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Abstract In order to reduce the computational complexity, most of the video
classification approaches represent video data at frame level. In this paper
we investigate a novel perspective that combines frame features to create a
global descriptor. The main contributions are: (i) a fast algorithm to densely
extract global frame features which are easier and faster to compute than
spatio-temporal local features; (ii) replacing the traditional k-means visual
vocabulary from Bag-of-Words with a Random Forest approach allowing a
significant speedup; (iii) the use of a modified Vector of Locally Aggregated
Descriptor(VLAD) combined with a Fisher kernel approach that replace the
classic Bag-of-Words approach, allowing us to achieve high accuracy. By doing
so, the proposed approach combines the frame-based features effectively cap-
turing video content variation in time. We show that our framework is highly
general and is not dependent on a particular type of descriptors. Experiments
performed on four different scenarios: movie genre classification, human action
recognition, daily activity recognition and violence scene classification, show
the superiority of the proposed approach compared to the state of the art.
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1 Introduction

Along with the advances in multimedia and Internet technology, a huge amount
of data, including digital video and audio, are generated on daily basis. This
makes video in particular one of the most challenging data to process. Video
processing and analysis has been the subject of a vast amount of research in
the information retrieval literature [1–4]. Until recently, the best video search
approaches were mostly restricted to text-based solutions which process key-
word queries against text tokens associated with the video, such as speech
transcripts, closed captions, social data, and so on. Their main drawback is in
the limited automation because they require human input. The use of other
modalities, such as visual and audio has been shown to improve the retrieval
performance [5], attempting to bridge further the inherent gap between the
real world data and its computer representation. The target is to allow auto-
matic descriptors to reach a higher semantic level of description, similar to the
one provided by manually obtained text descriptors.

Existing state-of-the-art algorithms for video classification can achieve promis-
ing performance in benchmarking for many research challenges, starting from
genre classification to event and human activity recognition [6–9]. Even if
these methods are designed to solve a single application, they can be adapted
to a broad category of video classification tasks. A weak point of many video
processing approaches is in the content description and training frameworks,
which stand as a basis for any higher level processing steps. For instance,
deep learning techniques come with very high complexity which translates
into significant processing time for optimizing the complex architectures of
the networks. Also, video information is temporal data and one of its defini-
tive information is given by the changing/moving content. There are a number
of approaches that attempt in particular to capture that temporal informa-
tion, e.g., local motion features, dense trajectories, spatio-temporal volumes [6]
to provide better representative power. However, these approaches generate a
large amount of data which may trigger a high computational complexity for
large-scale video datasets. In order to reduce this amount of information, one
lead is to exploit frame-based features, where each global feature captures
information of a single video frame.

In this context, this article proposes a new video content description frame-
work that is general enough to address a broad category of video classification
problems while remaining computational efficient. It combines the fast repre-
sentation provided by Random Forests and VLAD framework with the high
accuracy and the ability of Fisher Kernels to capture temporal variations.

The remainder of the paper is organized as follows. In Section 2 we present
the current state-of-the-art and situates our approach accordingly. Section 3
presents the framework and the implementation details. The experimental
validation setup is presented in Section 4 while the experimental results are
presented and discussed in Section 5. Finally, Section 6 concludes the paper
and discusses future perspectives.
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2 Related Work

Video content classification remains one of the most challenging video process-
ing problems, mainly because it implies the classification of complex semantic
categories from a huge volume of multimodal data. There are several major
approaches that emerged in the last decade.

A large family of video classification methods is based on creating global de-
scriptors by aggregating local spatio-temporal features. In this context, a stan-
dard video classification system consists of detecting sparse spatio-temporal
interest points which are then described using local spatio-temporal features,
e.g., Histograms of Oriented Gradients (HoG), Histograms of optical Flow
(HoF), Motion Boundary Histograms (MBH) [6]. The features are then en-
coded into the Bag-of-Words (BoW) [11] representation and combined with
a classifier. Spatio-temporal interest point-based methods represent the scene
and the performed actions as a combination of local descriptors, which are
computed in a neighborhood of some interest points. The neighborhood can
be selected as an image patch or as a spatio-temporal volume, e.g., cuboid.
The spatio-temporal interest point based methods have received a lot of atten-
tion in the vision community due to their robustness to scale and viewpoint
changes. Recently, Wang et al. [7] suggested the use of a set of dense trajecto-
ries, where the local video volume moves spatially through time. Additionally,
they propose a new method for extracting the optical flow. They obtained
good improvements over the HoG and HoF descriptors. Nevertheless, combin-
ing their dense trajectory descriptors with both HoG and HoF descriptors still
gives significant improvements over dense trajectories alone.

Instead of computing local video features over spatio-temporal cuboids,
state-of-the-art shallow video representations [8] make use of dense point tra-
jectories. The local descriptor approaches are less sensitive to noise or occlu-
sion. However, these approaches, often make use of the BoW model, requiring
the quantization of large amounts of data. Even though the interest points and
the features are computed locally, each sequence is represented by a global his-
togram, which does not carry any spatial or temporal information. The main
improvements consist in changing the global descriptors from Bag-of-Words
to other more accurate representations, namely the use of the Fisher vector
encoding [10, 13] or Vector of Locally Aggregated Descriptors (VLAD) rep-
resentation [28]. In [66] the authors proposed the VLAT model based on the
aggregation of tensor products of local descriptors. Nakayama [67] presented
an extension of VLAD that encodes the second-order statistics using local
Gaussian metrics. Both methods obtained promising results for the image
classification tasks. On the other side, Uijlings et al. [27] proposed the use of
VLAD and Fisher kernels for video classification. They used several speedup
approaches for densely sampled HoG and HoF descriptors and investigated the
trade-off between accuracy and computational efficiency for the video represen-
tation using either a k-means or hierarchical k-means based visual vocabulary,
a Random Forests (RF) based vocabulary or the Fisher encoding. Liu et al. [15]
extracted a combination of motion and static features that are integrated into
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a PageRank algorithm to prune the static features using motion cues as an
alternative way to motion compensation. The hybrid use of motion and static
features improved the performance of their approach.

Another perspective is to use human tracking algorithms to perform video
content classification. For instance, Ikizler-Cinbis and Sclaroff [14] extracted
multiple features on the human, objects and scene, and employed a multiple-
instance learning framework for human action recognition of YouTube videos.
Yang and Ramanan [42] proposed a method for articulated human detection
and human pose estimation in videos based on a new representation of de-
formable part models. They detect small bounding boxes with a multi-scale
HoG descriptor, instead of complete body limbs, making their work more ef-
ficient because it prevents the problem of double counting. The body part
detector combined with the HoF features obtained good results on daily liv-
ing activities [43]. However, these framework are adapted to a specific task
and requires the use of motion compensation for foreground estimation and
the detection and tracking of the human in the scene, generating a high com-
putational cost. The accuracy of the algorithm is highly correlated with the
performance of the human detector.

Convolutional Neural Networks (CNNs) have been shown to be an effective
class of models for understanding image content, giving state-of-the-art results
on image and video recognition, segmentation, detection and retrieval [16–18].
The key enabling factors behind these results are in the techniques for scaling
up the networks to tens of millions of parameters and massive labeled data,
that can support the learning process. Under these conditions, CNNs have
been proved to learn powerful and interpretable video multimodal features.
However, from a computational perspective, CNNs require extensively long
periods of training time to effectively optimize the millions of parameters that
compose the model. This difficulty is further compounded when extending the
model to video classification. In [57], Karpathy at al. propose a convolutional
neural framework in the context of the large-scale video classification. In order
to improve the system’s speed they create a multi-resolution architecture that
uses two video streams. Input frames are fed into two separate processing
streams: a context stream that models low-resolution image and a fovea stream
that processes high-resolution center crop.

The main contribution of this paper is in the introduction of a new content
representation pipeline which is designed specifically for video classification.
The efficiency of the approach is demonstrated by the generality of the pro-
posed framework in terms of applicability, and particularly it is successfully
tested on four different classification scenarios. The algorithm incorporates a
novel approach for frame-based features word assignment that uses a set of
pruned Random Forests (RF) which are specially adapted for fast classifica-
tion. We also propose a modified VLAD representation that allows achieving
both, fast and high performance. The following secondary contributions are
identified:
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Fig. 1: Diagram of the proposed approach for video content representation.

(i) we introduce a modified Vector of Locally Aggregated Descriptor (VLAD)
representation for video frame-based description that has the advantage
of capturing content variation in time;

(ii) the proposed framework is feature independent in the sense that is not
adapted to the use of a particular type of description scheme and can
work basically with any content representation approach, from basic his-
tograms, application dependent descriptors (e.g., body-part features) to
more complex approaches that include feature points and multimodal
integration;

(iii) we achieve similar or better performance than the state-of-the-art by
using simpler and faster to compute descriptors.

3 Proposed Approach

The architecture of the proposed framework is presented in Figure 1. It consists
of four processing steps:

– step 1 : video data are represented with multimodal frame-based descriptors
extracted with a dense sampling strategy;

– step 2 : we create a dictionary of frame words using a new fast approach
for word assignment. We replace the traditional k-means visual vocabulary
from Bag-of-Words [6,11] with a Random Forest approach which allows for
a significant speedup;

– step 3 : each video frame is assigned to the nearest word (i.e., cluster center)
using the previously trained random trees. Then, for each modality, we
compute the proposed modified Vector of Locally Aggregated Descriptors
(VLAD) [28];

– step 4 : finally, the new resulting content descriptors are fed to a classifier
which performs the actual classification task. We selected to use Support
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Vector Machines (SVMs) due to their effectiveness in dealing with large
feature vectors and sparse data. Also, this step acts as a late fusion mech-
anism by aggregating all individual modalities into a single decision.

Each of the processing steps is detailed in the following sections.

3.1 Feature extraction

In video retrieval, an important research problem is how to adequately cap-
ture temporal information. Some of the popular choices include the use of
local cuboid features, e.g., motion boundary histograms or space-time interest
points [19], but their main drawback is in the high computational complex-
ity [20] (e.g., processing only few seconds of video may take tens of minutes).
Another perspective is the use of global frame features, which are more com-
putational effective [21, 22]. These approaches had obtained state-of-the-art
results with low computational costs. In general, depending on the way the
integration is carried out, frame based features may achieve similar or better
performance than temporal approaches in many video classification problems.
In our approach we use a set of multimodal frame-based features that are
extracted using a dense sampling strategy. A detailed presentation of the ex-
perimented features is provided in Section 4.3.

3.2 Fast frame word assignment with Random Forests

Random Forests (RF) [23] are ensemble learning methods that operate by
constructing a multitude of decision trees in the training stage and combine
the classification output of all these trees. In our approach, we propose the use
of RF for the word assignment step. There are several reasons that make RF
a good candidate for this task, namely: (i) good classification accuracy proved
in many scenarios [24,25]; (ii) the computational time of RF word assignment
is logarithmic with respect to the number of words due to the binary nature
of the decision trees, whereas the computational time for the nearest neighbor
approach is linear with respect to the number of visual words; (iii) RF trees
are independent of the dimension of the descriptors, for splitting off each node
only one dimension is selected and compared with a threshold, whereas the
nearest neighbor approach is linearly dependent on the feature dimension.

Uijlings et al. [12] proposed several methods to speedup the Bag-of-Words
classification pipeline for image classification using the RF for word assign-
ment. They provided an evaluation of the efficiency of different visual word
assignment strategies and showed that RF outperforms on computational time
all the other approaches. Inspired by their work we propose the following im-
proved approach.

We use a set of Random Forests that represent a combination of decision
trees. Each tree is built independently using the same set of descriptors as
input, e.g., S = {x1, ..., xn}, where n is the dimension. The leaves of a tree
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represent the actual clusters. The construction of the trees is done in a recur-
sive way. For each node, a number of split-offs are proposed by selecting at
random one dimension of the descriptors. From these possible representations,
we select only one that provides the maximum information gain (as defined
in Equation 3). Each node splits the descriptors in two sets: SL (left) and
SR (right). The process is repeated until a leaf is reached. Overall, each de-
scriptor is fitted to a certain number of trees (i.e., a forest) with splits being
selected from random choices. A common setting is to use hundreds of trees
(a detailed parameter tuning is provided with the experimental results). This
corresponds to the training phase. Similar approaches that use the informa-
tion gain as a split scoring function are proposed in [64, 65]. They suggested
that the improvement in predictive performance derived from improved infor-
mation gain estimates, even small, is useful to many applications. However,
these algorithms are presented in the context of classification and regression
problems and not in particular as a word assignment strategy.

In the actual clustering part, descriptors are assigned to each (pre-trained)
tree conducting to a certain path and a corresponding leaf (ending node).
The video descriptor is then recomputed using this information (the process
is detailed in Section 3.3). This leads to a content representation per tree. The
final content description is achieved by simple concatenation of each individual
tree representations.

For high accuracy, it is better to have a large number of trees as well as
reaching a higher depth within the trees. However, increasing the number of
trees and the depth results in a significant increase of the final descriptor
dimension given by:

dim = 2depth × nTrees× dimDesc× 2 (1)

where depth represents the depth of the trees, nTrees is the total number
of trees for the Random Forests, dimDesc is the initial descriptor dimension.
The final multiplication by 2 results from the way we represent the modified
VLAD vectors (details are presented in Section 3.3).

To have a numeric reference for the size of the output descriptors con-
sider the case of 4 trees with a depth of 8 and an initial descriptor with 72
dimensions which results in a Random Forest descriptor of size 147,456. In-
creasing the number of initial trees from 4 to 10 and the depth to 10 we now
obtain a final descriptor of 1,474,560 values, which is significantly higher. This
large dimensionality can generate many computational problems, especially
when targeting large scale classification scenarios. In particular, to perform
some operations on this high dimensionality vectors, more memory resources
are needed. Therefore, the computational time for manipulating these vectors
grows significantly. Not least, we will demonstrate in Section 5.1 that reducing
the size of final feature vector increases the classification performance for this
approach.

To find a way for decreasing directly the dimensionality of the resulting
feature vectors without any additional steps and maintaining the accuracy,
we propose a novel approach that prunes the random forests. We use the
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Fig. 2: Dimensionality reduction using information gain.

information gain of a node, I, for determining the best split-off point in the
tree. It is defined as:

I = −#(SL)

#(S)
H(SL)−

#(SR)

#(S)
H(SR) (2)

where #(.) denotes the cardinality of the set and H is the Shannon Entropy
of the class labels of the descriptors [30] given by:

H(X) = −
∑
i

P (xi) log2 P (xi) (3)

where P (xi) represents the probability that a descriptor can reach the leaf
i from the tree, and H(SL) and H(SR) represent the entropy for the left
and right branches of the node. To stop the tree from growing, we use this
measure to remove the branches that have an information gain lower than a
certain threshold (tstop). The process is depicted in Figure 2.

The intuitive idea behind this solution is that some nodes of the tree can
contain descriptors which belong to the same class (or most of them belong to
the same class). In this case we can state that the node is pure (or almost pure).
Therefore, reaching a node of this kind will stop the split-off before reaching
the given depth. The threshold for information gain is obtained empirically
and represents a trade-off between the accuracy and the dimensionality of the
resulting feature vector.

3.3 VLAD algorithm for frame-based words

A classic approach to compute the final feature vector is to take the frequency
of the visual words and build a histogram. This histogram is fed to the final
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Fig. 3: Different frame aggregation strategies: (a) simple frame mixing, (b) keyframe selec-
tion, (c) proposed approach (images from Blip10000 [32]).

classifier. When Random Forests are used for word assignment, the frequency
of visual words represents the number of descriptors from each leaf. However,
it was shown that this representation is outperformed by adopting Fisher Ker-
nel [27] and VLAD representations [29].

A second novelty of our approach is in the way we compute the feature
vector. The proposed approach exploits the advantages of both, Fisher Kernel
and VLAD approaches, in a unified framework. Feature vectors are given by
the concatenation of the vµ,i and vσ,i Fisher representations for i = 1, ...,K
with K the number of words (number of clusters), given by:

vµ,i =
1

T
√

P (xi)

T∑
t=1

(xt − µi)

σi
(4)

vσ,i =
1

T
√

2P (xi)

T∑
t=1

[
(xt − µi)

2

σ2
i

− 1

]
(5)

where xt represents the frame-based features that are assigned to cluster t,
µi is the mean of the training frame-based features for each cluster, σi is the
standard deviation for cluster i, T is the number of descriptors from a cluster,
P (xi) is the probability that a descriptor reaches a specific leaf from the tree.

To illustrate the benefits of this approach, a visual example is presented
in Figure 3: Figure 3(a) presents a simple frame aggregation strategy (aver-
aging) over the entire video sequence and Figure 3(b) presents the selection
of a keyframe, which discards time information. In the proposed approach,
interpreting the formulas in terms of variation in time, equation 4 averages
the features over time, which are related as they fall in the same mixture
component. Equation 5 models the variation of related features over the entire
video sequence, capturing subtle visual changes. The different mixture compo-
nents capture drastic variations in time such as shot changes specific to video.
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This will result in a representation as presented in Figure 3(c), which captures
better the content variation from different moments of time.

Globally, this approach can be interpreted as a hard assignment Fisher Ker-
nel approach. The main differences between Fisher Kernel and our approach
are the following: (i) we use a fast clustering method with Random Forests
instead of the Gaussian Mixture Model (GMM); (ii) we perform a hard assign-
ment strategy, rather than a soft assignment. We choose the hard assignment
because it can be combined in an efficient way with the Random Forest word
assignment approach. The contribution of the VLAD model is in the increase
of the system’s accuracy. By combining the Random Forests with the modified
VLAD representations, we achieve both a fast and a high performance video
classification system, which outperforms the other variants - as show in the
experimental results (see Section 5).

3.4 Classification

The final component of the system consists of the data classifier which is fed
with the descriptors issued for the proposed Fisher Kernel - VLAD approach.
Among the broad choice of existing classification approaches [31] we selected a
SVM classifier. We use several type of kernels, i.e., a fast linear kernel and two
non-linear kernels: RBF and Chi-Square. While linear SVMs are very fast in
both training and testing, SVMs with non-linear kernels are more accurate in
many classification tasks due to better adaptation to the shape of the clusters
in the feature space.

Finally, in the case of multimodal features, we combine the SVMs output
confidence values using a linear weighted combination (late fusion):

CombMean(d, q) =
N∑
i=1

αi · cvi (6)

where cvi is the confidence value of classifier i for class q (q ∈ {1, ..., C}), C
represents the number of classes, d is the current video, αi are some weights and
N is the number of classifiers to be aggregated. The weights are learned during
the optimization process that takes place on the training data, as presented
in Section 5.

4 Experimental Setup

In this section we present the evaluation framework (dataset and metrics) and
the choice of content descriptors.

4.1 Datasets

For testing the proposed video content description approach we have selected
a broad range of classification scenarios, namely: video genre classification,
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Fig. 4: Sample images from the experimentation datasets: Blip10000 [32], ADL [35],
VSD2013 [36] and UCF101 [34].

classification of daily activities, classification of violent content and action
recognition. We experimented on the following standard and publicly available
datasets:

Blip10000 [32]: consists of 15,000 video sequences (around 3,250 hours of
footage) retrieved from blip.tv1. Each video is labeled according to 26 web
specific video genre categories: art, autos and vehicles, business, citizen jour-
nalism, comedy, conferences and other events, documentary, educational, food
and drink, gaming, health, literature, movies and television, music and en-
tertainment, personal or auto-biographical, politics, religion, school and ed-
ucation, sports, technology, the environment, the mainstream media, travel,
videoblogging and web development and sites. A “default category” is provided
for movies which cannot be assigned to neither one of the previous categories.
Apart from the video data, the dataset provides associated social metadata,
automatic speech recognition (ASR) transcripts and video shot segmentation
and key frames. The dataset was successfully validated during 2010-2012 Me-
diaEval benchmarking campaigns [33];

ADL [35]: contains 10 different activities, i.e., answering a phone, dialing
a phone, looking up numbers in a phone book, writing on a white board,
drinking water, eating a snack, peeling a banana, eating a banana, chopping a

1 http://blip.tv/
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banana and eating food with silverware. Each of these activities is performed
3 times by 5 different people. These people have different genders, ethnicity,
and appearance so sufficient appearance variation is available in the dataset.
Each clip is in the range of 3-50s. In total the dataset contains 150 videos;

VSD2013 [36]: it contains violence annotations for 25 typical Hollywood pro-
ductions. Movies range from very violent ones (e.g., Saving Private Ryan with
34% violent frames) to movies with (almost) no violence (e.g., Dead Poets Soci-
ety with less of 1% of violent frames). This dataset (in its various versions) has
been exploited during the 2011-2014 MediaEval benchmarking campaigns [36];

UCF101 [34]: consists of 13,320 realistic videos from YouTube2 with large
variations in camera motion, object appearance and pose, object scale, view-
point, cluttered background, illumination conditions, etc. The videos in 101
action categories are grouped into 25 groups, where each group can consist of 4-
7 videos of an action. The videos from the same group may share some common
features, such as similar background, similar viewpoint, etc. The action cate-
gories can be divided into five types: human-object interaction, body-motion
only, human-human interaction, playing musical instruments and sports.

These datasets are particularly challenging due to the diversity of video
footage and specifically the variability of videos within the same categories.
Some examples are illustrated in Figure 4.

4.2 Metrics

To assess performance, depending on the dataset, we employed several stan-
dard metrics. We compute the system accuracy which represents the number
of items correctly classified (true positives + true negatives). To provide a
global measure of performance, we estimate the overall Mean Average Preci-
sion (MAP), which is computed as the mean of the average precision scores
for each item:

MAP =

Q∑
q=1

AP(q)

Q
(7)

where Q represents the number of items (queries), and AP () is given by

AP =
1

m

n∑
k=1

fc(vk)

k
(8)

where n is the number of items, m is the number of items of category c, and
vk is the k-th item in the ranked list {v1, ..., vn}. Finally, fc() is a function
which returns the number of items of class c in the first k items if vk is
of class c and 0 otherwise (we used the trec eval scoring tool available at
http://trec.nist.gov/trec_eval/).

2 http://www.youtube.com/
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4.3 Content descriptors

Video information is represented with content descriptors. Currently there is a
huge amount of literature in this area and covering all the existing techniques
is impossible. For evaluation, we selected some of the most representative
approaches known to perform well in many benchmarking scenarios [1–4] as
well as which are suitable to our experimentation tasks.

We experimented with the following descriptors:

– visual descriptors:
– HoG features (81 values) [37] - exploit local object appearance and

shape within an image via the distribution of edge orientations. The
image is divided into small connected regions (3x3) and for each region
a pixel-wise histogram of edge orientations is computed. In the end, the
combination of these histograms represents the final descriptor;

– color naming histogram (11 values) [38] - describes the global color
contents and it maps colors to 11 universal color names. We select this
feature, instead of the classic color histogram, because the color naming
histogram is designed as a perceptually based color naming metric that
is more discriminative and compact.

– motion descriptors:

– HoG-3D (72 values) [27] - computes HoG features in 3D blocks with
a dense sampling strategy: first the gradient magnitude responses in
horizontal and vertical directions are computed. Then, for each response
the magnitude is quantized in k orientations, where k = 8. Finally,
these responses are aggregated over blocks of pixels in both spatial and
temporal directions and concatenated;

– Histograms of optical Flow (72 values) [40] - computes a rough estimate
of velocity at each pixel given two consecutive frames. We use optical
flow at each pixel obtained using the Lucas-Kanade method [40] and
apply a threshold on the magnitude of the optical flow, to decide if the
pixel is moving or is stationary. We divide the frames in 3x3 regions
and then we compute the HoF feature for each region [39];

– Body-part features (144 values) [43] approximate the optical flow that
is computed on the body-part components. Human pose and body-part
motion obtained good results in many event detection categories [41–
43]. We extract the body-part components using the state-of-the-art
body-part detector [41] and compute at every frame for all 18 body-
parts a Histogram of optical Flow in 8 orientations [43];

– audio descriptors:
– standard audio features (196 values) [44] - we use a set of general-

purpose audio descriptors, namely: Linear Predictive Coefficients, Line
Spectral Pairs, MFCCs, Zero-Crossing Rate, spectral centroid, flux,
rolloff and kurtosis, augmented with the variance of each feature over a
certain window (we use the common setup for capturing enough local
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context that is equal to 1.28s). For a sequence, we take the mean and
standard deviation over all frames.

Different descriptor combinations were employed depending on the dataset
and available information. For Blip10000 and VSD2013 we use all the visual
and audio features. For these datasets, we decided not to use motion features
because of their high computational complexity which makes them inefficient
for large size collections. For UCF101 we only use several of the visual de-
scriptors: HoG to account for feature information, color naming histogram to
account for color information and motion features which are representative for
this dataset. We did not use audio and text information because the movies
from UCF101 dataset do not contain this information. For the ADL dataset
we use only the body-part features which already provided state-of-the-art
results in many approaches [43].

5 Experimental results

In this section we present and discuss the experimental results for each of the
considered classification scenarios.

5.1 Video genre classification

In the first experiment, we test our video content description framework in
the context of video genre classification using the Blip10000 [32] dataset. All
the parameter optimization is carried out on the training set which we split
in two fixed, equally sized parts, one for training and the other for testing
in the context of parameter optimization. We compare our method with the
state-of-the-art using the official training set (5,288 videos) and test set (9,550
videos). The performance is measured with MAP. For this experiment, we use
the following descriptors (see Section 4.3): visual features (HoG, CN), motion
features (HoG-3D) and the standard audio features.

Parameter tuning. In order to refine our parameters, we start with the fol-
lowing baseline setting: 10 random forests which is a good trade-off between
speed and accuracy of the results, L2 with Power Normalization for the mod-
ified VLAD features and SVMs classifier with linear and RBF kernel.

The first experiment evaluates the influence of Principal Component Anal-
ysis (PCA) on system performance. We have two main reasons to make this
experiment: firstly, when the number of RF increases the feature length may
become very long and we want to make it shorter, and secondly, we expect
that PCA will improve the performance by removing the feature noise. Theo-
retically, the classification approaches work better when the noise is reduced
and the data are uncorrelated. Figure 5(a) presents some of the results. One
may observe that the PCA improves the performance of HoG features when we
keep 80%-90% from the PCA components. However, by applying the PCA on



A Modified VLAD Approach for Fast Video Classification 15

20 30 40 50 60 70 80 90 100
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Percentaje of PCA

M
A

P

Blip10000 training dataset

 

 

CN with SVM Linear

CN with SVM RBF
HoG with SVM Linear

HoG with SVM RBF
Audio with SVM Linear

Audio with SVM RBF

(a) MAP vs. percentage of PCA reduction

0 100 200 300 400 500 600
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of random forests

M
A

P

Blip10000 training dataset

 

 

CN with Linear SVM
CN with SVM RBF
HoG with Linear SVM
HoG with SVM RBF
Audio with Linear SVM
Audio with SVM RBF
Baseline CN with SVM RBF
Baseline HoG with SVM RBF
Baseline Audio with SVM RBF

(b) MAP vs. the number of random forests

Fig. 5: Parameter tuning on the training set of Blip10000 [32] dataset.

CN features, the performance will decrease because the information provided
by CN is already uncorrelated. The experiments presented in Figure 5(a) show
that we obtain the best performance by reducing the HoG and audio features
by 20%. In all the following experiments will use this combination: HoG and
audio with PCA and CN without PCA.

In the second experiment we analyze the influence of the number of random
forests (see Section 3.2). Some of the results are presented in Figure 5(b). One
can observe that the performance increases with increasing the number of
random forests. In case of using SVM with nonlinear kernel, the performance
plateaus after 100 random trees for all the features. A big improvement can be
noticed compared to baseline, i.e., the simple average of the features: CN goes
from 0.16 MAP to 0.28 and HoG from 0.29 to 0.38. The proposed approach
significantly improves the results. The final sizes of the Fisher vectors are
reasonable at 4,400 for CN, 5,600 for HoG and 6,000 for audio. On the other
hand, it can be observed that using the linear SVM classifier the performance
plateaus after 100 random trees for all the features. However, the RBF kernel
obtains an increase of performance of 0.02 over the linear kernel. Therefore,
we decide to use only the SVM with nonlinear RBF kernel.

In the third experiment we study the influence of the tree pruning via the
tstop parameter (see Section 3.2). The results are presented in Figure 6. For
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Fig. 6: Parameter tuning on the training set of Blip10000 [32] dataset: MAP vs. the tstop
parameter.

small values of tstop, trees are almost left unpruned and therefore the resulting
features’ length is very high, leading to a performance drop of more than 5%.
On the other hand, when tstop is too high, trees are over pruned (close to the
root) leading to short descriptors that are less representative and consequently
the performance drops by more than 6 percents.

Comparison with the baseline versions. In this experiment, we compare
the performance of our approach with a standard Bag-of-Words, VLAD ap-
proach and the simple aggregation of frames (by computing the mean and
the dispersion over all the frame). We also present the performance of our
approach without Random Forests, when we use the classical k-means for the
word assignment step. The goal of this experiment is to demonstrate that the
inclusion of both processing steps, i.e., Random Forest based word assignment
and the modified VLAD, are crucial for achieving the best performance. Ex-
periments are conducted by adopting the previous parameter tuning on the
Blip10000 testing dataset. The results are presented in Table 1.

The lowest performance (from 0.182 to 0.223) is obtained when we aggre-
gate all the features in one descriptor by computing the mean and the standard
deviation over all the frames. However, this is somehow expected as tempo-
ral information is lost. Even when mapping multiple vectors into fixed length
representations, e.g., using Bag-of-Words or the standard VLAD representa-
tion, the performance is still lower with more than 3% for CN and 7% for the
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Table 1: Comparison with the baseline versions of the proposed approach - MAP values
(Blip10000 [32] dataset; the best results are presented in bold).

Approach/feature type HoG CN

feature average and SVM RBF 0.182 0.223
Bag-of-Words and SVM RBF 0.232 0.263
VLAD and SVM RBF 0.254 0.314
proposed with k-means and SVM RBF 0.245 0.316
proposed with SVM RBF 0.295 0.385

VLAD representation. Finally, the proposed algorithm for the word assign-
ment obtains a performance improvement of more than 5% over the standard
assignment (with k-means).

Table 2: Comparison with state-of-the-art (Blip10000 [32] dataset).

approach MAP proposed MAP

block-based audio features and 5-
nearest neighbor [45]

0.192 proposed with audio descriptors 0.472

visual color, texture and rgbSIFT
descriptors [46]

0.350 proposed with visual descriptors 0.453

- - proposed with motion descriptors
(HoG-3D features)

0.483

visual and audio descriptors with
Fisher kernel [22]

0.55 proposed with visual and audio de-
scriptors

0.533

visual and motion descriptors [48] 0.452 proposed with visual and motion
descriptors

0.538

- - proposed with audio, visual and
motion descriptors

0.571

BoW on text ASR and meta-
data [47]

0.523 - -

Comparison to state-of-the-art. In this section we compare our approach
against state-of-the-art results from the literature; in particular from MediaE-
val 2012 benchmarking [33]. For the audio modality, we achieve 0.472 MAP,
much better than the best audio only MediaEval result [45] MAP 0.19. For
visual modality, at 0.453 MAP we perform significantly better than the best
MediaEval result that was obtained exploiting only visual information [46],
MAP 0.35. Also, for motion modality (HoG-3D features), we obtained 0.483
MAP which is higher than audio and visual features alone.

Textual data are by far the most representative for providing content in-
formation. Specific keywords, e.g., ”religion”, ”economy”, ”music”, can reveal
meaningful information about genres. For instance, metadata usually contains
the video title, user tags, comments and content descriptions that are highly
correlated to genre concepts. Even if the metadata contains very highly se-
mantic information, the main drawback of these features is that they cannot
be generated automatically, which limits their applicability. Remarkably, our
combination of audio, motion and visual features yield a MAP of 0.571 which
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Fig. 7: Parameter tuning on the training set of ADL [35] dataset: accuracy vs. the number
of random forests.

is higher than the one obtained using highly semantic metadata information,
which ranked highest in th MediaEval 2012 benchmarking [47] (MAP 0.523).

We also compare our method with other state-of-the-art approaches, namely:
authors in [48] propose a manifold learning based on reciprocal neighborhood
and authority of ranked lists for improving retrieval of videos according to their
genre. They combine visual features (Bag-of-Visual-Words and Bag-of-Scenes)
with motion features (histogram of motion patterns); and authors in [22] who
propose the use of Fisher Kernels to model variation in time for frame-based
video features. Results are presented in Table 2. One can observe that the
proposed approach is able to provide superior performance.

5.2 Daily activities classification

The results of our analysis on the Blip10000 dataset indicate that the proposed
approach obtains good results for the standard problem of video genre classifi-
cation. A natural question that arises is whether these features also generalize
to other datasets and class categories. We examine this question in detail by
performing experiments on the ADL [35] dataset. Performance is measured in
accuracy. We do all the optimizations on the half of the dataset (75 videos)
and we report the final results on the full dataset (150 videos).

We did not use HoG and CN features because for this task the contextual
information is not relevant. All the human activities happen in an indoor
space, having similar background. As human pose and body-part motion are
important for distinguishing the different categories, we extract body-part
features as presented in Section 4.3.

Parameter tuning. We found no improvements by doing PCA on the body-
part HoF features. Figure 7 plots the accuracy with respect to the number of
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random forests. Using only a single RF yields an accuracy of 91%. The best
accuracy of 99% is obtained using 20 random forests. Note that the number
of random forests is relatively low, likely due to the reduced number of videos
in the dataset. At 20 random forests the final feature has 11,520 dimensions.
These settings are adopted for the following experiment.

Comparison with the baseline versions. In this experiment, we compare
the performance of our approach with a standard Bag-of-Words, VLAD ap-
proach, simple aggregation of frames (by computing the mean and the disper-
sion over all the frame) and our approach with a classical k-means for the word
assignment step instead of the Random Forests. Experiments are conducted
by adopting the previous parameter tuning on the ADL testing dataset. The
results are presented in Table 3.

The lowest performance (from 89.2% to 93.3%) is obtained when we aggre-
gate all the features in one descriptor and with the Bag-of-Words representa-
tion. The performance of the standard VLAD representation is still lower with
more than 1%, while the proposed algorithm for the word assignment obtains
a performance improvement of more than 2% over the standard assignment
with k-means.

Comparison to State-of-the-Art.We compare the proposed approach with
others from the literature (see Table 4). As it can be observed, our approach
yields the highest accuracy of 99.3%. The results clearly show that our rep-
resentation enhances the discriminative power of features and improves the
action recognition performance. We conclude that the proposed representa-
tion is also effective for modeling the frame based body-part features.

Table 3: Comparison with the baseline versions of the proposed approach - accuracy values
(ADL [35] dataset; the best results are presented in bold).

Method Accuracy
feature average and SVM RBF 89.2%
Bag-of-Words and SVM RBF 93.3%
VLAD and SVM RBF 98.1%
proposed with k-means and SVM RBF 97.4%
proposed with SVM RBF 99.3%

Table 4: Comparison with state-of-the-art (ADL [35] dataset; the best results are presented
in bold).

Approach Description Accuracy

Bilinski et al. [49] BoW of relative dense tracklets 92.0%
Raptis et al. [51] BoW of spatio-temporal tracklets 94.5%
Wang et al. [50] Multiscale Spatio-Temporal Contexts with

Multiple Kernel Learning
96.0%

Rostamzadeh et al. [43] Body-part HoF with Fisher kernel 98.75%
proposed Body-part HoF with modified VLAD 99.3%
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Fig. 8: Parameter tuning on the training set of VSD2013 [36] dataset: MAP vs. the number
of random forests.

5.3 Violent scenes classification

We also test our approach on the 2013 Violence Scenes Detection VSD2013
dataset [36]. This data is annotated at video shot level for the presence of
violence (yes/no annotations). Two different use cases are annotated: an ob-
jective definition of violence where violence is defined as ”physical violence or
accident resulting in human injury or pain” and a subjective one where the
targeted violent segments are those ”one would not let an 8 years old child
see in a movie because they contain physical violence”. Both scenarios were
tested in our experiments.

We do all the optimizations on the official training dataset that contains 18
of the movies (a total of 32,678 video shots), while the actual benchmarking is
carried out on the remaining 7 movies (11,245 shots). Performance is assessed
using MAP.

For this task we use the following features: HoG, CN and audio features
(see Section 4.3).

Parameter tuning. We first optimize the dimension reduction using PCA.
We found that the performance of audio features is not improved with PCA.
Only for HoG and CN we obtain a good improvement by reducing the dimen-
sion to 90%.

Figure 9 plots the accuracy with respect to the number of random forests.
It can be observed that the results are increasing while using a higher number
of random trees. The performance plateaus however after 12 random forests.
The best accuracy is obtained with the CN descriptor and audio features
(intuitively, violence is highly correlated to the color and audio information).
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Table 5: Comparison with the baseline versions of the proposed approach - MAP values
(VSD2013 [36] dataset - objective task; the best results are presented in bold).

Method MAP
feature average and SVM RBF 0.6131
Bag-of-Words and SVM RBF 0.6634
VLAD and SVM RBF 0.6915
proposed with k-means and SVM RBF 0.7011
proposed with SVM RBF 0.7202

Table 6: Comparison with state-of-the-art (VSD2013 [36] shot based classification; the best
results are presented in bold).

Method Description Accuracy

Objective annotation
FAR [54] Multi Layer Perceptron with aural-visual frame features 0.3504
TUDCL [53] Multiple Kernel Learning with temporal, audio and vi-

sual features
0.4202

proposed HoG frame features with modified VLAD 0.5601
proposed Audio frame features with modified VLAD 0.6137
proposed CN frame features with modified VLAD 0.6695
proposed Audio-visual frame features with modified VLAD 0.7202
Subjective annotation
TECH-INRIA [52] Bayesian networks with temporal, audio and visual fea-

tures
0.4479

proposed HoG frame features with modified VLAD 0.7206
proposed Audio frame features with modified VLAD 0.6276
proposed CN frame features with modified VLAD 0.7206
proposed Global frame features with modified VLAD 0.7612

On the other hand, the lowest performance is obtained with the HoG features,
which may be due to the fact that violence is not correlated with the type of
objects that are part of the scene. We set therefore to 12 random forests.

Comparison with the baseline versions. In this experiment, we compare
the performance of our approach with other baseline approaches. Experiments
are conducted by adopting the previous parameter tuning on the VSD2013
testing dataset. The results are presented in Table 5.

The performance values are similar with those obtained in the previous
experiments. The simple feature aggregation and the Bag-of-Words represen-
tation leads to MAP values from 0.6131 to 0.6634. Also, the performance of
standard VLAD representation is still lower with almost 3%. Finally, the pro-
posed algorithm for the word assignment obtains a performance improvement
of more than 2% over the standard assignment with k-means.

Comparison to State-of-the-Art. We compare our approach against the
results obtained at the MediaEval 2013 benchmarking [55]. Given the classi-
fication nature of our approach, we compare in particular to the shot-based
violence classification results [56].
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Table 7: Comparison with the baseline versions of the proposed approach - accuracy values
(UCF101 [34] dataset; the best results are presented in bold).

Method Accuracy
feature average and SVM RBF 67.2%
Bag-of-Words and SVM RBF 68.1%
VLAD and SVM RBF 73.1%
proposed with k-means and SVM RBF 73.6%
proposed with SVM RBF 74.1%

A summary of the best team runs is presented in Table 6 (results are
presented by decreasing MAP values). The most efficient approaches remain
those that include multimodal information (e.g., motion, visual and aural) and
aggregate it with several late fusion techniques. The best MAP value is 0.42 for
the objective annotations [53], while a similar value of 0.447 is obtained also
on the subjective annotations [52]. For using visual features only, at 0.6695
MAP (objective) and 0.7206 (subjective) we perform significantly better than
the best results. Remarkably, our combination of audio and visual features
yields with more than 0.04 MAP better than the use of individual modalities.
We conclude that the proposed approach improves the retrieval performance
for all modalities, outperforming other state-of-the-art approaches.

5.4 Human action classification

Finally, we also test our approach on a human action classification task. For
this purpose, we report results on the UCF101 [34] dataset. Performance is
evaluated in terms of classification accuracy. We perform all optimization on
a quarter of the dataset (3,207 videos). We then compare with the state-of-
the-art using the full dataset (13,320 clips) [34].

We use the following features: HoG, HoF and CN (with 3x3 spatial division;
see Section 4.3).

Parameter tuning. We first optimized the dimension reduction using PCA.
We found that both the CN descriptor and the HoF did not benefit from
applying PCA reduction, only for HoG we obtain a good improvement by
reducing dimensions to 90%.

In Figure 9 we evaluate the performance with respect to the number of
random forests. For HoF we obtain the best results when we use more than
80 random trees, while for CN and HoG we obtain the best results when we
use only a small number of random forests. In the next experiment, we set 10
random trees for CN and HoG, and 150 for the HoF features.

Comparison with the baseline versions. In this experiment, we compare
the performance of our approach with other baseline approaches. Experiments
are conducted by adopting the previous parameter tuning on the UCF101
testing dataset. The results are presented in Table 7.
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Fig. 9: Parameter tuning on the training set of UCF101 [34] dataset: accuracy vs. the
number of random forests.

The obtained performance is similar with the results obtained in the previ-
ous baseline experiments. The proposed approach obtains better performance
than the other baseline approaches.

Comparison to State-of-the-Art.
In this section we compare our method with other state-of-the-art ap-

proaches: in [34] the authors use a set of standard local motion features, such
as STIPs and dense trajectory features; in [59] authors propose a new technique
to match dense trajectories and remove those that contain background mo-
tion noise; authors in [57] present an approach that uses Convolutional Neural
Networks; in [58] the authors proposed a method that combines the dense tra-
jectories with a classical VLAD encoding; authors in [60] apply a two-stream
ConvNet architecture which incorporates spatial and temporal networks with
multi-frame dense optical flow. We also compare our method with the results
achieved at the THUMOS challenge [61] which employed the UCF101 datasets.
Results are presented in Table 8.

As it can be seen, the proposed approach achieved an accuracy of 74.1%.
The highest accuracy is obtained by Simonyan et al. [60], 87.90%, with dis-
criminatively trained deep Convolutional Networks but at the price of a sig-
nificantly higher computational complexity. We still obtain better results than
Soomro et al. [34], Jain et al. [58], Karpathy et al. [57] and Murthy et al. [59],
which obtain 43.90%, 52.10%, 65.40% and 73.1% respectively. However, by
using the frame-based features, we obtain lower results than the best results
of the THUMOS competition: [62] - authors propose a framework that incor-
porates the dense trajectories (HoG-3D / HoF-3D / MBH), spatio-temporal
pyramids with a modified version of Fisher Kernel representation; [63] - authors
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Table 8: Comparison with state-of-the-art (UCF101 [34] dataset; the best results are pre-
sented in bold).

Method Description Accuracy

Soomro, et al. (2012) [34] Cuboid descriptors 43.90%
Jain, et al. (2013) [58] dense trajectories + VLAD encoding 52.10%
Karpathy, et al. (2014) [57] Convolutional Neural Networks 65.40%
Murthy, et al. (2013) [59] Ordered trajectories + VLAD encoding 73.10%
proposed approach Global frame features with modified VLAD 74.10%
Karaman, et al. (2013) [63] P-SIFT, P-OSIFT, HoG-3D / HoF-3D /

MBH with BOW
85.70

Wang, et al. (2013) [62] dense trajectories (HoG-3D / HoF-3D /
MBH) with a modified FK

85.90%

Simonyan, et al. (2014) [60] ConvNet architecture 87.90%

propose a Bag-of-Features pipeline in combination with local SIFT pyramids
(P-SIFT), opponent color keyframes (P-OSIFT), HoG-3D / HoF-3D / MBH.
These methods outperform the proposed method with more than 10%. How-
ever, the advantage of our approach is in the use of simple global features,
whereas all the other better performing methods use computationally more
expensive Space-Time Interest Points (trajectories) or more complex architec-
tures, such as deep learning. Also, we conclude that the frame-based features
are not the best approach for action recognition tasks, and the use of local
dense trajectories may lead to better performance. However, our framework
yields good performance while using simpler features.

5.5 Computational complexity

In this section we discuss the computational complexity of the proposed de-
scription framework. We analyze the time for computing each processing step,
from feature extraction to video classification. We perform this experiment on
the Blip10000 [32] dataset which contains more than 1TB of video informa-
tion and up to 2,000 hours of video footage. The run-time is evaluated on a
regular PC machine using a 2.9 GHz Intel Xeon CPU and 24GB of RAM. We
do not use parallelization. Experiments were run with HoG and CN features,
with 100 random forests and L2 with square-root normalization.

The computational cost per frame is presented in Figure 10. Descriptor
extraction takes 200 milliseconds (ms) per image (180 ms for HoG and 20
ms for CN). The input/output operation lasts more than 11% of the global
computation time (30 ms per frame). The VLAD computation is very fast,
namely 12 ms per frame. Finally, classification takes 17 ms for all classes.
Therefore, a processing chain for HoG would take 239 ms per frame (∼ 6
seconds for 1 second of video, i.e., 25 frames) while for CN 79 ms per frame
(∼ 2 seconds for 1 second of video).

We conclude that this represents a reasonable, near real-time, cost con-
sidering the achieved performance. This is achieved without any algorithm
optimization nor adequate hardware acceleration or parallel implementation.
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Fig. 10: Total computational time (ms) per frame for the proposed video description frame-
work (Blip10000 [32] dataset, use of HoG and CN features).

Using clustering processing will allow to easily achieve faster than real-time
performance.

Finally, we also compare our implementation (modified VLAD with frame
based features) against other approaches from the literature. Results are pre-
sented in Table 9.

First of all, we show that frame-based features are more computational
efficient than classical spatio-temporal features. Therefore, we selected as ex-
ample a system that integrates the proposed modified VLAD approach with
spatio-temporal HoG-3D features [27]. In this case, spatio-temporal feature
extraction required more than 800ms. In contrast, frame-based feature extrac-
tion takes only 200ms. In addition, for each frame the number of generated
spatio-temporal features is greater than for the frame-based approach, which
impacts the performance of the VLAD algorithm. In effect, the resulting VLAD
approach can become even ten times slower.

We also compare the efficiency of the proposed modified VLAD approach
against other approaches that use similar frame-based features, e.g., the ap-
proach in [22] which uses Fisher Kernels to model variation in time for frame-
based video features and a standard VLAD implementation [28]. We achieve
a total processing time of 219ms and 221ms, respectively. These results show
that by performing the fast word assignment with the pruned random forest
trees, the proposed algorithm is capable of achieving lower processing time,
i.e., 212 ms.

6 Conclusion

We proposed a new video representation framework that models the variation
in time. It uses a fast word assignment approach by replacing Bag-of-Words
k-means visual vocabulary assignment with a Random Forest approach. A
modified version of Vector of Locally Aggregated Descriptor with Fisher Ker-
nel representation is then used for increasing the representative power of the
descriptors.
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Table 9: Comparison of computational efficiency (experiments were conducted on the
Blip10000 [32] dataset).

Approach Feature extraction Feature aggregation Total time
proposed approach with
spatio-temporal HoG-3D [27]
features

833ms 150ms 988ms

Frame-based features +
Fisher kernel + SVM [22]

200ms 19ms 219ms

Frame-based features + clas-
sical VLAD [28] + SVM

200ms 21ms 221ms

proposed approach with
frame-based features + SVM

200ms 12ms 212ms

We demonstrated that our framework is highly general: we showed signif-
icant improvements on a wide variety of features, ranging from global visual
features, body-part features, audio. In order to combine all these modalities,
we used a late fusion strategy that significantly improved the performance
of the system, which makes the system to be easier for scaling up. We also
showed that our method works on a wide variety of classification scenarios:
we obtained good performance on action classification (UCF101 dataset) using
global features instead of the more complex STIPs or dense trajectories used in
other methods. We also improved the state-of-the-art on daily activities clas-
sification (ADL dataset) and we significantly improved the state-of-the-art on
video genre classification (Blip10000 dataset) and violent scenes classification
(VSD2013 dataset). On Blip10000 dataset, we prove that notwithstanding the
superiority of employing user-generated textual information (e.g., user tags,
metadata), the proposed multimodal approach obtained higher performance
than the textual descriptors.

Future work will mainly address the extension of this approach to inte-
grating with low computational complexity the more demanding to compute
spatio-temporal information. Also, an interesting lead would be to study the
impact of more elaborated late fusion approaches in the current framework.
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