
Agent-oriented modeling by interleaving formal and
informal specification

A. Perini
�
, M. Pistore

��� �
, M. Roveri

�
, and A. Susi

�
�

ITC-irst, Via Sommarive, 18, I-38050 Trento-Povo, Italy�
perini,roveri,susi � @irst.itc.it�

Department of Information and Communication Technology
University of Trento, via Sommarive 14, I-38050 Trento-Povo, Italy

pistore@dit.unitn.it

Abstract. The goal of this paper is to discuss possibilities of inter-mixing formal
and informal specification in order to guide and support the conceptual modeling
process in software development. We sketch a framework which rests on an agent-
oriented methodology that provides a modeling language which allows for the
definition of both informal and formal specification. We show how formal tech-
niques can be used to guide and support the analyst while building and refining
a conceptual model. Examples of its applications are discussed, with reference to
the decision making process undertaken by the analyst when performing a set of
activities relevant for requirements engineering, such as requirements elicitation
and refinement, user validation of requirements specification, or management of
requirements evolution. A case study taken from a technology transfer project in
the agricultural domain is used to illustrate the approach.

1 Introduction

In the last years, a considerable effort in defining agent-oriented approaches to software
development is going on [6, 12, 22]. The main reason for this can be drawn back to the
recognition that the agent paradigm, beside providing a usefull technology to build soft-
ware systems with an open architecture, offers appropriate abstractions for specifying
and designing critical properties of these system, such as the dynamic evolution of their
architecture and the interaction protocols of system components.

Most of the proposed methodologies adopt visual modeling as a core process, ac-
cording to a best practice in structured Object Oriented software development pro-
cesses [14], as well as to ideas proposed by Agile software development approaches [1].

The usage of visual modeling languages in the software development process of-
fers advantages such as that of providing an effective communication framework for
different stakeholders of the process. For instance, a use-case model can be used to
discuss system requirements with the users. Nevertheless, visual modeling languages
which lack a formal definition of their semantic, can lead to subjective models, which
can hardly be refined in a straightforward way into a system design. Moreover, a typi-
cal question when building a conceptual model is: “when can I stop refining it?” This
weakness is usually addressed by structured methodologies, which provides guidelines



for the analyst and for the designer in building, refining and documenting the process’
artifacts that are based on conceptual models, e.g., [14].

Formal specification languages solve some of the weaknesses of visual modeling
languages, specifically, they permit to define models with a precise semantics, and fa-
cilitate their transformation into system designs. However, writing formal specification
languages usually require strong skills, and formal specifications are often very ineffec-
tive for discussing with the stakeholders. Moreover, the formalization “a posteriori” of
the visual languages provided by the conceptual modeling frameworks is not an easy
task at all, due to the ambiguities in the meaning of the graphical notations.

The basic idea discussed in this paper concerns the possibility to exploit formal tech-
niques to guide and support the analyst while building and refining a conceptual model.
In particular we will focus on the decision making process undertaken by the analyst
when performing a set of activities, relevant for requirements engineering, such as re-
quirements elicitation and refinement, or user validation of requirements specification.
We will also analyze how results of deductive reasoning procedures run on a formal
specification can support the analyst’s decisions. Our claim is that, if the diagrammatic
models are equipped with a formal semantics, then only a limited formalization effort is
necessary to exploit formal techniques. Moreover, the diagrammatic notations make it
possible to interpret the models in an informal way, for instance when discussing with
the stakeholders.

In our approach we refer to the Tropos methodology [3, 18], an agent oriented soft-
ware development methodology which provides a conceptual modeling language that
can be used both to build an informal specification or a formal one. It is this common
conceptual model that allows for the formal interpretation of the diagrammatic models
that we have described above. Our long term objective is that of providing a tool that
supports the analyst and the designer that use informal modeling, in performing the de-
ductive reasoning on a formal specification which has been automatically derived from
the informal model.

The paper is structured as follows. Section 2 recalls the basic features of concep-
tual modeling in Tropos and how to build informal and formal specification. Section 3,
presents our approach to interleaving informal and formal specification with reference
to specific requirements engineering activities. Related works are discussed in Sec-
tion 4. Finally, conclusions are presented in Section 5.

2 Background

The Tropos methodology [3, 18] is an agent-oriented software development method-
ology which provides a visual modeling language that can be used to define both an
informal specification and a formal one. ¿From a practical point of view, the method-
ology guides the software engineer in building an informal, conceptual model that is
incrementally refined and extended from an early requirements model, namely a rep-
resentation of the organizational setting where the system-to-be will be introduced, to
system design artifacts, according to a requirements-driven approach.

The Tropos language allows to model intentional and social concepts, such as those
of actor and goal, and set of relationships, such as actor dependency, goal decomposi-



tion, means-end and contribution relationships. These elements support the modeling
of basic goal analysis techniques. The language ontology has been given in terms of
common sense (informal) definitions. An actor models an entity that has strategic goals
and intentionality, such as a physical agent, a role with respect to a given context, or a
set of roles (i.e., a position). Goals represent the strategic interests of actors. Two basic
type of goals are considered, namely hard and soft goals, the latter having no clear-cut
definition and/or criteria as to whether they are satisfied. Softgoals are useful for mod-
eling goal/plan qualities and non functional requirements. A dependency between two
actors indicates that an actor depends on another in order to achieve a goal, execute a
plan, or exploit a resource.

Basic modeling activities in Tropos include the identification of the actors with their
goals and of the actors mutual dependencies. Each goal can be analyzed from the point
of view of the individual actor considering: possible sub-goals (AND decomposition);
means to satisfy these goals (means-end relationship); alternative ways to achieve a
specific goal (OR decomposition); goals or plans or resources that can contribute posi-
tively or negatively to its achievement (contribution). All these models can be depicted
using two basic types of diagrams, namely, actor and goal diagrams. A detailed account
of modeling activities can be found in [3].

A Tropos specification provides a “static” view of the organizational setting and
of the dependencies among the different elements of the domain. A Formal Tropos
(FT hereafter on) specification [9, 11] extends a Tropos specification with annotations
that characterize the valid behaviors of the model. In FT the emphasis goes in mod-
eling the “strategic” aspects of the evolutions of the model. Thus, an FT specification
consists of a sequence of class declarations such as entities, actors, goals, and depen-
dencies. These are the formal counterparts of the elements of the “informal” Tropos
specification. Each declaration associates a set of attributes to the class and character-
izes its instances. Moreover, class declarations contain temporal constraints expressed
in a typed first-order linear time temporal logic (LTL). These constraints describe the
valid lifetime evolutions of the model in terms of temporal evolutions of set of instances
of the classes in the specification. Two critical moments in the life-cycle of goals and
dependencies are the instants of their creation and fulfillment. The creation of a goal is
interpreted as the moment in which the owner or depender expects or desires to achieve
the goal, while its fulfillment is the moment in which the goal condition is actually
achieved. In FT, creation and fulfillment constraints can be used to define conditions
for these two moments in the life of intentional elements. Creation and fulfillment con-
ditions are used, e.g., for defining constraints on the lifetimes of sub-goals in a goal
decomposition (sub-goals are created after the parent goal and should be fulfilled be-
fore the parent goal can be fulfilled), or for defining the responsiveness of an actor w.r.t.
the dependencies (an actor can take care immediately of some of them while delaying
other dependencies). FT also provides invariant constraints that define conditions that
should be true throughout the lifetime of class instances. Typically, invariants define
relations on the possible values of attributes, or cardinality constraints on the instances
of a given class.

Given an FT specification, one can ask questions such as: Can we construct valid
operational scenarios based on the model? Is it possible to fulfill the primary goals of



hystorical data
analysis

manage
pheromone trap

plant

area collection
pheromone
dispenser 
distribution

collect data

+

orchards 
hystorical

data

lab data

monitoring device 
data

 area analysis
via GIS

dispencer
report and order

 plant plan

orchards 
analysis

infection sources
analysisorchards

data

Producer

Advisor

LEGEND

Actor goal

AND
decomposition

OR 
decomposition

contribution
 (positive)

+

dependency

dependeedepender

dependum

Fig. 1. Goal diagram of the actor Advisor, showing an example of goal analysis.

actors in the current model? Do the decomposition links induce a meaningful temporal
order for goal fulfillment? Do the dependencies represent a valid synergy or synchro-
nization between actors? These questions can be formulated as formal queries on a
FT model and answered by the T-TOOL [10], an automatic verification tool based on
the NUSMV [7] model checker (see [9, 10] for more details).

The effectiveness of the Tropos (and of the FT) methodology has been illustrated
by several case studies [10, 11, 18, 19]. In the following we will introduce a simple
example giving both the informal specification and the formal one. The example is ex-
tracted from a real case-study developed in a technology transfer project in the domain
of decision-support systems in agriculture, described in [19]. In particular, we will fo-
cus on goal modeling, represented by a simple goal diagram, and we will describe basic
questions that the analyst can issue during informal modeling and that can be automat-
ically answered when adding formal annotations.

2.1 Informal modeling

The example considered corresponds to a fragment of the early requirements model for
the agriculture domain. The early requirements model in Tropos describes the domain
stakeholders (modeled as actors), their goals, and the mutual dependencies. In our case,
the actor Producer represents the apple grower who pursues objectives such as apply-



ing Integrated Production (IP) 3 techniques with the help of agronomists of the local
advisory service, represented by the actor Advisor. The example focuses on a particu-
lar technique for reducing the risk of infection of an apple pest which requires to install
in the orchard a pheromones trapping system which prevents the pest population growth
in the area. The design of the trapping system needs to take into account the geometry of
the field (e.g., perimeter), geographical feature of the area of the field and the possible
infections sources in the neighborhoods.

Figure 1, shows goal analysis of the Advisor, as resulting from a set of interviews to
agronomists, concerning approaches currently in use for applying pheromones trapping
techniques.

During goal analysis the analyst intends to extract all the possible steps that the Ad-
visor has to fullfil to achieve the higher level goal manage pheromone trap plant. The
analysis starts from the decomposition of this goal manage pheromone trap plant in
a set of goals that has to be all satisfied (AND decomposition). An important step is the
analysis of the agronomical history of the area of interest (modeled with the goal hys-
torical data analysis), that can be done by finding the data directly from the orchards
descriptions (orchards hystorical data) maintained by the producers, or by accessing
the data from the research laboratory (lab data), or by using data coming from the
orchard monitoring systems information, like meteorological data, (see the goal mon-
itoring devices data). In this case the OR decomposition allows the analyst to model
alternative ways to access data that can be available from different information sources.
Crucial for the advisor is the possibility to collect information about geographical and
biological charcteristics for the areas that seems to be candidate for the application of
the pheromone trapping techniques (modeled with area collection). This goal can be
accomplished sub-goals, namely, the geographic analysis of the areas (area analysis
via GIS), the planning of the pheromone system (plant plan) and the distribution of
the pheromone dispensers (dispenser report and order). All these goals have to be
satisfied in order to obtain the set of needed information on the area.

The dispenser distribution and the monitoring of the results obtained upon applica-
tion of the techniques complete the accomplishment of the higher level goal.

2.2 Formal Modeling

An excerpt of the FT specification for the agriculture example is depcited in Figure 2.
The FT specification can be obtained from the Tropos model by mapping actors and
intentional elements into corresponding FT classes. The attributes in FT are refer-
ences to other classes. For example, goal OrchardAnalysis refers to the Historical-
DataAnalisys goal that motivates the advisor to get the historical data (attribute hda).
Similarly, dependency OrchardsData refers to OrchardHystoricalData and to Or-
chardAnalysis goals of the advisor (attributes ohd and oa respectively). Since actor
Advisor is the owner of goals ManagePheromoneTrapPlant, AreaCollection and
OrchardAnalysis, the FT specification has Advisor as the Actor attribute of the three

3 Integrated Production (IP) aims at a sustainable approach to agriculture production. In plant
disease control, it promotes the use of low-impact techniques and chemicals, and the exploita-
tion of natural defense mechanisms.



Actor Advisor
Actor Producer
Goal ManagePheromoneTrapPlant

Actor Advisor
Mode achieve

Goal AreaCollection
Actor Advisor
Mode achieve
Attribute constant mptp : ManagePheromoneTrapPlant
Creation condition � Fulfilled(mptp)
Invariant mptp.actor = actor
Fulfillment condition�

aavg : AreaAnalysisViaGIS ((aavg.depender = actor) � Fulfilled(aavg)) ��
pp : PlantPlan ((pp.depender = actor) � Fulfilled(pp)) ��

drao : DispenserReportAndOrder ((drao.depender = actor) � Fulfilled(drao))
Goal OrchardAnalysis

Actor Advisor
Mode achieve
Attribute constant hda : HistoricalDataAnalisys
Creation condition � Fulfilled(hda)
Invariant hda.actor = actor
Fulfillment condition�

od : OrchardsData ((od.depender = actor) � Fulfilled(od))
Goal Dependency OrchardsData

Depender Advisor
Dependee Producer
Mode achieve
Creation condition�

ohd : OrchardHistoricalData ((ohd.actor = depender) ��� Fulfilled(ohd)) ��
oa : OrchardAnalysis ((oa.actor = depender) ��� Fulfilled(oa))

Invariant
�

ohd : OrchardHistoricalData (ohd.actor = depender) ��
oa : OrchardAnalysis (oa.actor = depender)

Fig. 2. Excerpt of FT specification.

goals. Similarly, Depender and Dependee attributes of dependencies represent the
two parties involved in a delegation relationship. Goals and dependencies in Figure 2
are also equipped with a mode attribute, which defines the modality of fulfillment. The
mode of goal ManagePheromoneTrapPlant, for instance, is achieve, which means
that the advisor wants to reach a state where he was able to manage the pheromone
trap plant, and therefore the goal is fulfilled. Another modality in maintain, where the
fulfillment condition is to be continuously maintained. Figure 2 contains also some ex-
amples of constraints on the lifetime of class instances. For instance, the first invariant
of Figure 2 binds a AreaCollection object with its father ManagePheromoneTrap-
Plant object. Typically, primary intentional elements, (e.g., ManagePheromoneTrap-
Plant) have fulfillment constraints, but no creation constraints: we are not interested in
modeling the reasons why an advisor wants to manage a pheromone trap plant. Sub-
ordinate intentional elements (e.g., AreaCollection, OrchardAnalysis) typically have
constraints that relate their creation with the state of their parent intentional elements.
For instance, Figure 2 shows that a creation condition for an instance of goal Area-
Collection is that the parent goal ManagePheromoneTrapPlant is not yet fulfilled:
if the advisor has already managed the pheromone trap plant there is no need to man-
age it again (unless a new management activity is started). The creation condition of
dependency OrchardsData together with the fulfillment condition of goals Orchard-



HystoricalData and OrchardAnalysis elaborate the delegation relationship between
Advisor and Producer in the corresponding Tropos diagram.

In an FT specification we can also specify properties desired to hold in the domain,
so they can be verified against the model we built. In FT we distinguish between as-
sertion properties that should hold for all valid evolutions of the FT specification, and
possibility properties that should hold for at least one. Given the FT specification and a
set of properties, we can verify whether the FT specification satisfies the properties by
means of T-TOOL.

3 The framework

The proposed framework is based on the idea of exploiting formal techniques to guide
and support the analyst while building and refining a conceptual model. We describe
it focusing on a set of requirements engineering activities, such as requirements elici-
tation and refinement, or user validation of requirements specification. These activities
involve domain stakeholders and an informal analyst (called from now on iAnalyst),
which can pose specific questions to a formal analyst (fAnalyst)4. After a preliminary
acquisition of information on domain stakeholders, on their goals and on their recipro-
cal dependencies, the iAnalyst starts building an early requirements model, such as that
described by the diagram depicted in Figure 1.

Once the preliminary early requirements model has been devised, the iAnalyst pro-
ceeds with the analysis of this model. Covered activities are: the assessment of the
model against possible inadequacies, incompleteness or inconsistencies; the validation
of the resulting specification with the stakeholders in order to end up with an agreed set
of requirements; and, when inconsistencies are discovered the needs of model revision,
the management of model refinement and evolution, in order to maintain its consistency,
propagate changes, merge redundant information.

In these activities, the iAnalyst has the possibility to make queries on specific as-
pects of the model that the fAnalyst translates into FT properties and checks of the
FT model. The queries of the iAnalyst may concern different aspects of the model. In
particular, the iAnalyst can check:

– the capability of an actor to fulfill a given goal, possibly assuming that some sub-
goals or some dependencies cannot be achieved;

– the presence of constraints on the temporal order in which activities/goals can be
started and/or achieved;

– the presence of implicit cardinality constraints on the relationships among goals in
a goal diagram;

– the fact that a given property is respected by all the valid behaviors of the model;
– the fact that a given property is exhibited by some of the valid behaviors of the

model.

4 Our long term goal is that of deriving the requirements of a CASE tool that could play the role
of the fAnalyst, as emerging from the following discussion. For the moment, the role of the
fAnalyst has to be played by a human actor.



In most of the cases, the formalization effort required to the fAnalyst for answering to
these queries is small. The FT model can be obtained by an automatic translation of the
informal model [10], and the FT property is obtained directly by the informal query of
the iAnalyst.

In the following, we discuss three examples that illustrate the framework with re-
spect to the different requirements engineering activities. In each example we identify a
set of specific questions the iAnalyst can be interested in; we formalize these questions
using a high level query language; we show how to map these queries into low-level FT
properties that are checked by the T-TOOL; and we discuss the answers obtained for
the queries and possible ways for visualizing them. We also comment on the benefits
and costs of the proposed approach. For explanatory purposes, we use the simple goal
diagram depicted in Figure 1. We remark that on this small model it is easy to answer
to the questions of the iAnalyst with a direct inspection of the model. On larger models,
the added value of using the fAnalyst services becomes more and more relevant.

3.1 Example 1. Assessing and refining the informal model

The iAnalyst assesses the model against possible inconsistencies or redundancies or
critical elements, and eventually refines the informal model on the basis of the answer
of the fAnalyst to his/her questions.

Given the goal diagram depicted in Figure 1 a possible question of the iAnalyst can
be:

Is it possible for the advisor to perform historical data analysis?

We can formulate this question as the following query:

FULFILLABLE HistoricalDataAnalysis

This query corresponds to the the low level FT property:

Global Possibility
F (

�
a : Advisor (

�
hda : HistoricalDataAnalysis (hda.actor = a � Fulfilled(hda))))

The FT specification admits a scenario that conforms with the above formula, and this
scenario can be depicted in terms of a frame sequence, as in Figure 3. In the scenario,

Advisor

manage
pheromone trap

plant

hystorical data
analysis

orchards 
hystorical

data

Advisor

manage
pheromone trap

plant

hystorical data
analysis

Advisor

manage
pheromone trap

plant

Producer

hystorical data
analysis

orchards 
hystorical

data

orchards
data

Advisor

manage
pheromone trap

plant

Producer

hystorical data
analysis

orchards 
hystorical

data

Advisor

manage
pheromone trap

plant

Producer

hystorical data
analysis

Advisor

manage
pheromone trap

plant

Producer

0 1 2 3 4 5

orchards
data

orchards 
hystorical

data

orchards
data

hystorical data
analysis

orchards 
hystorical

data

orchards
data

Fig. 3. A scenario where the historical data analysis goal is fulfilled.



historical data analysis is fulfilled using orchard hystorical data received from the
Producer. Each frame corresponds to a step of the scenario instantiation process: the
first frame shows the creation of the goal the query refers to, the second and third
complete the creation of sub-goals till a goal delegation is reached; in the following
three frames, the effects of the satisfaction of the delegated goal, shown by the dashed
texture, is propagated back, along the goal decomposition till the goal under inspection.
The above question can be cosidered a specific instance of the general question:

Focusing on a specific actor goal, does the current model allow to achieve it in
some valid scenario?

If the answer to such questions is positive, the result can be effectively shown by a dia-
gram analogous to the one depicted in Figure 3. If a scenario does not exist, a warning
message is emitted.

Another type of question the iAnalyst can pose when analyzing the advisor goal
diagram is:

How critical is the dependency on the actor Producer in order to satisfy the
main advisor’s goal manage pheromone trap plant?

This question can be reformulated as “Is it possible to fulfill manage pheromone trap
plant without fulfilling all the dependencies with the Producer actor?” This question
can be mapped to the following query expressed in the high level query language:

NONCRITICAL Producer FOR ManagePheromoneTrapPlant

which corresponds to the the low level query:

Global Possibility
F (

�
a : Advisor (�
mftp : ManagePheromoneTrapPlant (mftp.actor = a � Fulfilled(mftp) ��

p : Producer (
�

od : OrchardData (od.depender = a � od.dependee = p �
� Fulfilled(od))))))

When this query is submitted to T-TOOL, a witness scenario is generated that conforms
to the specification (see Figure 4). The above question can generalized by the following:

Advisor

hystorical data
analysis

manage
pheromone trap

plant

collect data

pheromone
dispencer 
distribution

area collection

Advisor

hystorical data
analysis

manage
pheromone trap

plant

collect data

pheromone
dispencer 
distribution

area collection

dispencer
report and order plant plan area analysis

via GIS

Lab Data

Advisor

manage
pheromone trap

plant

0 1 2

collect data

Lab Data

Advisor

manage
pheromone trap

plant

 area analysis
via GIS

hystorical data
analysis

infection sources
analysis

 plant plan
dispencer

report and order

area collection pheromone
dispencer 
distribution

collect data

Lab Data

Advisor

 area analysis
via GIS

hystorical data
analysis

infection sources
analysis

 plant plan
dispencer

report and order

area collection pheromone
dispencer 
distribution

manage
pheromone trap

plant

n-1 n

Fig. 4. A scenario where the manage pheromone trap plant goal is fulfilled without any depen-
dency from a Producer.



Focusing on a specific actor, what are the critical dependencies on external
actors? That is, what actors can prevent the achievement of a main goal if they
do not achieve delegated goals?

This kind of questions can be seen as queries on the graph corresponding to a goal
diagram. They are particularly useful when dealing with a complex model for which a
direct inspection of the diagram is impractical. For these questions, the informal queries
can be automatically translated into the relative FT specification, so no additional effort
to the iAnalyst is required.

3.2 Example 2. Validating the informal model with the stakeholders

The iAnalyst looks for relevant validation cases to be proposed to the stakeholders in
order to drive the validation process and to end up with an agreed model. Validation
cases can be suggested by the fAnalyst on the basis of the model structure.

Given the actor diagram depicted in Figure 1 a possible question of the iAnalyst in
this case is:

How does the advisor usually operate? Is that he/she always satisfies the goal
area collection after satisfying all its sub-goals, according to the following
sequence: area analysis via GIS, plant plan and finally dispenser report and
order?

We can formulate this query as follows:

FULFILL AreaAnalysisViaGIS THEN PlantPlan THEN DispenserReportAndOrder
THEN AreaCollection

This corresponds to the the low level query:

Global Assertion F (�
a : Advisor (

�
ac : AreaCollection (ac.actor = a ��

aavg : AreaAnalysisViaGIS (aavg.ac = ac ��
pp : PlantPlan (pp.ac = ac ��

drao : DispenserReportAndOrder (drao.ac = ac �
(Fulfilled(ac) � Fulfilled(aavg) � Fulfilled(pp) � Fulfilled(drao)) �

P (JustFulfilled(aavg) � X F (JustFulfilled(pp) �
X F (JustFulfilled(drao) � X F JustFulfilled(ac))))))))))

When this question is submitted to T-TOOL, a scenario that violates the assertion is
found. Figure 5 illustrates this scenario with a bar-charts diagram that shows the order-
ing in which the goals involved in the specification are created (beginning of the light
bar) and fulfilled (beginning of the dark bar). The scenario shows a case where goal dis-
penser report and order is achieved before plant plan. This scenario can be discussed
with the stakeholder, in order to understand whether this order of achievement is pos-
sible in the application domain. If it is possible, then the query can be refined in order
to take into account that dispenser report and order and plant plan can be achieved
in an arbitrary order. If it is not possible, then a temporal constraint between these two
goals has to be added in the FT model, so that the invalid behavior is discarded. The
above question can be cosidered a specific instance of the general question:



area collection

area analysis via GIS

orchard analysis

orchard data

plant plan

dispenser report and order

ppdraoaavg ac

Fig. 5. A validating scenario where the goal area collection is fulfilled.

Focusing on a specific actor, is there an implicit temporal ordering in a goal
decomposition, that should be explicited?

This service requires to store all possible ordering of the goals under consideration (a
set of bar-chart diagrams like the one of Figure 5 can be used to this purpose) and to
annotate those orders that the stakeholder has considered valid.

Another specific question that can be asked for when performing the analysis con-
sidered in this second example, is:

In the case more than one plant plan activities can be performed before a
dispenser report and order, is it always the case that all instances of plant plan
relative to the same orchard have to be fulfilled before fulfilling the dispenser
report and order for the orchard?

We can formulate this query as follows:

FULFILL ALL PlantPlan BEFORE DispenserReportAndOrder

which maps to the FT assertion:
Global Assertion F (�

a : Advisor (
�

ac : AreaCollection (ac.actor = a ��
drao : DispenserReportAndOrder (drao.ac = ac �
Justfulfilled(ac) �

�
pp : PlantPlan (pp.ac = ac � Fulfilled(pp))))))

Also in this case, T-TOOL generates a counter-example scenario, illustrated by the bar-
charts diagrams depicted in Figure 6. The scenario shows that it is possible to fulfill the
second instance of plant plan after the dispenser report and order has already been
fulfilled. The question can be considered a particular case of the more general one:

Focusing on a specific actor, is there an implicit cardinality on the relationships
which models a given goal decomposition that should be explicited? How do
these relationships impact in the temporal ordering of the goal decomposition?

The formalization effort for the queries on implicit temporal orderings and on implicit
cardinalities is higher than that of the basic queries seen for Example 1. Indeed, an-
notations have to be added to the FT model in order to implement the constraints on
the temporal orders that are agreed with the stakeholder. On the other hand, the under-
standing of these constraints is very important for a deep understanding of the whole
application domain, and their elicitation is very difficult in a purely informal framework.



area analysis via GIS [A]

infection source analysis [A]

plant plan [A]

area analysis via GIS [B]

orchard analysis [B]

dispenser report and order

plant plan [B]

orchard data [B]

pp[B]pp[A] drao

area collection

Fig. 6. Another validation scenario for the goal area collection with two instances.

3.3 Example 3. Managing the model evolution

The iAnalyst can exploit the fAnalyst services also to manage the model evolution,
catching the creation of inconsistency due to a modification of a (previously consistent)
model. In particular, question of the following type could be posed by the iAnalyst:

We remove infection sources analysis. Does this lead to critical dependencies
from other actors?

This corresponds to general questions on whether a change in the model makes it im-
possible to achieve a goal that was previously possible to achieve, or if it introduces new
critical goals or dependencies. This question can be solved by re-executing the queries
performed in previous steps. If some of the queries fail, than the result produced can be
used to correct the specification. If they all succeed, than we can formulate additional
queries to validate the specification as described previously.

Assume that in area collection we mark that plant plan has to be satisfied prior to
dispenser report and order (as it is the case after a previous query). We now restruc-
ture the model, moving goal dispenser report and order one level up (see Figure 7).
A second question could be:

Is the temporal order previously described for the goals plant plan and dis-
penser report and order still respected in the new model?

The question can be seen as a request of advise on possible violation of previuosly
validated temporal constraints, when some change in the AND/OR structure of goals
has been introduced. In the specific example, the reconfiguration of the model has in-
validated the constraint on the temporal order of the two goals, and a counter-example
scenario is returned by the T-TOOL. In order to guarantee that plant plan is satisfied
prior to dispenser report and order, a new temporal constraint has to be added to the
model, for instance between goals area collection and dispenser report and order.

We remark that the possibility of re-running the queries when the model changes is
one of the most important benefits of the approach that we are proposing in the paper.
Indeed, it allows to identify the effects of the changes to the properties that the model
is supposed to satisfy as soon as the changes are performed on the model.



Advisor

 plant plan area analysis
via GIS

area collection pheromone
dispencer 
distribution

collect data

manage
pheromone trap

plant

hystorical data
analysis

dispenser
report and order

Advisor

 plant plan area analysis
via GIS

area collection
pheromone
dispencer 
distribution

collect data

manage
pheromone trap

plant

hystorical data
analysis

dispenser
report and order

Fig. 7. The modified goal diagram if temporal ordering constraints are taken into account.

4 Related work

Different lines of research are relevant to the work presented here, as briefly mentioned
in the following. Close relationships of Tropos with other Agent-Oriented Software En-
gineering (AOSE) methodologies, such as Gaia [21], MaSE [8], Prometheus [17] and
AUML [2] based methodologies, can be found, as discussed in [3]. Among works
relevant to the FT research we shall mention KAOS [15], a framework that supports
requirements analysis adopting a goal- and agent-oriented approach, and the Topoi di-
agrams [16]. Topoi diagrams are related to Tropos diagrams, where intentional links
describe influences between the intentional elements of a domain. A detailed discus-
sion of their relationships with FT is presented in [10].

The importance of Formal Methods is widely recognized in the AOSE community,
and there are several approaches to AOSE that are based on formal techniques. See [5]
for a presentation of some of these techniques and of their application to the specifica-
tion, to the verification, as well as to the automated generation of an implementation of
agent systems. Most of these approaches, however, require a heavy formalization effort
and strong skills in order to be used effectlively. Our aim is to allow for a lightweight
usage of formal verification techniques, that are used as services in an “informal” devel-
opment methodology. A recent approach, called ATOS [13], adopts a similar approach
with regard to the detailed design of interaction protocols in Multi-Agent System de-
sign. ATOS introduces a textual notation of AUML that can be translated to an ex-
tended finite state machine which can be processed by a model checker. ATOS has been
exploited to perform formal verification of AUML sequence diagram specification of
interaction protocols of Multi-Agent System.

A deep analysis of the importance of the requirements engineering activities con-
sidered in our approach is presented in [20], where specific tasks that could benefit from
a formal specification approach (even if costs in development and assessment are still
considered high) are pointed out. We agree with the following general consideration
borrowed from this work, which states that: “the by-products of a formal specification
process are often more important than the formal specification itself, including a better



informal specification, obtained by feedback from formal expression, structuring and
analysis”.

More generally, approaches aiming at integrating knowledge engineering tech-
niques with software engineering are worth to be mentioned.In [4] we can found an
analysis of decision making in software development and maintenance, such as, plan-
ning and scheduling activities of component development and integration (e.g., decid-
ing an optimal integration test order), assessing costs and benefits of introducing a given
inspection technique during the development process. These problems have been refor-
mulated as optimization problems for which approches exploiting techniques such as
genetic algorithm and heuristic have been proposed. We are addressing decision making
in a different set of activities, namely specification and conceptual modeling.

5 Conclusion and Future Work

This paper described a lightweight usage of formal verification techniques when per-
forming conceptual modeling within an agent-oriented methodology which provides a
modeling language that can be used both to build an informal specification or a formal
one [3, 10].

A preliminary analysis of the proposed framework has been discussed with refer-
ence to a set of activities, relevant for requirements engineering, such as requirements
elicitation and refinement, user validation of requirements specification, or management
of requirements evolution.We considered the decision making process of the analyst
when performing those activities and we discussed how it can be supported by formal
verification services. Along this line we are defining additional verification services.
Moreover, this approach will be extended to other activities in the software develop-
ment process, such as architectural and detailed design.

An ultimate objective, beside that of providing the automatic translation of an infor-
mal model to a formal one, is that of developing a tool that supports the analyst and the
designer which use informal modeling, for performing the deductive reasoning on a for-
mal specification, by formulating queries analogous to those discussed in the examples
of this paper.

References

1. Scott W. Ambler. Agile modeling essays, 2003. http://www.agilemodeling.com/essays.htm.
2. B. Bauer, J. P. Müller, and J. Odell. Agent UML: A formalism for specifying multiagent soft-

ware systems. Int. Journal of Software Engineering and Knowledge Engineering, 11(3):207–
230, 2001.

3. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos: An Agent-
Oriented Software Development Methodology. Journal of Autonomous Agent and Multi-
Agent Systems, 2003. To appear.

4. L. C. Briand. On the many ways software engineering can benefit from knowledge engi-
neering. In Proceedings of the 14th international conference on Software engineering and
knowledge engineering, pages 3–6, Ischia, Italy, july 2002. ACM.



5. P. Ciancarini and M. Wooldridge. Agent-oriented software engineering: the State of the Art.
In Agent-Oriented Software Engineering, First International Workshop, AOSE 2000, number
1957 in LNCS, pages 1–28, Limerick, Ireland, jun 2000.

6. P. Ciancarini and M. Wooldridge, editors. Agent-Oriented Software Engineering, volume
1957 of Lecture Notes in AI. Springer-Verlag, March 2001.

7. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NUSMV 2: An opensource tool for symbolic model check-
ing. In Computer Aided Verification, number 2404 in LNCS, Copenhagen (DK), July 2002.
Springer.

8. S. A. Deloach. Analysis and Design using MaSE and agentTool. In 12th Midwest Artificial
Intelligence and Cognitive Science Conference (MAICS 2001), Miami University, Oxford,
Ohio, March 31 - April 1 2001.

9. A. Fuxman. Formal analysis of early requirements specifications. Master’s thesis, University
of Toronto, 2001.

10. A. Fuxman, L. Liu, M. Pistore, M. Roveri, and J. Mylopoulos. Specifying and analyzing
early requirements: Some experimental results. In IEEE Int. Symposium on Requirements
Engineering, Monterey (USA), September 2003. IEEE Computer Society.

11. A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. Model checking early requirements
specifications in Tropos. In IEEE Int. Symposium on Requirements Engineering, pages 174–
181, Toronto (CA), August 2001. IEEE Computer Society.

12. F. Giunchiglia, J. Odell, and G. Weiß, editors. Agent-Oriented Software Engineering III.
LNCS. Springer-Verlag, Bologna, Italy, Third International Workshop, AOSE2002 edition,
July 2002.

13. J. L. Koning and I. Romero-Hernandez. Generating machine processable representations
of textual representations of auml. In Agent-Oriented Software Engineering III, Third In-
ternational Workshop, AOSE 2002, number 2585 in LNCS, pages 126–137. Springer, july
2002.

14. Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley, 2nd
edition, 2000.

15. E. Leiter. Reasoning about Agents in Goal-oriented Requirements Engineering. PhD thesis,
Universite Catholique de Louvain, 2001.

16. T. Menzies, J. Powell, and M. E. Houle. Fast formal analysis of requirements via ”topoi
diagrams”. In the �����

�
Int. Conference on Software Engineering, pages 391–400, Toronto,

CA, May 2001. ACM Press.
17. L. Padgham and M. Winikoff. Prometheus: A Methodology for Developing Intelligent

Agents. In Giunchiglia et al. [12].
18. A. Perini, P. Bresciani, F. Giunchiglia, P. Giorgini, and J. Mylopoulos. A Knowledge Level

Software Engineering Methodology for Agent Oriented Programming. In Proceedings of
Agents 2001, Montreal CA, May 2001. ACM.

19. A. Perini and A. Susi. Designing a Decision Support System for Integrated Production in
Agriculture. An Agent-Oriented approach. Environmental Modelling and Software Journal,
2003. to appear.

20. Axel van Lamsweerde. Formal specification: a roadmap. In ICSE 2000, 22nd International
Conference on on Software Engineering, Future of Software Engineering Track, pages 147–
159, Limerick Ireland, June 2000. ACM.

21. M. Wooldridge, N. R. Jennings, and D. Kinny. The GAIA Methodology for Agent-Oriented
Analysis and Design. Journal of Autonomous Agents and Multi-Agent System, 2000.

22. M.J. Wooldridge, G. Weiß, and P. Ciancarini, editors. Agent-Oriented Software Engineer-
ing II. LNCS 2222. Springer-Verlag, Montreal, Canada, Second International Workshop,
AOSE2001 edition, May 2001.


