
Specifying and Analyzing Early Requirements:

Some Experimental Results
Marco Roveri

joint work with A. Fuxman, L. Liu, J. Mylopoulos and M. Pistore

roveri@irst.itc.it

ITC-irst, Via Sommarive 18, 38050 Povo, Trento, Italy

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.1

The Formal Tropos Project

The Tropos project aims to the development of and Agent-Oriented software
engineering methodology, the Tropos Software Development Process, supported
by a variety of analysis tools.

Late Requirements

Implementation

Architectural Design

Early Requirements

Detailed Design

The Formal Tropos project aims to an effective integration and harmonization of
Formal Methods in the Tropos Software Development Process. It builds on. . .

i*, a framework for modeling social settings, based on the notions of actors,
goals, dependencies...
KAOS, a goal-oriented requirements framework that provides a rich temporal
specification language.
NUSMV, a (symbolic) model checker initially developed for the verification
of hardware systems.

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.2

Model Checking Early Requirements [RE01]

Formal Methods (FM) are usually applied in advanced stages of the development
process, and their application in Early Requirements is by no means trivial:

FM amounts to validate an implementation against requirements;
FM require a detailed description of the behavior of the system;
FM concepts are not appropriate for Early Requirements.

Formal Methods, and in particular Model Checking cannot be used to prove
correctness of the specification.
However they can. . .

show misunderstandings and omissions in the requirements that might not be
evident in an informal setting;
assist the requirements elicitation by helping in the interaction with the
stakeholders;
add expressive power to the requirements specification formalism;
enable proof of correctness in advanced development phases.

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.3

Outline

The original contribution.
The methodology.
The T-TOOL

The experimental analysis.
Conclusions and Future Work.

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.4

Our contribution

In this paper we focus on applying model checking in early requirements analysis.
We build on the results in [RE01].
The original contribution:

Enriched the i* notation (e.g., Prior-to links, cardinality constraints)
Heuristic rules to automatically extract a Formal Tropos model from the
enriched i* model
A methodology to use the most effective model checking techniques for the
analysis of FT specifications
A tool supporting the methodology (T-TOOL).
Experimental evidence of the effectiveness of the approach.

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.5

The course-exam management case study

Give
Answer
[Exam]

+

1

Student

Integrity

Study
[Course]

Know Correct
Answer
[Exam]

Write
Report

[Course]

Do Research
Project

[Course]

Pass
[Course]

Pass
[Exam]

Get
PassingMark

[Exam]

FairMarking
[Exam]

Take
[Exam]

Honesty

Instructions
[Exam]

Answer
[Exam]

Fair Marking
Scheme
[Exam]

Post-Exam
Discussion

[Exam,Mark]

Mark
[Exam]

Pre-Exam
Discussion

[Exam,Mark]

Teacher

Teach
[Course]

Give
[Exam]

Run
[Exam] Marking

[Exam]

Prepare
[Exam]

Answer
Questions

[Exam]
Reevaluate

[Exam]Initial
Marking
[Exam]

Produce
Marking Scheme

[Exam]

Receive
Answer
[Exam]

Give
Instructions

[Exam]

+

+

there are different instances of actors, goals, dependencies, and relations among
these instances
strategic dependencies have a temporal evolution (they arise, they are fulfilled,
there is an order,...)

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.6

The course-exam management case study

Give
Answer
[Exam]

+

1

Student

Integrity

Study
[Course]

Know Correct
Answer
[Exam]

Write
Report

[Course]

Do Research
Project

[Course]

Pass
[Course]

Pass
[Exam]

Get
PassingMark

[Exam]

FairMarking
[Exam]

Take
[Exam]

Honesty

Instructions
[Exam]

Answer
[Exam]

Fair Marking
Scheme
[Exam]

Post-Exam
Discussion

[Exam,Mark]

Mark
[Exam]

Pre-Exam
Discussion

[Exam,Mark]

Teacher

Teach
[Course]

Give
[Exam]

Run
[Exam] Marking

[Exam]

Prepare
[Exam]

Answer
Questions

[Exam]
Reevaluate

[Exam]Initial
Marking
[Exam]

Produce
Marking Scheme

[Exam]

Receive
Answer
[Exam]

Give
Instructions

[Exam]

+

+

there are different instances of actors, goals, dependencies, and relations among
these instances
strategic dependencies have a temporal evolution (they arise, they are fulfilled,
there is an order,...)

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.6

The course-exam management case study

1..n

1

Give
Answer
[Exam]

+

0..n

0..n

1..n

1 0..n1

1

1

1..n

Student

Integrity

Study
[Course]

Know Correct
Answer
[Exam]

Write
Report

[Course]

Do Research
Project

[Course]

Pass
[Course]

Pass
[Exam]

Get
PassingMark

[Exam]

FairMarking
[Exam]

Take
[Exam]

Honesty

Instructions
[Exam]

Answer
[Exam]

Fair Marking
Scheme
[Exam]

Post-Exam
Discussion

[Exam,Mark]

Mark
[Exam]

Pre-Exam
Discussion

[Exam,Mark]

Teacher

Teach
[Course]

Give
[Exam]

Run
[Exam] Marking

[Exam]

Prepare
[Exam]

Answer
Questions

[Exam]
Reevaluate

[Exam]Initial
Marking
[Exam]

Produce
Marking Scheme

[Exam]

Receive
Answer
[Exam]

Give
Instructions

[Exam]

+

+

there are different instances of actors, goals, dependencies, and relations among
these instances
strategic dependencies have a temporal evolution (they arise, they are fulfilled,
there is an order,...)

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.6

The course-exam management case study (II)

Entity Course
Entity Exam

Attribute constant course : Course
Actor Student
Goal PassCourse

Mode achieve
Actor Student
Attribute constant course : Course

Actor Teacher
Task GiveExam

Mode achieve
Actor Teacher
Attribute constant exam : Exam

Resource Dependency Answer
Mode achieve
Depender Teacher
Dependee Student
Attribute constant exam : Exam

Resource Dependency Mark
Mode achieve
Depender Student
Dependee Teacher
Attribute constant exam : Exam

passed : boolean
Softgoal Integrity

Mode maintain
Actor Student

FT emphasis is in modeling the “strategic” aspects of the evolution elements.
FT focus is on the creation and fulfillment central moments of elements.
FT allows the designer:

to specify different modalities for the fulfillment of elements.
to specify temporal constraints on the creation and fulfillment of elements.

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.7

The course-exam management case study (III)

Goal PassCourse
Mode achieve
Actor Student
Attribute constant course : Course
Fulfillment definition

/* OR decomposition */

((

�

e : Exam (e.course = course)

�

�

e : Exam (e.course = course �

(

�

p : PassExam (p.exam = e

�

p.pass_course = self
�

Fulfilled (p)))))

�

(

�

r : DoResearchProject (r.pass_course = self

�

Fulfilled (r))))

/* cardinality constraint */

�

(� �

p : PassCourse ((p

��� self)

�

(p.actor = actor)
�

(p.course = course)

�

Fulfilled (p)))

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.8

Formal Analysis of Early Requirements

Once a “satisfactory” Formal Tropos model of the requirements is available we can
perform the following formal analysis:

consistency check: “the specification admits valid scenarios”
possibility check: “there is some scenario for the model that respects certain
possibility properties”
assertion validation: “all scenarios for the model respect certain assertion

properties”
animation: the user can interactively explore valid scenarios of the model:

gives immediate feedback on the effects of the constraints;
makes it possible to catch trivial errors;
is an effective way of communicating with the stakeholder.

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.9

Possibility Checks in Formal Tropos

A possibility:
describes expected, valid scenarios of the specification;
is used to guarantee that the specification does not rule out any wanted
execution of the system.

Global Possibility

�

p : PassCourse (Fulfilled (p))

The result of the verification is:
A witness scenario if the possibility is verified.

t0 t1 t2 t3 t4 t5

Fulfilled
Created

Fulfilled
CreatedMark(m1)

True
False

CreatedExam(e1)

Mark(m1).passed

PassExam(pc1)

PassCourse(pc1) Created
Fulfilled

A negative answer if there is no scenario satisfying the possibility.

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.10

Assertion Validation in Formal Tropos

An assertion:
describes expected conditions for all the valid scenarios;
is used to guarantee that the specification does not allow for unwanted
scenarios.

Global Assertion

�

a : Answer (F

�

pe : PassExam (pe.exam = a.exam
�

pe.actor = a.dependee))

The result of the verification is:
A positive answer if the property is satisfied,
A counter-example scenario if the assertion is not satisfied.

Fulfilled
Created

Fulfilled
Created

Fulfilled
Created

Fulfilled
Created

Fulfilled
CreatedGiveExam(ge1,t1)

PassExam(pe1,s1)

PassExam(pe2,s2)

Answer(a1,s1)

Answer(a2,s2)

t5t4t3t2t1t0

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.11

The Supporting Tool: T-TOOL

F
T
2
I
L

L
2
S
M
V

I N
u
S
M
V

FT

#

IL

Verification Engine

T−Tool

IL Scenario
FT Scenario

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.12

The Model Checking Verification Engine

It is based on the NUSMV symbolic model checker.
NUSMV adopts symbolic model checking algorithms based on:

Binary Decision Diagrams (BDDs):
performs an exhaustive traversal of the model by considering all the possible
behaviors in a compact way;
because of the exhaustiveness they are complete;
very expensive for large models.

Propositional Satisfiability (SAT), known as Bounded Model Checking (BMC).
Looks for a trace of given length that satisfies/falsifies a property;
more efficient than BDD for traces of reasonable length;
complete up to the considered length; a longer trace could falsify the property.

NUSMV has been extended to allow for the verification of FT specifications:
An IL2SMV module to interface the IL with the NUSMV system;
SAT based BMC has been extended to deal with past operators;
An improved flexible interactive animator.

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.13

Which Verification Technique for What?

Possibility (Consistency) checks amounts to identify a witness scenario for a
given property.

These kind of properties appear to be more amenable to SAT based BMC
techniques.
The length of the witnesses is usually reasonable (

� ��

).

Assertion validation amounts to check whether all the admissible behaviors
satisfy a certain property.

SAT based BMC can provide a quite immediate feedback on the truth of the
considered property up to a reasonable length.
If SAT BMC does not point out flaws, then we can proceed with BDD based
Model Checking to possibly confirm the result.
Model often too big to be efficiently handled by BDD based symbolic model
checking techniques.

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.14

Which Verification Technique for What? (II)

The problem: while verifying assertions, BDD based exhaustive techniques very
often blow up when the system is too large.
The solution: use of “standard” reduction techniques, e.g. abstraction techniques.

The general assertion validation problem: � � �
� � ��

If we consider a

�� �

if � � 	
� � �� then � � �
� � ��

If we fail with

�� �

we need to choose another

such that

���
 � �

and
iterate.

SAT based BMC can give an immediate feedback on the truth of the reduced
model, thus suggesting refinement of the constraints considered.
BDD based MC then will guarantee the truth.
Open to different verification strategies (BMC and BDD in parallel, the first
that produce a result stops the other, . . .).

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.15

Experimental Results

Following the devised methodology we conducted several iterations of
experiments.
At each iteration an FT specification was validated by consistency checks, and
possibility and assertions verifications on different upper bounds of number of
class instances.

Whenever a bug was found the FT specification was corrected and the
approach iterated.

Iterations ended when all the checks in the FT specification were successful, i.e.
we had a “reasonable” specification.

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.16

Experimental Results (II)

Possibility Checks

1 instance 1..2 instances 2 instances

BMC BDD BMC BDD BMC BDD

P1 Valid[3] Valid[3] Valid[3] Undecided Valid[3] Undecided

9.4sec / 29Mb 1786sec / 64Mb 55.7sec / 77Mb T.O. 860sec / 295Mb M.O.

P2 Valid[3] Valid[3] Valid[3] Undecided Valid[3] Undecided

9.3sec / 29Mb 1719sec / 63Mb 55.6sec / 77Mb T.O. 842sec / 295Mb M.O.

P3 Valid[4] Valid[5] Valid[4] Undecided Valid[4] Undecided

14.2sec / 38Mb 1979sec / 64Mb 94.9sec / 96Mb T.O. 1629sec / 375Mb M.O.

P4 Undecided[10] Invalid Undecided[10] Undecided Undecided[4] Undecided

105sec / 84Mb 1626sec / 64Mb 2143sec / 237Mb T.O. T.O M.O.

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.17

Experimental Results (III)

Assertion Checks

1 instance 1..2 instances

BMC BDD BDD-reduced BMC BDD BDD-reduced

A1 NoBug[10] Valid Valid NoBug[10] Undecided Valid

100sec / 83Mb 1298sec / 64Mb 0.3sec / 2Mb 1086sec / 237Mb T.O. 30.8sec / 4.2Mb

A2 NoBug[10] Valid Valid Invalid[3] Undecided Invalid[7]

111sec / 84Mb 1295sec / 64Mb 44sec / 17Mb 57.6sec / 77Mb T.O. 757sec / 100Mb

A3 NoBug[10] Valid Valid NoBug[10] Undecided Undecided

107sec / 83Mb 2110sec / 64Mb 2.5sec / 4Mb 2837sec / 234Mb T.O. T.O.

A4 NoBug[10] Valid Valid NoBug[9] Undecided Undecided

114sec / 83Mb 1297sec / 63Mb 0.1sec / 2Mb T.O. T.O. T.O.

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.18

Analysis of results

For our case study the devised methodology. . .
was effective in producing a FT specification of good quality;
lead to a better understanding of the domain revealing tricky aspects (e.g. . . .)
validation techniques provided by the T-TOOL verification engine were useful in
detecting bugs, while animation was effective in early phases to point out trivial
bugs.
SAT based BMC techniques were very effective in answering to consistency and
possibility checking.
SAT based BMC is very effective in providing a confidence on the truth of
assertions, thus preventing spending much effort in applying BDD based
verification.
Abstraction techniques are very promising, but need to be automated, defining
heuristics to extract initial set of constraints and to refine them in case of
verification failure.

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.19

Future Work

Devise techniques guaranteeing correctness of an FT specification regardless of
qualifications.
Automate the verification process for assertions

developing techniques for choosing initial set of constraints and to refine them
when reduced verification fails;
heuristics to automatically alternate phases where the tool tries to prove
validity of a model, with phases where it looks for bugs.

Improve model generation by exploiting possible symmetries in the specification.
Develop a GUI allowing the user to write FT specifications and to inspect
scenarios produced by T-TOOL as animation of the i* diagrams.
Extend the methodology to the further phases of the Tropos Software
Development Process.

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.20

References

[RE01] Model Checking Early Requirements Specifications in Tropos. A. Fuxman,
M. Pistore, J. Mylopoulos and P. Traverso. IEEE Int. Symposium on
Requirements Engineering. 2001.

[JRE03] Specifying and Analyzing Early Requirements: Some Experimental Results.
A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri and P. Traverso.
Submitted to to Journal of Requirements Engineering. 2003.

[T-TOOL] http://sra.itc.it/tools/t-tool
[Tropos] http://dit.unitn.it/tropos
[NUSMV] http://nusmv.irst.itc.it

Requirements Engineering 2003 – Monterey (CA) Sept. 2003 – p.21

	The Formal Tropos Project
	Model Checking Early Requirements [RE01]
	Outline
	Our contribution
	The course-exam management case study
	The course-exam management case study (II)
	The course-exam management case study (III)
	Formal Analysis of Early Requirements
	Possibility Checks in Formal Tropos
	Assertion Validation in Formal Tropos
	The Supporting Tool: 	tool
	The Model Checking Verification Engine
	Which Verification Technique for What?
	Which Verification Technique for What? (II)
	Experimental Results
	Experimental Results (II)
	Experimental Results (III)
	Analysis of results
	Future Work
	References

