n this state or go to next state.
»# Transition to next state only if conditions for
creation hold.
® Exists: The class instance exists.
» It can stay 1n this state or go to next state.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p-29

Encoding Formal Tropos in Promela

proctype ClassProc(byte id) {
NotExists:
do

/* Initial status for class instance */

od
Exists:
do
/* start child sub classes */

od
Fulfilled:
do
/* stay here forever */

od

The life-cycle of a Class instance:

® NotExists: The initial status of class instances
(only for actors).

»# It can stay 1n this state or go to next state.
»# Transition to next state only if conditions for
creation hold.
® Exists: The class instance exists.
» It can stay 1n this state or go to next state.
® Fulfilled: The class instance is fulfilled (only
for tasks, goals, dep.)
»# It stay in this state.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p-29

Encoding Formal Tropos in Promela

proctype DoRequestProc(byte id) {
Exists:
do :: atomic /* if the child subtask is not started yet,
assign relevant attributes and start it */
{(!InitialRequest[0].exists)— system_step();

InitialRequest[0].super = id;
InitialRequest[0].actor = DoRequest[id].actor;
InitialRequest[0].exists = true;
InitialRequest[0].justcreated = true;
run InitialRequestProc(0);};

. . . /* other child subtask may be started here */
:: atomic /* Modify non-constant attributes */
{system_step();
if :: DoRequest[id].result = true;
:: DoRequest[id].result = false;

The DoRequestProc instance: Exists

® Transition from NotExists to Exists
only if conditions hold.

o Class attributes initialized.
justcreated and exists set to true.
® (lass can nondeterministically create
child goals, tasks, dependencies, ...
Child attributes are 1nitialized.

Child corresponding processes
started.

fi; /* The instance is fulfilled nondeterministically */ & In this phase the process nondeter-

if :: DoRequest[id].fulfilled = false;
:: DoRequest[id].fulfilled = true;

ministically modifies values of non-

DoRequest[id].justfulfilled = true; goto Fulfilled; CONStant attributes.

fi;}

SEFM 2004 26 - 30 September, 2004 Beijing - China -p.30

Encoding Formal Tropos in Promela

proctype DoRequestProc(byte id) {
Exists:

:: atomic /* Modify non-constant attributes */
{system_step();
if :: DoRequest[id].result = true;
:: DoRequest[id].result = false;
fi; /* The instance is fulfilled nondeterministically */
if :: DoRequest[id].fulfilled = false;
:: DoRequest[id].fulfilled = true;
DoRequest[id].justfulfilled = true; goto Fulfilled;
fi;}
od;
Fulfilled:
do :: atomic /* Modify non-constant attributes */
{system_step();
if :: DoRequest[id].result = true;
:: DoRequest[id].result = false;
fi;}

The DoRequestProc instance: Fulfilled
#® Transition from Exists to Fulfilled
nondeterministic.
» justfulfilled and fulfilled set to true.

® In this phase the process nondeter-
ministically modifies values of non-
constant attributes.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p.-31

Encoding Formal Tropos in Promela: Remarks

proctype DoRequestProc(byte id) {
Exists:
do :: atomic
/* if the child subtask is not started yet,
assign relevant attributes and start it */
{({InitialRequest[0].exists)— system_step();

. atomic /* Modify non-constant attributes */
{system_step();

od;
Fulfilled:
do :: atomic /* Modify non-constant attributes */
{system_step();

} od;

® All transitions from life-cycles performed
within an atomic statement to preserve FT
semantics.

® system_step() invoked each time a process
performs a step.

»# reset all attributes justcreated and
justfulfilled.

® other activities related to the verification

SEFM 2004 26 - 30 September, 2004 Beijing - China -p.32

Encoding Formal Tropos in Promela: Logic Specifications

® FT logic specifications C'; (creation, invariant, fulfillment constraints) exploited to
verify assertions and possibilities.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p.33

Encoding Formal Tropos in Promela: Logic Specifications

® FT logic specifications C'; (creation, invariant, fulfillment constraints) exploited to
verify assertions and possibilities.
® For assertions
icT
must be valid

SEFM 2004 26 - 30 September, 2004 Beijing - China -p.33

Encoding Formal Tropos in Promela: Logic Specifications

® FT logic specifications C'; (creation, invariant, fulfillment constraints) exploited to
verify assertions and possibilities.

® For assertions

i€l
must be valid
® For possibilities
/\ C; NP
i€l

must be satisfiable

Ve P
) IS SEFM 2004 26 - 30 September, 2004 Beijing - China ~p.33

Encoding Formal Tropos in Promela: Logic Specifications

® FT logic specifications C'; (creation, invariant, fulfillment constraints) exploited to
verify assertions and possibilities.

® For assertions

i€l
must be valid
® For possibilities
/\ C; NP
i€l

must be satisfiable
® Build a never claim for the formula to verify and submit it to SPIN.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p.33

Encoding Formal Tropos in Promela: Logic Specifications

® FT logic specifications C'; (creation, invariant, fulfillment constraints) exploited to
verify assertions and possibilities.

® For assertions

i€l
must be valid
® For possibilities
/\ C; NP
i€l

must be satisfiable
® Build a never claim for the formula to verify and submit it to SPIN.
Problem: on small cases the size of the formula prevents possibility to verify the
never claim.
s A reduced FT specification with 3 simple constraints and 5 classes generated a
file whose size was not manageable by the C compiler.

Ve P
) IS SEFM 2004 26 - 30 September, 2004 Beijing - China ~p.33

Encoding Formal Tropos in Promela: Logic Specifications

® Encode each FT constraint C; as a separate automata.

® Generate a new process constraint_verifier() where all automata are executed in
parallel.

® Add the constraint_verifier() to the final Promela specification.
® Enforce execution of constraint_verifier() after each system step.

® Restrict the verification to valid execution paths 1.e. to those execution sequences
where all constraints holds.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p. 34

Encoding Formal Tropos in Promela: Logic Specifications

/*G(p — Fq) %
accept_init:
if
z(—p)llg —
goto accept_init
2 (1) —
goto TO_S2
fi;
TO_S2:
if
g —
goto accept_init
(1) —
goto TO_S2

if /* label[n] preserves position reached at previous step */

:: label[n]==0 — goto Cn_accept_init
:: label[n]==1 — goto Cn_TO0_S2
fi;
/*G(p — Fq) %
Cn_accept_init:
if
2 (—p)||g — label[n] = 0;
accepted[n] = true;
2 (1) — label[n] =1;
accepted[n] = false; all_accepted = false;
fi; goto Cn_checked;
Cn_TO0_S2:
if
;2 g — label[n] =0;
accepted[n] = true;
2 (1) — label[n] =1;
accepted[n] = false; all_accepted = false;
fi; goto Cn_checked;
Cn_checked:

SEFM 2004

26

- 30 September, 2004

Beijing - China

-p.35

Encoding Formal Tropos in Promela: Logic Specifications

proctype constraint_verifier() { inline system_step() {
byte label[n] = 0; bool accepted[n] = false; byte next = 0; if :: constraints_done — constraints_done = false;
do :: constraints_done — break; :: else valid_step = false;
. else atomic fi;
{all_accepted = true; valid_step = false; next_accepted = false;
... /*All constraints automata go here */ ... /* Reset justcreated and justfulfilled flags */
valid_step = true; constraints_done = true; DoRequest[0].justcreated = false;
if :: accepted[next] — /* Look for acceptance again */ DoRequest[0].justfulfilled = false;
next_accepted = true; next = (next+1) % n; }
:: else
fi;}
od;}

® constraints_done 1s set to true each time process constraint_verifier() evolves, to
false each time the system_step() evolves.

Zn. Irst SEEM 2004 26 - 30 September, 2004 Beijing - China —p.36

Encoding Formal Tropos in Promela: Logic Specifications

proctype constraint_verifier() { inline system_step() {
byte label[n] = 0; bool accepted[n] = false; byte next = 0; if :: constraints_done — constraints_done = false;
do :: constraints_done — break; :: else valid_step = false;
. else atomic fi;
{all_accepted = true; valid_step = false; next_accepted = false;
... /*All constraints automata go here */ ... /* Reset justcreated and justfulfilled flags */
valid_step = true; constraints_done = true; DoRequest[0].justcreated = false;
if :: accepted[next] — /* Look for acceptance again */ DoRequest[0].justfulfilled = false;
next_accepted = true; next = (next+1) % n; }
:: else
fi;}
od;}

® valid_step is true if each system step 1s followed by exactly one step of process
constraint_verifier() and if the execution 1s not blocked.

Zn. Irst SEEM 2004 26 - 30 September, 2004 Beijing - China —p.36

Encoding Formal Tropos in Promela: Logic Specifications

proctype constraint_verifier() { inline system_step() {
byte label[n] = 0; bool accepted[n] = false; byte next = 0; if :: constraints_done — constraints_done = false;
do :: constraints_done — break; :: else valid_step = false;
. else atomic fi;
{all_accepted = true; valid_step = false; next_accepted = false;
... /*All constraints automata go here */ ... /* Reset justcreated and justfulfilled flags */
valid_step = true; constraints_done = true; DoRequest[0].justcreated = false;
if :: accepted[next] — /* Look for acceptance again */ DoRequest[0].justfulfilled = false;
next_accepted = true; next = (next+1) % n; }
:: else
fi;}
od;}

® all_accepted store information whether all automata are visiting an acceptance state
simultaneously.

Zn. Irst SEEM 2004 26 - 30 September, 2004 Beijing - China —p.36

Encoding Formal Tropos in Promela: Logic Specifications

proctype constraint_verifier() { inline system_step() {
byte label[n] = 0; bool accepted[n] = false; byte next = 0; if :: constraints_done — constraints_done = false;
do :: constraints_done — break; :: else valid_step = false;
. else atomic fi;
{all_accepted = true; valid_step = false; next_accepted = false;
... /*All constraints automata go here */ ... /* Reset justcreated and justfulfilled flags */
valid_step = true; constraints_done = true; DoRequest[0].justcreated = false;
if :: accepted[next] — /* Look for acceptance again */ DoRequest[0].justfulfilled = false;
next_accepted = true; next = (next+1) % n; }
:: else
fi;}
od;}

® next_accepted is set to true if accepted[next] 1s set to true. It is used to check that
all constraint automata visit acceptance states.

Zn. Irst SEEM 2004 26 - 30 September, 2004 Beijing - China —p.36

Encoding Formal Tropos in Promela: Logic Specifications

proctype constraint_verifier() { inline system_step() {
byte label[n] = 0; bool accepted[n] = false; byte next = 0; if :: constraints_done — constraints_done = false;
do :: constraints_done — break; :: else valid_step = false;
. else atomic fi;
{all_accepted = true; valid_step = false; next_accepted = false;
... /*All constraints automata go here */ ... /* Reset justcreated and justfulfilled flags */
valid_step = true; constraints_done = true; DoRequest[0].justcreated = false;
if :: accepted[next] — /* Look for acceptance again */ DoRequest[0].justfulfilled = false;
next_accepted = true; next = (next+1) % n; }
:: else
fi;}
od;}

® next is updated such that all constraints are considered in turn.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p.36

Encoding Formal Tropos in Promela: Logic Specifications

® The restriction of the verification to the valid execution paths is captured by the
following formula:

G(valid_step A F next_accepted A
G (next_accepted — G all_accepted))

® [t states that. ..
» the constraint automata are not blocked,
»# they visit acceptance states infinitely often,

»# 1f variable next_accepted stay true forever (execution over finite paths) then
variable all_accepted will stay true forever.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p. 37

Encoding Formal Tropos in Promela: Logic Specifications

The verification of FT thus 1s performed as:

SEFM 2004 26 - 30 September, 2004 Beijing - China -p. 38

Encoding Formal Tropos in Promela: Logic Specifications

The verification of FT thus 1s performed as:
® for an assertions A we verify:

(G (valid_step A next_accepted A
G (next_accepted — G all_accepted))
— A

» It checks whether all the valid execution paths satisfy the assertion A.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p. 38

Encoding Formal Tropos in Promela: Logic Specifications

The verification of FT thus 1s performed as:
® for an assertions A we verify:

(G (valid_step A next_accepted A
G (next_accepted — G all_accepted))
— A

» It checks whether all the valid execution paths satisfy the assertion A.
® for a possibility P we verify:

(G(valid_step A next_accepted A
G(next_accepted — G all_accepted))
— P

»# If a counter-example 1s found for such formula, it is a witness for P.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p. 38

The T-TOoOL

:
i
i Verification Engine

e e e e e e m e e e e e e e = m— = —

T-Tool' | ——— —— i
I I I - 1
L L N &
I 2 u .
e @—B Q S '
| : M |
P M e v
sele| V :
FT T — : i Verification Engine !
2 S,
I FZT T i
‘ %E \ - L > '
. IL Scenario | : S P |
FT Scenario | I P I i
: —|—> 1{1 — N |
| |
| o |
|

SEFM 2004 26 - 30 September, 2004 Beijing - China

A counter-example produced by T-TOOL

[Citizen][SanitaryAgency |

SanitaryAgency 1
created

5 AR 1
| Prov1deFa1rI ProvideFairAssistance
I

crea

T I
I = 1

| HandleAss;ij HandleAssistanceRequest |
1]

DoRequest_lI DoRequest

BeingAssisted 1
created

created

InitialRequest_1
created

Request_1
created

Request_chan!0, 0

1" | InitialRequest_1
/ fulfilled
4‘———"‘— | ProvideInformation 1

" created

ReceiveRequest_1
created

EvaluateRequest_1
created

Request_chan?0, 0

ReceiveRequest
ReceiveRequest_1
fulfilled
EvaluateRequest
oy o [Providemnswer |

created
Response_1
created

[Response_1.result=1

Response_chan!0, 0

Response_chan?0, 0

ProvideInformation_1
fulfilled

WaitAnswer_ 1
created

WaitAnswer 1l.result=0

[DoRequest_1.result=1 |
WaitAnswer_ 1
fulfilled
DoRequest_1
fulfilled

SEFM 2004 26 - 30 September, 2004 Beijing - China

Experimental Analysis

Logic specification translation

Direct Translation

Compositional Translation

I instance | 1..2 instances | 1 instance | 1..2 instances
1 constraint 0,01sec 0,01sec 0,01sec 0,01sec
3 constraints 0,03sec 3.,01sec 0,03sec 0,09sec
5 constraints 0,11sec MO 0,04sec 0,14sec
10 constraints | 10,65sec SF 0,04sec 0,16sec
30 constraints MO SF 0,07sec 0,20sec
45 constraints SF SF 0,15sec 0,41sec

SEFM 2004

26 - 30 September, 2004 Beijing - China

-p. 41

Experimental Analysis

Property verification results

SPIN results

1 instance 1..2 instances

Al | HC4 TO - 1284steps - 1382Mb | TO - 2857steps - 362Mb
BITSTATE | Valid(® - 21sec- 61Mb | TO - 3244steps - 1028Mb
3SPIN Valid® - 23sec - 69Mb | TO - 3207steps - 1178Mb

A2 | HC4 TO - 1393steps - 1382Mb | TO - 2857steps - 362Mb
BITSTATE | Invalid - 21sec - 52Mb TO - 3244steps - 1058Mb
3SPIN Invalid - 24sec - 64Mb TO - 3417steps - 1173Mb

P1 | HC4 Valid - 27sec - 68Mb TO - 2857steps - 362Mb
BITSTATE | Valid - 14sec - 41Mb TO - 3099steps - 956Mb
3SPIN Valid - 19sec - 56 Mb TO - 3312steps - 1143Mb

Hash factors: (@) 1.97 — (0) 3 35

SEFM 2004

26 - 30 September, 2004 Beijing - China

—p.42

Experimental Analysis

Property verification results

NUSMY results

1 instance 1..2 instances

Al | BDD | Valid - 9sec - 6,0Mb TO - 235Mb
BMC | Undec.™*) - 7sec - 20,4Mb | Undec.*) - 106sec - 61,2Mb

A2 | BDD | Invalid - 11sec - 6,9Mb TO - 235Mb
BMC | Invalid - 0,6sec - 3,8Mb Invalid - 2sec - 11,3Mb

P1 | BDD | Valid - 10sec - 5,8Mb TO - 235Mb
BMC | Valid®**) - 0,7sec - 5,3Mb | Valid**) - 2sec - 16,0Mb

*) No counter-example found up to bound length 10

(*) Found example of length 4 satisfying P1

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p. 43

Experimental Analysis

Implementation verification result

1 instance 1..2 instances

Al | HC4 TO - Sl6steps - 1442Mb | TO - 341steps - 1282Mb
BITSTATE | Valid(®) - 32sec - 83Mb | Valid® - 169sec - 316Mb
3SPIN Valid(®) - 14sec - 35Mb | Valid(¥) - 74sec - 171Mb

A2 | HC4 Invalid - 125sec - 206Mb | TO - 341steps - 1162Mb
BITSTATE | Invalid - 32sec - 71Mb Invalid - 1285sec - 2003Mb
3SPIN Invalid - 15sec - 32Mb MO - 673steps - 1141sec

P1 | HC4 Valid - 2sec - 9,1Mb TO - 341steps - 1282Mb
BITSTATE | Valid - 3sec - 10,1Mb Valid - 167sec - 306Mb
3SPIN Valid - 3sec - 12,0Mb Valid - 59sec - 148Mb

C | HC4 Invalid - 2sec - 9,1Mb TO - 341steps - 1282Mb
BITSTATE | Invalid - 3sec - 11,4Mb Invalid - 166sec - 306Mb
3SPIN Invalid - 3sec - 12,0Mb Invalid - 62sec - 151Mb

Hash factors: (@) 2.44 — (®) 1,66 — (¢) 6.06 — (4 1.61

SEFM 2004

26 - 30 September, 2004 Beijing - China

—p. 44

Conclusions

® We have proposed a framework for the specification and verification of early
requirements based on explicit state model checking and SPIN.

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p.45

Conclusions

® We have proposed a framework for the specification and verification of early
requirements based on explicit state model checking and SPIN.

® We have extend the scope of the verification to include the design of distributed
processes defined in Promela.

SEFM 2004 26 - 30 September, 2004 Beijing - China

-p.45

Conclusions

® We have proposed a framework for the specification and verification of early
requirements based on explicit state model checking and SPIN.

® We have extend the scope of the verification to include the design of distributed
processes defined in Promela.

® We have proposed a novel, compositional encoding of the LTL constraints that
define the valid behaviors of the requirements model in the verification tasks.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p.45

Conclusions

® We have proposed a framework for the specification and verification of early
requirements based on explicit state model checking and SPIN.

® We have extend the scope of the verification to include the design of distributed
processes defined in Promela.

® We have proposed a novel, compositional encoding of the LTL constraints that
define the valid behaviors of the requirements model in the verification tasks.

® The preliminary experiments show that the approach is viable, even if the
performance is currently a rather serious limit for its applicability.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p.45

Conclusions

® We have proposed a framework for the specification and verification of early
requirements based on explicit state model checking and SPIN.

® We have extend the scope of the verification to include the design of distributed
processes defined in Promela.

® We have proposed a novel, compositional encoding of the LTL constraints that
define the valid behaviors of the requirements model in the verification tasks.

® The preliminary experiments show that the approach is viable, even if the
performance is currently a rather serious limit for its applicability.

® Future work
» Optimize the model generator by integrating advanced abstraction techniques that
exploit, for instance, possible symmetries in the specification.
» Deeper investigation of the compositional approach for the verification of
complex LTL specifications.

SEFM 2004 26 - 30 September, 2004 Beijing - China -p.45

The End

SEFM 2004

26 - 30 September, 2004 Beijing - China

—p. 46

	 Introduction
	Outline
	Web Services
	WS: Executable Processes...
	WS: ... and Interaction Protocols
	Verification for BPEL4WS
	Verification for BPEL4WS
	Verification for BPEL4WS
	Verification for BPEL4WS

	Tropos: A Language for Business Requirements
	Tropos: A Language for Business Requirements
	Tropos: A Language for Business Requirements
	Tropos: A Language for Business Requirements
	Tropos: A Language for Business Requirements
	Tropos: A Language for Business Requirements

	Proposed methodology: Tropos4WS
	Specifying Business Requirements: Case Study
	Specifying Business Requirements: Case Study
	Specifying Business Requirements: Case Study
	Specifying Business Requirements: Case Study
	Specifying Business Requirements: Case Study
	Specifying Business Requirements: Case Study
	Specifying Business Requirements: Refinement
	Specifying Business Requirements: Refinement
	Specifying Business Requirements: Refinement
	Specifying Business Requirements: Refinement
	Formal Tropos
	Specifying Business Requirements: Formal Tropos
	Specifying Business Requirements: Formal Tropos
	Specifying Business Requirements: Formal Tropos
	Specifying Business Requirements: Formal Tropos
	Formal Analysis of Requirements
	Formal Analysis of Requirements
	Formal Analysis of Requirements
	Formal Analysis of Requirements
	Formal Analysis of Requirements
	Formal Analysis of Requirements

	Implementing Business Requirements in Promela
	Implementing Business Requirements in BPEL4WS
	 Encoding Formal Tropos in Promela
	 Encoding Formal Tropos in Promela
	 Encoding Formal Tropos in Promela
	 Encoding Formal Tropos in Promela

	 Encoding Formal Tropos in Promela
	 Encoding Formal Tropos in Promela
	 Encoding Formal Tropos in Promela
	 Encoding Formal Tropos in Promela

	 Encoding Formal Tropos in Promela
	Encoding Formal Tropos in Promela
	Encoding Formal Tropos in Promela: Remarks
	Encoding Formal Tropos in Promela: Logic Specifications
	Encoding Formal Tropos in Promela: Logic Specifications
	Encoding Formal Tropos in Promela: Logic Specifications
	Encoding Formal Tropos in Promela: Logic Specifications
	Encoding Formal Tropos in Promela: Logic Specifications

	Encoding Formal Tropos in Promela: Logic Specifications
	Encoding Formal Tropos in Promela: Logic Specifications
	Encoding Formal Tropos in Promela: Logic Specifications
	Encoding Formal Tropos in Promela: Logic Specifications
	Encoding Formal Tropos in Promela: Logic Specifications
	Encoding Formal Tropos in Promela: Logic Specifications
	Encoding Formal Tropos in Promela: Logic Specifications

	Encoding Formal Tropos in Promela: Logic Specifications
	Encoding Formal Tropos in Promela: Logic Specifications
	Encoding Formal Tropos in Promela: Logic Specifications
	Encoding Formal Tropos in Promela: Logic Specifications

	The 	extsc {T-Tool}
	A counter-example produced by 	extsc {T-Tool}
	Experimental Analysis
	Experimental Analysis
	Experimental Analysis
	Experimental Analysis
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions

	The End

