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Abstract The current state-of-the-art in video classifica-
tion is based on Bag-of-Words using local visual descriptors.
Most commonly these are histogram of oriented gradients
(HOG), histogram of optical flow (HOF) and motion bound-
ary histograms (MBH) descriptors. While such approach is
very powerful for classification, it is also computationally
expensive. This paper addresses the problem of computa-
tional efficiency. Specifically: (1) We propose several speed-
ups for densely sampled HOG, HOF and MBH descriptors
and release Matlab code; (2) We investigate the trade-off
between accuracy and computational efficiency of descrip-
tors in terms of frame sampling rate and type of Optical
Flow method; (3) We investigate the trade-off between accu-
racy and computational efficiency for computing the fea-
ture vocabulary, using and comparing most of the commonly
adopted vector quantization techniques: k-means, hierarchi-
cal k-means, Random Forests, Fisher Vectors and VLAD.
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1 Introduction

The Bag-of-Words method [10,37] has been successfully
adapted from the domain of still images to the domain of
video using local, visual, space-time descriptors (e.g. [13,22,
25,35,36,45]). Successful applications range from Human
Action Recognition [24,25,32] to Event Detection [38] and
Concept Classification [38,39]. However, analysing video is
even more computationally expensive than analysing images.
Hence, to deal with the enormous growing amount of dig-
italized video it is important to have not only accurate, but
also computationally efficient methods.

In this paper, we take a powerful, commonly used
Bag-of-Words pipeline for video classification and inves-
tigate how we can make it more computationally efficient
while sacrificing as little accuracy as possible. The gen-
eral pipeline is visualised in Fig. 1. In this pipeline we
focus on densely sampled local visual descriptors only,
since dense sampling has been found to be more accurate
than keypoint-based sampling, both in images [20] and in
video [46]. As type of local visual descriptors, we focus
on the standard ones, which are based on local 3D vol-
umes of histogram of oriented gradients (HOG) [11], his-
togram of optical flow (HOF) [12,25] and motion bound-
ary histograms (MBH) [12]. For transforming the set of
local descriptors extracted from a video into a fixed-length
vector necessary for classification, we compare a vari-
ety of techniques: k-means, hierarchical k-means, Ran-
dom Forests [4,16], Fisher Vectors [31] and Vector of
Locally Aggregated Descriptors (VLAD) [19]. Starting from
this pipeline, this evaluation paper makes the following
contributions:

Fast dense HOG/HOF/MBH We exploit the nature of densely
sampled descriptors to speed-up their computation. HOG,
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Fig. 1 General framework for video classification using a Bag-of-Words pipeline. The methods evaluated in this paper are instantiated in this
diagram

HOF and MBH descriptors are created from subvolumes.
These subvolumes can be shared by different descriptors sim-
ilar to what was done in [42]. In this paper, we generalize
their idea of reusing subregions to three dimensions. Matlab
source code will be made available.1

Evaluation of frame subsampling Videos consist of many
frames, making them computational expensive to analyse.
However, subsequent frames also largely carry the same
information. In this paper, we evaluate the trade-off between
accuracy and computational efficiency when subsampling
video frames.

Evaluation of optical flow Calculating optical flow is gener-
ally expensive and takes up much of the total HOF and MBH
descriptor extraction time. But for optical flow there is also
a trade-off between computational efficiency and accuracy.
Moreover, optical flow methods are generally tested against
optical flow benchmarks such as [2,7], but it is not imme-
diately obvious that methods which perform well on these
benchmarks would automatically also yield better HOF and
MBH descriptors. Therefore, in this paper, we evaluate opti-
cal flow methods directly in our task of interest: video clas-
sification. Specifically, we compare the optical flow methods
of Lukas-Kanade [28], Horn–Schunk [17], Farnebäck [15],
Brox 04 [5], and Brox 11 [6].

Evaluation of descriptor encoding The classical way of
transforming a set of local visual descriptors into a single
fixed-length vector is using a k-means visual vocabulary and
assigning local descriptors to the mean of the nearest clus-
ter (e.g. [10]). However, both hierarchical k-means and Ran-
dom Forests [30,42] are viable fast alternatives. Furthermore,
the Fisher Vector [31] significantly outperforms classical k-
means representation in many tasks, whereas VLAD [19]
can be considered a simplified non-probabilistic version
of the Fisher Vector [33] and it is computationally more
efficient. In this paper, we evaluate the accuracy/efficiency
trade-off of all five methods above in the context of video
classification.

1 http://homepages.inf.ed.ac.uk/juijling/index.php#page=software.

2 Related work

The most used local spatio-temporal descriptors are mod-
elled after SIFT [27]: each local video volume is divided into
blocks, for each block one aggregates responses (either ori-
ented gradients or optical flow), and the final descriptor is a
concatenation of the aggregated responses of several adjacent
blocks. Both Dalal et al. [12] and Laptev et al. [25] proposed
to aggregate 2D oriented gradient responses (HOG) and opti-
cal flow responses (HOF). In addition, Dalal et al. [12] also
proposed to calculate changes of optical flow, or MBH. Both
Scovanner et al. [36] and Kläser et al. [22] proposed to mea-
sure oriented gradients also in the temporal dimension, result-
ing in 3-dimensional gradient responses. Everts et al. [14]
extended [22] to include colour channels. As Wang et al. [46]
found little evidence that the 3D responses of [22] are bet-
ter than HOG, in this evaluation paper we implemented and
evaluated the descriptors which are most widely used: HOG,
HOF and MBH.

Wang et al. [46] evaluated several interest point selection
methods and several spatio-temporal descriptors. They found
that dense sampling methods generally outperform interest
points, especially on more difficult datasets. As this result was
earlier found in image analysis [20,34], this paper focuses
on dense sampling for videos. In [46] the evaluation was on
accuracy only. In contrast, this paper focuses on the trade-off
between computational efficiency and accuracy.

Recently, Wang et al. [45] proposed to use dense trajecto-
ries. In their method, the local video volume moves spatially
through time; it tries to stay on the same part of the object. In
addition, they use changes in optical flow rather than the opti-
cal flow itself. They show good improvements over normal
HOG, HOF and MBH descriptors. Nevertheless, combining
their dense trajectory descriptors with both normal HOG,
HOF and MBH descriptors still gives significant improve-
ments over dense trajectories alone [21,45]. In this paper we
focus on HOG, HOF and MBH. Note that we evaluate the
accuracy/efficiency trade-off for several optical flow methods
which may be of interest also when using dense trajectories.

In [34], Sangineto proposes to use Integral Images [44]
to efficiently compute densely extracted SURF features [3]
in still images. The work of Uijlings et al. [42] proposes
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several methods to speed-up the Bag-of-Words classification
pipeline for image classification and provides a detailed eval-
uation on the trade-off between computational efficiency and
classification accuracy. In this paper we perform such eval-
uation on video classification. Inspired by [42] we propose
accelerated densely extracted HOG, HOF and MBH descrip-
tors and provide efficient Matlab implementations. In addi-
tion, we evaluate various video-specific aspects such as frame
sampling rate and the choice of optical flow method.

The Fisher Vector [31] has been shown to outperform stan-
dard vector quantization methods such as k-means in the
context of Bag-of-Words. On the other hand, the recently
proposed VLAD descriptors [19] can be seen as a non-
probabilistic version of Fisher Vectors which are faster
to compute [19,33]. In this paper, we evaluate the accu-
racy/efficiency trade-off using Fisher Vector and VLAD in
the context of video classification.

3 Bag-of-Words for video

In this section we explain in detail the pipeline that we use. We
mostly use off-the-shelf yet state-of-the-art components to
construct our Bag-of-Words pipeline, which is necessary for
a good evaluation paper. In addition, we explain how to create
a fast implementation of densely sampled HOG and HOF
descriptors, and also implicitly for MBH, being MBH based
on HOG and Optical Flow. We make the HOG/HOF/MBH
descriptor code publicly available.

3.1 Descriptor extraction

In this section we describe the details of our implementation
for dense extraction of HOG, HOF and MBH descriptors.
Specifically, in Sect. 3.1.1 we show how HOG and HOF can
be efficiently extracted and aggregated from video blocks.
Then, in Sect. 3.1.2 we deal with MBHs, which are largely
based on HOG. Finally, since in this paper we compare
our implementation with the widely used available code of
Laptev [25], in Sect. 3.1.3, we show the parameters we have
adopted in using Laptev’s code. Both ours and the Laptev’
system work on grey values only. Note that Laptev’s imple-
mentation does not include MBH descriptors, thus the com-
parison performed in our experiments only concerns HOG
and HOF.

3.1.1 Fast dense HOG/HOF descriptors

For both HOG and HOF descriptors, there are several
steps. First one needs to calculate either gradient magnitude
responses in horizontal and vertical directions (for HOG), or
optical flow displacement vectors in horizontal and vertical
directions (for HOF). Both result in a 2-dimensional vec-

Fig. 2 Blocks in a video volume can be reused for descriptor extrac-
tion. In our paper descriptors consist of 3 × 3 blocks in space and 2
blocks in time, shown in blue (color figure online)

tor field per frame. Then for each response the magnitude is
quantized in o orientations, usually o = 8. Afterwards, one
needs to aggregate these responses over blocks of pixels in
both spatial and temporal directions. The next step is to con-
catenate responses of several adjacent pixel blocks. Finally,
descriptors have to be normalized and sometimes PCA is
performed to reduce their dimensionality, often leading to
computational benefits or improved accuracy.

To calculate gradient magnitude responses we use HAAR-
features. These are faster to compute than Gaussian Deriv-
atives and have proven to work better for HOG [11]. Quan-
tization in o orientations is done by dividing each response
magnitude linearly over two adjacent orientation bins.

We use the classical Horn–Schunk [17] method for opti-
cal flow responses as a default. We use the version imple-
mented by the Matlab Computer Vision System Toolbox. In
addition, we evaluate four other optical flow methods: Lucas-
Kanade [28], also using the Matlab Computer Vision System
Toolbox, the method of Färneback [15], using OpenCV2 with
the mexopencv interface,3 Brox 04 [5], and Brox 11 [6] using
the author’s publicly available code.

Both HOG and HOF descriptors are created out of blocks.
By choosing the sampling rate identically to the size of a
single block, one can reuse these blocks. Figure 2 shows an
example on how a video volume can be divided into blocks.
Once responses per block are computed, descriptors can be
formed by concatenating adjacent blocks. In this paper we
use descriptors of 3 × 3 blocks in the spatial domain and 2
blocks in the temporal domain, as shown in blue in Fig. 2, but
these parameters can be easily changed. Hence each block is
reused 18 times (except for the blocks on the borders of the
video volume).

2 http://opencv.org.
3 https://github.com/kyamagu/mexopencv.
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To aggregate responses over space we use the Matlab-
friendly method proposed by [42]: Let R be an N ×M matrix
containing responses in a single orientation (be it gradient
magnitude or optical flow magnitude). Let BN and BM be
the number of elementary blocks from which HOG/HOF fea-
tures are composed. Now it is possible to construct (sparse)
matrices O and P of respectively BN × N and M × BM

such that O R P = A, where A is a BN × BM matrix con-
taining the aggregated responses for each block. O and P
resemble diagonal matrices but are rectangular and the filled
in elements follow the ’diagonal’ of the rectangle instead of
positions (i, i). By proper instantiation of these matrices we
perform interpolation between blocks, which provides the
descriptors some translation invariance. For integration over
time we add the responses of the frames belonging to a sin-
gle block. For more details we refer the reader to the work
of [42].

In this paper, we extract descriptors on a single scale where
blocks consist of 8 × 8 pixels × 6 frames, which at the
same time is our dense sampling rate. Descriptors consist
of 3 × 3 × 2 blocks. Both for HOG and HOF the magni-
tude responses are divided into 8 orientations, resulting in
144-dimensional descriptors. PCA is performed to reduce
the dimensionality by 50 % resulting in 72-dimensional vec-
tors. Afterwards, normalization is performed by the L1-norm
followed by the square root, which effectively means that
Euclidean distances between descriptors in fact reflect the
often superior Hellinger distance [1].

3.1.2 Motion boundary histograms descriptor

Another commonly used descriptor for video classification
tasks is MBH, proposed by Dalal et al. [12], who proved its
robustness to camera and background motion. The intuitive
idea of MBH is to represent the oriented gradients computed
over the vertical and the horizontal optical flow components.
The advantage of such representation is that constant cam-
era movements tend to disappear and the description focuses
on optical flow differences between frames (motions bound-
aries).

In more detail, the optical flow’s horizontal and verti-
cal components are separately represented using two scalar
maps, which can be seen as grey-level “images” of the
motion components. HOG are then computed for each of
the two optical flow component images, using the same
approach used for computing HOG in still images. Taken into
account only flow differences, the information about changes
in motion boundaries is kept and the constant motion infor-
mation is removed, which leads to the cancellation of most
of the effects of camera motion.

In our MBH implementation we follow the pipeline sug-
gested in [12] and mentioned above. Once computed the
horizontal and vertical optical flow components, HOG are

computed on each image component using the same effi-
cient approach and the same parameters shown in Sect. 3.1.1.
Also the block-based aggregation step is analogous to what
described in Sect. 3.1.1.

The outcome of this process is a pair of horizontal (MBHx)
and vertical (MBHy) descriptors [12], each one composed
of 144 dimensions. We separately apply PCA to both MBHx
and MBHy and we obtain two vectors of 72 dimensions
each. The (PCA-reduced) MBHx and MBHy vectors can
then be either separately used in the subsequent visual word
assignment and classification stages (Fig. 1) or combined in
order to get a unique descriptor. In [45] the authors state that
late fusion of MBHx and MBHy gives a better performance
than concatenating the two descriptors before the visual word
assignment step. Hence in this paper we will report results
for MBHx and MBHy separately, and a late fusion of the two
which we simply denote as MBH. This late fusion combines
the outcomes of the two (independent) classifications with
equal weights. Finally, in Sect. 4.6, we will also show results
concerning a late fusion strategy involving all the descriptors
(MBHx , MBHy, HOG and HOF).

3.1.3 Existing HOG/HOF descriptors

We use the existing implementation of Laptev et al. [25]. We
use the default parameters as suggested by the authors, which
compared to our descriptors are as follows: They perform a
dense sampling at multiple scales. At the finest scale, blocks
are 12 × 12 pixels × 6 frames, sampling rate is every 16
pixels by every 6 frames. They consider 8 spatial scales and
2 temporal scales for a total of 16 scales, where each scale
increases the descriptor size by a factor of

√
2. In the end,

they generate around 33 % less descriptors than our single
scale dense sampling method.

Unlike our descriptor extraction, the implementation
of [25] uses 4 orientations for HOG and 5 orientations
for HOF, resulting in respectively 72- and 90-dimensional
descriptors.

3.2 Visual word assignment

We use five different ways of creating a single feature repre-
sentation of a set of descriptors extracted from a single video:
k-means, hierarchical k-means, Random Forests [4,16],
VLAD [19] and Fisher Vectors [31].

For hierarchical k-means we use the implementation made
available by VLFeat [43]. For the regular k-means assign-
ment, we make use of the fact that the descriptors are L2-
normalized: Euclidean distances are proportional to dot prod-
ucts (cosine of angles) between the vectors. Hence finding
the minimal euclidean distance is equivalent to finding the
maximal dot product, yet more efficient to compute [42].
For both hierarchical k-means and regular k-means, we use
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4,096 visual words. For hierarchical k-means, we learn a
hierarchical tree of depth 2 with 64 branches per node of
the tree (preliminary experiments showed a large decrease
in accuracy when using a higher depth with fewer branches,
but only marginal improvements in computational efficiency,
data not shown). We normalize the resulting frequency his-
tograms using the square root, which discounts frequently
occurring visual words, followed by L1-normalization.

Random Forests are binary decision trees which are
learned in a supervised way by randomly picking several
descriptor dimensions at each node with several random
thresholds and choose the one with the highest Entropy Gain.
We follow the recommendations of [42], using 4 binary deci-
sion trees of depth 10, resulting in 4,096 visual words. The
resulting vector is normalized by taking the square root fol-
lowed by L1.

The Fisher Vector [18] as used in [31] encodes a set of
descriptors D with respect to a Gaussian mixture model
(GMM) which is trained to be a generative model of these
descriptors. Specifically, the set of descriptors is represented
as the gradient with respect to the parameters of the GMM.
This can be intuitively explained in terms of the EM algorithm
for GMMs: Let Gλ be the learned GMM with parameters λ.
Now use the E-step to assign the set of descriptors D to Gλ.
Then the M-step yields a vector F with adjustments on how
λ should be updated to fit the data (i.e. how the GMM clus-
ters should be adjusted). This vector F is exactly the Fisher
Vector representation. We follow [31] and normalize the vec-
tor using a square root of the absolute values and afterwards
keep the original sign ((sign( fi ))

√| fi |), followed by L2. In
this paper we use two common cluster sizes for the GMM:
64 and 256 clusters [31]. Without a spatial pyramid [26], for
our 72-dimensional HOG/HOF/MBHx /MBHy features this
will yield vectors of 9,216 and 36,864 dimensions respec-
tively.While not comparable with the dimensionality of other
methods, Fisher Vectors (and VLAD) allow for linear Sup-
port Vector Machines rather than Histogram Intersection or
χ2-kernels. Hence efficiency wise, the simpler classifiers will
compensate for the larger dimension of the feature vectors.

The recently proposed VLAD [19] representation can be
seen as a simplification of the Fisher Vector [19,33] in which:
(1) a spherical GMM is used, (2) the soft assignment is
replaced with a hard assignment and (3) only the gradient
of Gλ with respect to the mean is considered (first order
statistics). This leads to a lower dimensional representation,
half of the dimensions of a Fisher Vector, in which sec-
ond order statistics are also used. Following [19] we use for
VLAD the same normalization scheme used for Fisher Vec-
tors: We square root the VLAD vectors while keeping their
sign, followed by L2-normalization. For good comparison to
the Fisher Vectors, we use a dictionary of 128 and 512 clusters
respectively, leading to features of dimensionality identical
to the Fisher Vectors: 9,216 and 36,864 dimensions.

We use the Spatial Pyramid [26] in all our experi-
ments. Specifically, we divide each video volume into the
whole video and into three horizontal parts which intuitively
roughly corresponds to a ground, object, and sky division (in
outdoor scenes).

3.3 Classification

For classification we use Support Vector Machines which
are powerful and widely used in a Bag-of-Words context
(e.g. [10,26,42,43]). For k-means, hierarchical k-means, and
Random Forests, we use SVMs with the Histogram Intersec-
tion kernel, using the fast classification method as proposed
by [29]. For the Fisher Vector and VLAD, we use linear
SVMs. For both types of SVMs, we make use of the pub-
licly available LIBSVM library [8] and the fast Histogram
Intersection classification of [29].

4 Experiments

Our baseline consists of densely sampled HOG, HOF and
MBH(x/y) descriptors, all consisting of blocks of 8 × 8 pix-
els × 6 frames. For HOF and MBH(x /y), optical flow is cal-
culated using Horn–Schunk. Gradient and flow magnitude
responses are quantized in 8 bins. The final descriptors con-
sist of 3 × 3 × 2 blocks. PCA always reduces dimensionality
of descriptors by 50 %. We use a spatial pyramid division of
1 × 1 × 1 and 1 × 3 × 1 [26] (we have no temporal division).
Normalization after word assignment is done by either tak-
ing the square root while keeping the sign followed by L2
for the Fisher Kernel, or by the square root plus L1 for all
other methods. We use SVMs for classification, with either a
linear kernel for the Fisher Vectors or histogram intersection
kernel for all other visual word assignment methods.

Starting from our baseline we perform four experiments:
(1) We compare five different visual word assignment
methods: k-means, hierarchical k-means, Random Forests,
VLAD and the Fisher Kernel; (2) We compare our densely
extracted descriptors with the descriptors provided by Laptev
et al. [25]; (3) We evaluate the efficiency/accuracy trade-
off by subsampling video frames for the descriptor extrac-
tion process; (4) For HOF and MBH(x /y) descriptors, we
compare five different optical flow implementations: Horn–
Schunk, Lukas-Kanade, Farnebäck [15], Brox 04 [5] and
Brox 11 [6].

All timing experiments are performed on a single core of
an Intel(R) Xeon(R) CPU E5620 2.40GHz. We use mainly
Matlab, but most toolboxes used by us have mex-interfaces to
C++ implementations for critical functions. All implemen-
tations are heavily optimized for speed. Since the computa-
tion involves many common operations that use standardized
and optimized libraries (e.g. convolutions, matrix multipli-
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cations) on large quantities of data, virtually the entire time is
spent on core calculations while the overhead is negligible;
using only C++ will not result in noticeable differences in
the overall timing results presented in this paper.

Based on our experiments we provide two recommenda-
tions, one for real-time video classification and one for accu-
rate video classification. Finally we give a comparison with
the state-of-the-art.

4.1 Dataset

We perform all experiments on the UCF50 Human Action
Recognition dataset [32]. This dataset contains 6,600 realis-
tic videos taken from Youtube and as such has large variations
in camera motion, object appearance and pose, illumination
conditions, scale, etc. The 50 human action categories are
mutually exclusive and include actions such as biking, div-
ing, drumming, and fencing. The frames of the videos are 320
× 240 pixels. The video clips are relatively short with a length
that varies around 70–200 frames. The dataset is divided in
25 predefined groups. Following the standard procedure we
perform a leave-one-group-out cross-validation and report
the average classification accuracy over all 25 folds. Opti-
mization of the SVM slack parameter is done for every class
for every fold on the training set (containing 24 groups).

4.2 Visual word assignment

In this experiment we compare the following visual word
assignment methods: k-means, hierarchical k-means, Ran-
dom Forests, VLAD and Fisher Vector. k-means, hierarchical
k-means and Random Forests are similar in the sense that the
final vector represents visual word counts. To compare these
methods we ensure that all have 4,096 visual words. For k-
means this means performing clustering with k = 4,096. For
hierarchical k-means we use a hierarchy of depth 2 with 64
branches at each node. The Random Forest consists of 4 trees
of depth 10. We choose to base our Fisher Vectors on standard
sizes for the number of clusters: 64 and 256 clusters [9,31].
While Fisher Vectors are of higher dimensionality, the vec-
tors work with linear classifiers. This means that Fisher Vec-
tors are best compared with the other visual word assignment
methods in terms of the accuracy/efficiency trade-off. Simi-
larly, we adopted two standard cluster sizes for VLAD: 128
and 512 dimensions respectively [19] and we used linear
classifiers as well.

The accuracy and computational efficiency for the various
word assignment methods for our HOG, HOF and MBH(x /y)
features are presented in Fig. 3 and Table 1. The first thing to
notice is that the Fisher Vector with 256 clusters has the best
accuracy of 0.765 for HOG, 0.795 for HOF, 0.796 for MBHx
and 0.804 for MBH, while taking 3.39 s/video (per descriptor
type). k-means has also good accuracy at 0.728 for HOG,
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Fig. 3 Accuracy/efficiency trade-off for various word assignment
methods and features. For a better readability of the figure, we omitted
the results concerning MBHx and MBHy (see Table 1)

0.791 for HOF, 0.782 for MBHx and 0.8 for MBH. However,
the computational time is at 1.81 s/video. This means that
the Fisher Vector (with 256 clusters) for video classification
is superior in accuracy but slightly slower compared to k-
means. For computational efficiency, the Random Forest is
by far the fastest and takes 0.1 s/video. The hierarchical k-
means (hk-means) is four times slower at 0.47 s/video, and
performs slightly worse on HOG (0.718 hk-means vs. 0.729
RF) but significantly better on HOF (0.780 hk-means vs.
0.732 RF) and on MBHx , MBHy and MBH (respectively,
0.774 vs. 0.738, 0.763 vs. 0.739 and 0.791 vs. 0.765).

In terms of classification time per video, we measure 0.017
s/video when using the fast Histogram Intersection-based
classification for SVMs [29] for k-means, hk-means, and
Random Forests. We measure 0.001 s/video for the linear
classifier used on the Fisher Vector representation with 256
clusters. This means that the classification time is negligible
compared to the word assignment time and is of little concern
for video classification.

For the remainder of this paper, we choose to perform
our evaluation on two word assignment methods: the Fisher
Vector, which yields the most accurate results, and hk-means,
which is the second fastest after Random Forests, while its
accuracy for HOF and MBH(x /y) is much higher than using
Random Forests.

4.3 Comparison with Laptev et al.

In this experiment we compare the publicly available code
from [25] with our implementation. We compare only to the
dense sampling option as [46] has already proven that dense
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Table 1 Trade-off accuracy/efficiency for the following visual word assignment methods: k-means, hierarchical k-means (hk-means), Random
Forest (RF), Fisher Kernel with 64 and 256 clusters (FK 64 and FK 256)

k-means hk-means RF FV 64 FV 256 VLAD 128 VLAD 512

HOG Acc 0.728 0.718 0.729 0.746 0.765 0.653 0.671

HOF Acc 0.791 0.780 0.732 0.779 0.795 0.751 0.783

MBHx Acc 0.782 0.774 0.738 0.767 0.796 0.749 0.774

MBHy Acc 0.772 0.763 0.739 0.759 0.787 0.737 0.765

MBH Acc 0.800 0.791 0.765 0.786 0.804 0.769 0.792

s/video 1.81 0.51 0.10 1.10 3.39 0.19 0.47

Frame/s 108 387 1,910 180 58 1,011 415

Assignment time for HOG and HOF is the same

Fig. 4 Accuracy comparison
between [25] and our
HOG/HOF descriptors
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Fig. 5 Computational
efficiency comparison
between [25] and our
HOG/HOF descriptors

0 2 4 6 8 10 12 14 16
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Table 2 Comparing the dense HOG/HOF implementation of [25] and
ours

hk-means FV 256 Efficiency

HOG HOF HOG HOF s/vid Frame/s

[25] 0.657 0.590 0.670 0.725 141 1.4

Ours 0.718 0.780 0.765 0.795 15 12.8

The descriptor extraction time is measured for extracting both HOG
and HOF features, as the binary provided by [25] does always both.
Descriptor extraction time is independent of the visual word assignment
method (RF or FV 256)

sampling outperforms the use of space-time interest points.
Moreover, only HOG and HOF features are used for com-
parison because the code in [25] does not include any imple-
mentation for MBH features. Results are presented in Figs. 4
and 5 and in Table 2.

The results show that for all settings there is a significant
difference in accuracy between the dense implementation
of [25] and our method. For the Fisher Vector, HOG descrip-
tors yield 0.670 accuracy for [25] and 0.765 accuracy for our
implementation and HOF descriptors yield 0.725 accuracy
for [25] and 0.795 accuracy for our implementation. These
are accuracy increases of 9 and 7 % respectively. Similar
differences are obtained using hk-means. Part of the differ-
ence can be explained by the fact that we sample differently:
because we reuse blocks of the descriptors, our sampling rate
is defined by the size of a single block. This means we sample
descriptors every 8 pixels and every 6 frames at a single scale,
whereas [25] samples every 16 pixels and every 6 frames at
10 increasingly course scales. For our method this yields
around 150 descriptors per frame or around 29,000 descrip-
tors per video whereas [25] generates around 90 descrip-
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tors per frame or around 17,500 descriptors per video, which
means we generate 66 % more descriptors. While this may
seem unfair towards [25], in this paper we are interested in
the trade-off between accuracy and computational efficiency,
which makes the exact locations from where descriptors are
sampled irrelevant.

In terms of computational efficiency our method is more
than 9 times faster: their method takes 141 s/video while our
method takes 15 s/video. Our method is faster because we
reuse blocks in our dense descriptor extraction method. Note
that because the method of [25] samples fewer descriptors,
visual word assignment time is faster. But using [25] the
overall computation time will be completely dominated by
descriptor extraction.

To conclude, our implementation is significantly faster
and significantly more accurate than the version of [25].

4.4 Subsampling video frames

In video, subsequent video frames largely contain the same
information. As the time for descriptor extraction is the
largest bottleneck in video classification, we investigate how
the accuracy behaves if we subsample video frames and
hence speed-up the descriptor extraction process.

For a fair comparison, we want the descriptors always
to describe the same video volume. In our baseline, each
descriptor block consists of 8 × 8 pixels × 6 frames. To sub-
sample in such a way that every block describes the same
video volume regardless of the sampling rate, we do the fol-
lowing: if we sample every 2 frames, we aggregate responses
over 3 frames (i.e. of frame 2, 4 and 6). When sampling every
3 frames, we aggregate responses over 2 frames (i.e. frame 2
and 5), and when sampling every 6 frames in which we only
consider a single frame per descriptor block (i.e. frame 3).
Results are presented in Fig. 6 and Table 3.
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Fig. 6 Trade-off accuracy/efficiency when varying sampling rate. F
stands for frames per block and it is directly related to sampling rate

For HOG descriptors, subsampling video frames have sur-
prisingly little effect on the accuracy, both for hk-means and
Fisher Vectors: using Fisher Vectors, a sampling rate of 1
yields an accuracy of 0.765 while a sampling rate of 6 yields
0.762 accuracy. The result of hk-means is basically constant,
with slight oscillations. In terms of computational efficiency,
a significant speed-up is achieved: sampling every 6 frames
instead of every frame gives a speed-up from 6.5 s/video to
3.3 s/video.

For HOF descriptors, subsampling has a bigger impact:
For the Fisher Vector, the accuracy is 0.795 using a sampling
rate of 1, maintains a respectable 0.791 accuracy at a subsam-
pling rate of 2 frames, while dropping significantly to 0.763
for sampling every 6 frames. Accuracy with hk-means is less
affected and drops from 0.78 at sample rate of 1 to 0.762

Table 3 Trade-off between frame sampling rate and accuracy

HOG
( Frames/block

samplerate

) (
6

1

) (
3

2

) (
2

3

) (
1

6

)

hk-means 0.718 0.716 0.712 0.719

FV 256 0.765 0.759 0.760 0.762

s/vid 6.5 4.5 3.9 3.3

Frame/s† 30.2 43.7 50.3 58.9

HOF
( Frames/block

samplerate

) (
6

1

) (
3

2

) (
2

3

) (
1

6

)

hk-means 0.780 0.773 0.766 0.762

FV 256 0.795 0.791 0.784 0.763

s/vid 8.9 5.9 4.8 3.8

Frame/s† 22.1 33.5 40.7 51.8

MBHx
( Frames/block

samplerate

) (
6

1

) (
3

2

) (
2

3

) (
1

6

)

hk-means 0.774 0.767 0.769 0.758

FV 256 0.796 0.794 0.788 0.771

s/vid 9.4 6.1 5.0 3.9

Frame/s† 20.9 32.1 39.4 50.7

MBHy
( Frames/block

samplerate

) (
6

1

) (
3

2

) (
2

3

) (
1

6

)

hk-means 0.763 0.757 0.752 0.741

FV 256 0.787 0.785 0.772 0.750

s/vid 9.4 6.1 5.0 3.9

Frame/s† 20.9 32.1 39.4 50.7

MBH
( Frames/block

samplerate

) (
6

1

) (
3

2

) (
2

3

) (
1

6

)

hk-means 0.791 0.788 0.787 0.772

FV 256 0.804 0.803 0.800 0.775

s/vid 13.7 8.3 6.5 4.6

Frame/s† 14.3 23.6 30.1 42.9

We keep video volumes from which descriptors are extracted the same
for all sampling rates
† Frames/s is measured in terms of the total number of frames of the
video, not in terms of how many frames are actually processed during
descriptor extraction
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at sample rate of 6. Again, a good speed-up is obtained by
subsampling. While descriptor extraction takes 8.9 s when
using every frame, a sampling rate of 2 yields a factor 1.5
speed-up while sampling every 6 frames yields a factor 2.34
speed-up.

The remaining rows of Table 3 present results obtained
with different combinations of the vertical and the horizon-
tal components of the MBH (Sect. 3.1.2). Note that when
calculating both components of the MBH features, the opti-
cal flow has to be calculated only once, so computation time
is faster than simply adding the times of MBHx and MBHy.

We observe a particular order of accuracy among these
three combinations: using the only horizontal component
(MBHx) always results in a higher accuracy than using the
only vertical component (MBHy), independently of whether
Fisher Vectors or hk-means is used as word assignment
method. This sharp difference is probably due to the fact
that in the test videos the horizontal motion is more frequent
than the vertical one. Moreover, as expected, late fusion of the
two components (MBH), always outperforms using MBHx
only. Concerning the drop of accuracy depending on the sam-
ple rate, for all the three descriptor combinations (MBHx ,
MBHy, MBH) and both word assignment methods (Fisher
Vectors and hk-means), the accuracy loss as a function of
the sample rate is similar to what happens with HOF and
much higher than HOG. We believe that this is due to the
fact that HOG are basically “static” features, representing
the appearance of a given image window independently of
possible motion information. As a consequence, they are less
affected by optical flow errors [which is used to compute both
HOF and MBH(x /y)] and better exploit the redundancy of
consecutive video frames.

As for HOG and HOF and also for MBH(x /y) and MBH,
we observe a significant computational efficiency gain using
subsampling. For instance, sampling every 6 frames yields a
factor of 2.4 speed-up for MBH(x /y) and a factor of 3 speed-
up for MBH with respect to using all the frames.

To conclude, HOG descriptors can be sampled every 6
frames with negligible loss of accuracy yielding a speed-up
of a factor 2. HOF and MBH descriptors can be sampled every
2 frames with negligible loss of accuracy yielding a speed-
up of a factor 1.5 and 1.7 respectively. When speed is more
important than accuracy, both HOF and MBH descriptors can
also be sampled every 6 frames leading to 1–3 % accuracy
loss while gaining a significant speed-up of a factor 2.3–3.

4.5 Choice of optical flow

The results reported in the previous section show that both the
HOF and the MBH(x /y) descriptors are much more expen-
sive to extract than the HOG descriptors (Table 3). This
is because calculating the optical flow is computationally
expensive. In addition, not much research has been done

Table 4 Comparison of different optical flow methods used to compute
HOF features

Horn–Schunk Lucas-Kanade Färneback

hk-means 0.780 0.750 0.652

FV 256 0.795 0.747 0.641

s/video 8.8 7.2 19.0

Frame/s 22 27 10

Results obtained with no frame subsampling and at full original spatial
resolution (320 × 240 pixels)

Table 5 Comparison of different optical flow methods used to compute
HOF features

Horn–Schunk Lucas-Kanade Färneback Brox 04 Brox 11

hk-means 0.713 0.681 0.529 0.548 0.552

FV 256 0.718 0.697 0.542 0.638 0.652

s/video 2.9 2.8 0.76 7.2 12.4

Frame/s 68 69 257 27.4 16

Results obtained subsampling a frame every 6 and at reduced spatial
resolution (80 × 60 pixels)

on how different optical flow methods affect HOF/MBH
descriptors. Therefore, in this experiment we evaluate five
available optical flow implementations to investigate both
their computational efficiency and accuracy. In particular,
we compare: (1) Farnebäck [15] from OpenCV using the
mexopencv interface, (2) Lucas-Kanade [28] and (3) Horn–
Schunk [17] from the Matlab Computer Vision Systems Tool-
box, (4) Brox 04 [5] and (5) Brox 11 [6] using the available
author’s code.

Results are presented in Tables 4 and 5. Specifically, while
in Table 4 we used the same setting adopted in the other
experiments of this paper, in Table 5 we downscaled the frame
resolution of all the videos by a factor of 4 (i.e., using 80 ×
60 pixel frames) and we subsampled every 6 frames (see
Sect. 4.4). This scale and time subsampling was necessary
to process our large video dataset with both Brox 04 and
Brox 11, two state-of-the-art dense optical flow methods not
able to process videos in real time. In fact, processing all
the frames of our 6,600 videos at full spatial resolution with
Brox 11 would require a few months.

With the original frame resolution (Table 4), and with both
hk-means and Fisher Vectors, the three computationally fea-
sible optical flow methods have the same ranking in terms
of accuracy. For the Fisher Vector, Horn–Schunk performs
best at an accuracy of 0.795, followed by Lucas-Kanade at
an accuracy of 0.747, while the method of Farnebäck per-
forms relatively poorly with an accuracy of 0.641. These
results show that the optical flow method is crucial to the
performance of the HOF descriptor: the choice of optical
flow affects the results by up to 15 %(!).
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In terms of computational efficiency, Lucas-Kanade is
the fastest at 27 frames/s, followed by Horn–Schunk at 22
frames/s, while Farnebäck is slower with 10 frames/s. How-
ever, while Lucas-Kanade is faster, its trade-off between effi-
ciency and accuracy is not good: As seen in Table 3 Horn–
Schunk with a frame sampling rate of 2 outperforms the
Lukas-Kanade results in Table 4 in both speed (33 frames
vs. 27 frames) and accuracy (0.77 vs. 0.75).

Table 5 reports results when we subsample frames and
reduce the frame size by a factor 4, enabling comparison
with the Brox methods. Note that for a fair comparison these
times include the computation for reducing the frame sizes
(although these times are negligible compared to the total
description extraction time). It can be seen that both Brox
methods are better than Farneback, but surprisingly not bet-
ter than the Horn–Schunk and Lucas-Kanade method. One
explanation is that this is due to the low resolution of the
frames, which makes dense optical flow extraction not suffi-
ciently accurate. Another possibility is that optical flow meth-
ods performing better on optical flow benchmarks are not
necessarily optimal for use in classification; reducing mis-
takes in most parts of the flow may introduce artefacts else-
where that negatively affect results in a classification frame-
work.

In terms of computational efficiency, Brox 11 is the slow-
est, followed by Brox 04: even subsampled on reduced frames
Brox 04 still processes only 27 frames/s. In contrast to results
without downsampling, Farnebäck is here the fastest method.
Apparently, there is some overhead in the Matlab optical flow
implementations.

To conclude, the choice of optical flow method drastically
influences the power of the resulting HOF descriptor and it
is not necessarily correlated with the performance on optical
flow benchmarks. In addition, many optical flow methods
aim for accuracy rather then computational efficiency (e.g.
Sun et al. [41] provide a very good overview for accuracy but
do not report computational efficiency). Indeed, except the
Horn–Schunk, Lucas-Kanade, and Farnebäck methods we
did not find any other freely available optical flow method
fast enough for use in our classification pipeline. Our evalua-
tion shows that the Horn–Schunk method has the best trade-
off between accuracy and computational efficiency and that
subsampling every two frames works better than switching
to Lucas-Kanade optical flow. Horn–Schunk is therefore the
current method of choice.

4.6 Recommendations for practitioners

Based on the results of the previous experiments, we can now
give several recommendations when accuracy or computa-
tional efficiency is preferred. For calculating Optical Flow,
Sect. 4.5 showed that the Matlab implementation of Horn–
Schunk is always the method of choice. In terms of frame

sampling rate, for HOG descriptors we always recommend a
sampling rate of every six frames. For HOF descriptor, if one
wants accuracy we recommend a sampling rate of every two
frames and if one wants computational efficiency we recom-
mend a sampling rate of 6. The same holds for MBH(x /y)
descriptors. For the word assignment method, the Fisher Vec-
tor is the method of choice for accuracy. For computational
efficiency there are two candidates: hierarchical k-means and
the Random Forest. Observe first that the descriptor extrac-
tion time is the most costly phase of the pipeline: Extracting
HOF descriptors with a sampling rate of 6 frames takes 3.8
s/video to compute. And while the Random Forest is five
times faster than hierarchical k-means, the difference is only
0.41 s/video, which is very small compared to the descrip-
tor extraction phase. Furthermore, Table 1 showed a signifi-
cant drop of accuracy from 0.780 for hierarchical k-means to
0.732 for Random Forests [and a similar drop of accuracy is
observed with MBH(x /y)]. Therefore we recommend using
hierarchical k-means for a fast video classification pipeline.

We found that late fusion of the classifier outputs gave
slightly better results than early fusion of the descriptors (e.g.
concatenating HOG and HOF). Hence in our recommenda-
tions we perform a late fusion with equal weights.

We tested different descriptor combinations, using equal-
weights-based late fusion and with the goal of selecting:
(1) the most accurate set of descriptors, possibly taking into
account the complementarity of appearance/motion informa-
tion of different features, and (2) the fastest solution with a
sufficiently good accuracy degree. The final recommended
pipelines are visualised in Figs. 7 and 8.

The most accurate pipeline (Fig. 7) combines all the
descriptors we adopted in this paper: HOG, HOF, MBHx
and MBHy. HOG are extracted using all the frames, while
HOF and MBH(x /y) are extracted with a sampling rate of 2.
The word assignment method used in this case is the Fisher
Vector. Using this pipeline we can process 11 frames/s (for
video frames of 320 × 240 pixels) at an accuracy of 0.818 on
UCF50. Conversely, our recommended pipeline for compu-
tational efficiency (Fig. 8) is based on late fusion of only HOG
and HOF, both extracted with a sampling rate of 6 and using
hk-means. This second pipeline can process 28 frames/s at a
respectable accuracy of 0.790.

4.7 Comparison with state-of-the-art

In this section we compare our descriptors to the state-of-the-
art. Results of several recent works are given in Table 6. This
comparison is done in terms of accuracy only, as most com-
pared methods evaluate accuracy only. This paper in Table 6
indicates the late fusion of all the descriptors [HOG, HOF,
MBH(x /y)]: see Sect. 4.6 and Fig. 7.

As can be seen, the method of [45] yields the best results.
This method is a combination of Dense Trajectories and
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Fig. 7 Recommended pipeline for accurate video classification. This pipeline yields an accuracy of 0.818 on UCF50 while processing 9 frames/s

Fig. 8 Recommended pipeline for realtime video classification. This pipeline yields an accuracy of 0.790 on UCF50 while processing 28 frames/s

Table 6 Comparison with the state-of-the-art

Method Accuracy (%)

Wang et al. [45] 0.856

This paper 0.818

Reddy et al. [32] 0.769

Solmaz et al. [40] 0.737

Everst et al. [14] 0.729

Kliper-Gross et al. [23] 0.727

STIP features [25]. As our results are better than [25], we
expect that a combination of dense trajectories with our
method would increase results further. In general, our method
yields good performance compared to many recently pro-
posed methods, which shows that we provide a strong imple-
mentation of densely sampled HOG, HOF and MBH(x /y)
descriptors.

5 Conclusion

This paper presented an evaluation of the trade-off between
computational efficiency and accuracy for video classifica-
tion using a Bag-of-Words pipeline with HOG, HOF and
MBH descriptors. Our first contribution is a strong and fast

Matlab implementation of densely sampled HOG, HOF and
MBH descriptors, which we make publicly available.

In terms of visual word assignment, the most accurate
method is the Fisher Kernel. Hierarchical k-means is more
than six times faster while yielding an accuracy loss of less
than 2 % and is the method of choice for a fast video classi-
fication pipeline. HOG descriptors can be subsampled every
six frames with a negligible loss in accuracy, while being
two times faster. HOF and MBH descriptors can be subsam-
pled every two frames with negligible loss in accuracy, being
1.5–1.7 times faster. When speed is essential, HOF and MBH
descriptors may be subsampled every six frames.

For the HOF and MBH descriptors, we showed that the
choice of optical flow algorithm has a large impact on the
final performance. The difference between the best method,
Horn–Schunk, and the second best method, Lucas-Kanade,
is already 5 %, while the difference with Färneback is a full
15 %. Brox 04 and Brox 11 are computationally very demand-
ing, and cannot be used in a real-time video classification
scenario.

Compared to the state-of-the-art, the Dense Trajectory
method of [45] obtains better results. Nevertheless, the huge
difference for the choice of optical flow methods suggests
this would also influence dense trajectories. Furthermore,
Dense Trajectories still benefit from a combination with nor-
mal HOG, HOF and MBH desciptors [21,45]. Finally, com-
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parisons with other recent methods on UCF50 show that we
provide a strong implementation of dense HOG, HOF and
MBH descriptors to the community.
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