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Abstract—The encoding method is an important factor for
an action recognition pipeline. One of the key points for the
encoding method is the assignment step. A very widely used
super-vector encoding method is the vector of locally aggregated
descriptors (VLAD), with very competitive results in many tasks.
However, it considers only hard assignment and the criteria for
the assignment is performed only from the features side, by
looking for which visual word the features are voting. In this work
we propose to encode deep features for videos using a double
assignment VLAD (DA-VLAD). In addition to the traditional
assignment for VLAD we perform a second assignment by taking
into account the perspective from the codebook side: which are
the nearest features to a visual word and not only which is the
nearest centroid for the features as the standard assignment.
Another important factor for the performance of an action
recognition system is the feature extraction step. Recently, deep
features obtained state-of-the-art results in many tasks, being also
adopted for action recognition with competitive results over hand-
crafted features. This work includes a pipeline to extract local
deep features for videos using any available network as a black
box and we show competitive results including the case when
the network was trained for another task or another dataset.
Our DA-VLAD encoding method outperforms the traditional
VLAD and we obtain state-of-the-art results on UCF50 dataset
and competitive results on UCF101 dataset.

Index Terms—Video Classification, Action Recognition, Double
Assignment VLAD (DA-VLAD), Deep Features.

I. INTRODUCTION

Action recognition has attracted a considerable amount of
attention in the computer vision community due to the ever
increasing interest in the video processing and analysis appli-
cations, such as video indexing and retrieval, video surveillance,
automatic recognition, etc. Even though in the past several years
we have witnessed an important progress in action recognition
research [22, 24, 16, 8], it is still an open issue mainly due to
the difficulty of the data, namely: large intra-class variations,
viewpoint changes, background clutter, high dimension of video
data, low video resolution.

The Bag of Visual Words (BoVW) framework with its varia-
tions [11, 22, 24] has been widely used and showed its effective-
ness in human action recognition challenges. The general BoVW
pipeline to recognize actions contains several main steps: feature
extraction and feature encoding followed by classification. Re-

cently, the approaches based on convolutional neural networks
(CNNs) [8, 17, 26, 25] have shown to obtain very competitive
results related to traditional hand-crafted features, such as His-
togram of Oriented Gradients (HOG) [3, 11], Histogram of Opti-
cal Flow (HOF) [11] and Motion Boundary Histograms (MBH)
[4]. In general for action recognition in videos the CNNs based
approaches use a two-stream approach where two networks are
trained. The first network is trained on the raw frames of the
video to capture the appearance information, and the second
network is trained on the optical flow fields for capturing the
motion information. In the end these two networks are combined
to get the final score.

The feature encoding method is one of the key factors for
visual recognition such as human action recognition. We can
see that in most of the research works in computer vision
[24, 14, 20, 21] the super-vector based encoding methods are
shown to outperform the other encoding methods. Vector of
locally aggregated descriptors (VLAD) is one of the most pop-
ular and efficient encoding methods which proved its perfor-
mance in creating the final representation of a video for action
recognition tasks. There are many precursors who focus on
improving VLAD representation. The work in [12] proposes to
use Random Forests in a pruned version for the trees to build the
vocabulary and then they additionally concatenate second-order
information, similar as in Fisher Vector. Another recent work
which boosts the performance of VLAD is presented in [13].
They improve it by concatenating the second- and third-order
statistics and using supervised dictionary learning. The work
in [2] proposes to use intra-normalization to improve VLAD
performance.

One of the key points for the encoding method is the as-
signment step. Besides the impressive performance, VLAD has
several drawbacks, such as the assignment step. VLAD consid-
ers only hard assignment and the decision for the assignment
is performed only from the features side, by looking for which
visual word the features are voting.

In this paper we propose an enhanced approach to encode
the deep features using double assignment for VLAD. Our
second assignment brings complementary information to the
first traditional assignment by considering also the perspective
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Fig. 1: Double assignment approach. (a) the features and centroids before assignment. (b) First assignment for the centroid C1, as in standard
VLAD, it receives N1 features for which the closest visual word is C1 (in this case N1=10 ). (c) Second assignment for C1, which assigns
the closest Ni features to it.

from the centroids side: which are the nearest features for a
visual word and not only which is the closest centroid as in
standard assignment. The intuition behind this idea can be seen
as principle that is checked in daily life: ”not only how close
you are to me is important but also how close I am to you”.
By looking only from one side to establish the closeness, a
significant part of information is ignored. We denote our method
the double assignment VLAD (DA-VLAD). Besides the way the
assignment is carried out, another aspect of our approach is the
proposed framework for action recognition, which can be used
for dealing with deep features extracted from any already trained
network. In our work we show that even if the network was not
trained specifically for action recognition task, our approach is
able to obtain very competitive results. Also, in this paper we
present the cases when the network was trained and used for
feature extraction on the same dataset, and when the network
was trained on one dataset and used for feature extraction on a
different dataset.

The contributions of this work can be summarized with the
following:

• We propose a double assignment approach for VLAD
which outperforms the baseline and obtain state-of-the-art
result of action recognition.

• We propose a pipeline for feature extraction and feature en-
coding that can be easily adopted for any available network
without the need to re-train the network.

The rest of the paper is organized as follows. The DA-VLAD
encoding method is described in Section II. In Section III is
illustrated the pipeline for deep feature extraction. In Section
IV the experimental evaluation is presented. The conclusions are
drawn in Section V.

II. DOUBLE ASSIGNMENT VLAD

In this section we present our assignment approach for VLAD.
The encoding method VLAD is one of the most used approachs
and proved its efficiency in many tasks, including in action
recognition. VLAD can be seen as a simplification version of

Fisher Vectors (FV) and is initially proposed in [7]. The first step
for VLAD is to learn a codebook of k visual words with k-means
C = {c1, c2, ..., ck}, which are the means for each cluster. Each
local descriptor xj from the set X = {x1, x2, ..., xn} ∈ Rn×d

is assigned to its nearest visual word. In the traditional VLAD
the idea is to accumulate for each visual word the residuals
(the differences between the assigned descriptors and the visual
word). Instead of doing sum pooling of residuals as in the
standard VLAD, we perform average pooling:

vi =
1

Ni

Ni∑
j=1

(xj − ci) (1)

where Ni is the number of descriptors assigned to the cluster ci.
This division by the number of descriptors, that switches sum
pooling to average pooling, is a very simple technique to deal
with the problem of burstiness when some parts of VLAD can
dominate the entire representation. In the rest of the paper we
refer to VLAD as presented in this version.

Our approach, double assignment VLAD (DA-VLAD), is
presented in an illustrative example in Fig. 1. After the vocab-
ulary is created with k-means, in Fig. 1(a) are represented the
resulted centroids c1, c2 and c3. Suppose that for a given video
the features are {x1, x2, ..., x32}. We perform two approaches
for assignment. First is the standard assignment procedure for
VLAD, illustrated in Fig. 1(b), where, each local descriptor xi is
associated to its nearest visual word. Basically the features vote
only for the nearest visual word, and for the traditional VLAD,
the Equation 1 is computed only among these features for a
specific cluster. In the case of the centroid c1 the features as-
signed are {x5, x7, x8, x14, x22, x25, x26, x27, x28, x29}, thus,
for c1 the number of features assigned is N1 = 10.

For the first assignment, by looking for which centroid the fea-
tures are voting, we take into account only the perspective from
the features side. By doing this some information is ignored.
Complementary to the first assignment approach, the second
assignment considers the other perspective, from the centroids
side. After the first assignment, we have obtained the distances
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Fig. 2: Two-stream deep feature extraction pipeline for video classification.

between the features and the visual words and also the subset of
features assigned to each centroid (and of course the size of each
subset Ni).

For the second assignment, we sort the distances in the order
of the nearest features to the centroids. After this step each
visual word has the list of features ordered based on the nearest
criterion. From these lists of ordered features we consider in our
algorithm only the first Ni features for each visual word. We
do not recommend to consider more than Ni features for the
second assignment as over this number (which is specific for
each centroid) the features are starting to be distant from the
centroid ci being not representative as information. In Fig. 1(c) is
illustrated an outcome for the second assignment. In the case of
the visual word c1 the nearest 10 (asN1 = 10) features assigned
are {x14, x22, x25, x18, x23, x15, x28, x3, x26, x27}.

The final list of the features considered for double assignment
is created by concatenating the list of assigned features from the
first list with the assigned features from the second assignment.
Finally, the VLAD formula (1) is applied on this concatenated
lists of features to compute the final representation. The double
assignment approach operates in two important directions. First,
it considers twice the nearest features to the visual word. In
the lists of the first and second assignment there are several
common features, such as x14 or x22 in our graphic example.
By combining the lists of both assignments the common features
are considered twice. The effect of this approach is beneficial
because the nearest features to the centroids receive a higher
weight in the final resulted representation as they are very
representative for the visual word.

The second important direction is that with this approach
new features are considered, such as x18 or x23. These kinds
of features are also introduced due to the perspective from the
centroid side, even if they did not initially vote for that centroid.
These features are usually at the border between two centroids,
and there are many cases when features that are farther are

considered as belonging to the centroid and these features are
not considered even if they are closer. For instance, the feature
x7 is farther to the visual word c1 than the feature x18, however,
the first assignment considers only x7 when computing the
representation for the centroid c1. For the second assignment we
correct this aspect and consider x18 for computing the VLAD
representation.

An important aspect for the second assignment is proportion
of the features considered related to the number of the features
considered at the first assignment. For instance, in the case of
centroid c1, for the first assignment we have 10 features consid-
ered and in our example for the second assignment we take also
first 10 nearest features to the visual word c1, therefore, in our
example we considered 100% of the proportion for new features
added by the second assignment. However, it is important to tune
the proportion parameter Pr and to see the evolution for the
cases between 0% and 100%. We present the tuning parameter
Pr in the experimental section.

III. DEEP FEATURE EXTRACTION

For this work we consider deep features for action recognition
in videos. Using deep features is a relatively new trend in action
recognition with very promising results, and in several works it
is presented with state-of-the-art performance over hand-crafted
features. In this section we present the process of extraction
deep features for videos. There are two important sources of in-
formation within the videos: appearance information contained
in individual frames and motion information between each two
consecutive frames. Therefore, the pipeline for action recogni-
tion follows this two directions.

Deep feature extraction step considers two-stream approach.
Fig. 2 presents the framework to extract deep features for each
stream. The spatial stream has the target to capture appearance
information in the individual frames of the video. The first step
of the spatial stream is to extract the individual frames from the
video and the resize them to the requested input size for the



network of 224 × 224 × 3. For spatial stream we use the VGG
network with 19 layers of [17] trained on ImageNet dataset [5]
for large-scale image recognition task. We choose this network
due to its state-of-the-art performance, and also we show that
our framework can be easily adapted to work with any network,
and can obtain very competitive results using the network as a
black box to extract features without the need for fine-tuning the
network. For each individual frame that represents the input for
the network we save the output of pool5, as is the last layer of
the network which contains spatial information. The pool5 layer
provides the feature maps for 512 channels (ch). The spatial size
(h × w) for each channel is 7 × 7. To obtain the local deep
feature we concatenate the values for each spatial location along
all the 512 channels. Therefore, the resulted local deep feature
has the dimensionality of 512, which is equal to the number of
the channels and the number of features for a frame is equal to
the spatial size of the feature maps (7 × 7 = 49 features per
frame). After we obtain the local deep features for all the frames
of a video, the pipeline for action recognition continues with the
encoding steps of these features.

For the temporal stream to extract the deep features we use
the re-trained network of [25], which re-trained the network
VGG of [17] with 16 layers for a different task with different
data. The authors present several good practices for the net-
work re-training, such as pre-training to initialize the network,
smaller learning rate, more date augmentation techniques and
high dropout ratio. The input for the temporal network is 10-
frame stacked of optical flow fields (224 × 224 × 20). To
extract optical flow fields we use the OpenCV implementation
of TVL1 algorithm [27]. After we obtain the optical flow fields
images we resize them to 224 × 224 and input to the network
10 stacked optical flow fields (in total are 20 images for one
input for the network). We save also the output of the last
layer with spatial information (pool5), which contains also 512
channels with spatial size 7 × 7. For each spatial location we
concatenate the output along the channels to create the local
deep features from motion information as presented in Fig. 2.
The total number of local deep features for a video in this case
is: 7× 7× (#frames− 9)

IV. EXPERIMENTAL EVALUATION

After we extract the deep features with the pipeline presented
in the previous section we perform RootSIFT [1] normalization
and then we apply PCA to reduce the dimensionality by a
factor of two and decorrelate the features. This yields a final
feature dimension of 256. The codebook necessary for feature
encoding is built from randomly sampled 500K features. The
number of visual words for the codebook is 256 as default
setting. For the resulted vectors after feature encoding we apply
power normalization followed by L2 normalization to have
unit length of the video representation and then compute the
distances between the video representations by inner product.
The parameter α for power normalization is fixed to 0.5. We
perform the classification using a linear one-vs-all SVM with
C = 100.
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Fig. 3: Double assignment impact on the performance of the encoding
method on UCF50 dataset.

A. Datasets

We evaluate our approach on UCF50 [15] and UCF101 [19]
Human Action Recognition datasets. In total UCF50 dataset
contains 6,618 realistic videos taken from YouTube with large
variations in camera motion, object appearance and pose, object
scale, viewpoint, cluttered background, illumination conditions,
etc. There are 50 human action categories mutually exclusive,
which range from general sports to daily life exercises. The
videos are split into 25 predefined groups. We follow the rec-
ommended standard procedure and perform leave-one-group-out
cross validation and report average classification accuracy over
all 25 folds.

The UCF101 dataset is a widely adopted benchmark for action
recognition, consisting in 13,320 realistic videos, which are di-
vided in 25 groups for each action category. This dataset contains
101 action classes and there are at least 100 video clips for
each class. We follow for evaluation the recommended default
three training/testing splits. We report the average recognition
accuracy over these three splits.

B. Parameter tuning and comparison to baseline

In this section we investigate the performance of our double
assignment VLAD (DA-VLAD) and compare it with the VLAD
representation. As pointed in the section above we use VGG
network with 19 layers for the spatial network [17], for both
UCF50 and UCF101. For the temporal network we use the re-
trained networks of [25] corresponding to the three splits of
UCF101, and for UCF50 we use the re-trained network for split1
of [25] . The first set of experiments that we present is the tuning
parameter of the proportion (Pr) for the features considered on
the second assignment. In the illustrative example of Fig. 1 we
presented the case when we consider the firstN1 features (in that
case N1=10), therefore we consider an equal number of features
as for the first assignment and the proportion in this 100%. The
graph in Fig. 3 presents the cases when the proportion of the
first nearest features to the centroid considered for the second
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TABLE I: Final results for the Spatial Network
UCF50 UCF101

VLAD Acc. 0.825 0.738
DA-VLAD Acc. 0.838 0.754

assignment is less than the number of features considered for
the first assignment. A 0 value for the proportion of features
considered in the second assignment leads to the classic VLAD
representation.

By considering for the second assignment only the first 10%
of the nearest features related to feature number of the first
assignment, the accuracy is boosted from 0.825 to 0.830 for
spatial network and from 0.934 to 0.938 when using temporal
network. From the graph we can notice that by considering more
features for the second assignment the accuracy is improved
in the case of both networks. The drawback of our method is
that for the best results the proportion parameter of the features
considered for the second assignment should be tuned for each
system used. For the remaining experiments we set as default the
proportion to 1 between first and second assignment, therefore
for the second assignment we will consider an equal number of
features with the first assignment.

Fig. 4 presents the evolution graph when the number of visual
words are changed and the other parameters are fixed to the
default values pointed above. We can see from the graph that
the size of the codebook of 256 gives the best trade-off for both
temporal and spatial networks. For the rest of the paper we keep
the codebook size to 256 visual words as default value.

The graph in Fig. 5 illustrates the evolution of the accuracy
when the dimension of PCA is changed. The best results for
accuracy are obtained when we keep all 512 dimension of
the features. However, the increasement from 256 to 512 is
not significant considering that the dimensionality is two times
higher. Considering this, we set the dimension of PCA to 256
as this value is a good trade-off between accuracy and feature
dimensionality.

The final results for UCF50 and UCF101 of our DA-VLAD
encoding method compared with the baseline VLAD are pre-
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Fig. 5: Exploration of the dimension for PCA.

TABLE II: Final results for the Temporal Network
UCF50 UCF101

VLAD Acc. 0.934 0.828
DA-VLAD Acc. 0.944 0.839

sented in Table I for the spatial network. The encoding method
DA-VLAD boosts the performance from 0.825 to 0.838 for
UCF50 and from 0.738 to 0.754 for UCF101. The results for
temporal network are presented in Table II where we can see for
both datasets our DA-VLAD approach outperforms the baseline.

C. DA-VLAD two-stream

For combining the spatial network with the temporal network
we use early fusion of the resulted video representation after
encoding. Before fusion of the both representations of capturing
appearance information respectively motion information, each
of them follow independently the pipeline for feature extraction
and feature encoding with DA-VALD, using the default settings:
RootSIFT normalization before PCA, 256 PCA dimension, 256
visual words for codebook and the proportion of the features
considered for the second assignment equal to 1.

Before the concatenation of the both video representations
resulted after DA-VLAD we perform separately power normal-
ization (α = 0.5) followed by L2 normalization. After the
concatenation we make unit length of the final representation
by applying L2 normalization and then we apply linear SVM
with C = 100. The fusion of spatial stream with temporal
stream boosts the performance to 0.954 for UCF50 and to 0.886
UCF101. The comparison of our final results with other state-of-
the-art approaches is presented in the next subsection.

D. Comparison to state-of-the-art

Table III presents the comparison with state-of-the-art ap-
proaches for UCF50 dataset. The proposed approach DA-VLAD
with two-stream obtains state-of-the-art results outperforming
including the recent work of [23] which considers as encod-
ing method the spatial FV [10] together with spatio-temporal
pyramid [11]. Our results are better than [14] which considers



TABLE III: Comparison to the state-of-the-art for UCF50 dataset.
Method Accuracy
Kliper-Gross et al. [9] (2012) 0.727
Solmaz et al. [18] (2012) 0.737
Reddy et al. [15] (2012) 0.769
Uijlings et al. [21] (2014) 0.818
Wang et al. [22] (2013) 0.856
Wang et al. [24] (2013) 0.912
Wang et al. [23] (2015) 0.917
Peng et al. [14] (2014) 0.923
Duta et al. [6] (2016) 0.930
DA-VLAD two-stream 0.954

a hybrid representation by combining two different represen-
tations. Our approach outperforms also the very recent work
of [6], which proposes a new spatio-temporal descriptor for
capturing the motion information without the need of computing
the expensive optical flow fields, in the end the authors combine
the proposed descriptor with Improved Trajectories of [24] ob-
taining competitive results.

The comparison with state-of-the-art for UCF101 dataset is
presented in Table IV. Our framework outperforms all the hand-
crafted features based approaches, including hybrid representa-
tion of [14] and the recent work of [23]. Our approach obtains
better performance than many popular approaches based on
convolutional neural networks, such as [8, 17, 26]. The approach
based on convolutional neural networks of [25] obtains state-
of-the-art results on UCF101, however, the advantage of our
framework is that it can be adapted to any convolutional neural
network without the need to re-train the network.

V. CONCLUSION

In this work we introduce the double assignment VLAD (DA-
VLAD), which boosts the performance of VLAD by considering
a complementary second assignment that takes into account the
assignment from the perspective of the visual words. The experi-
mental results show that our proposed approach outperforms the
baseline VLAD. Furthermore, we present a pipeline to extract
local deep features that can be used for any network. We show
the case in this paper when the network is trained for another
task with different data, and with our pipeline very competitive
results for action recognition can be obtained. The proposed
framework obtains state-of-the-art result on UCF50 dataset and
competitive results on UCF101 dataset. For future extension of
this work we will focus on combining the deep features with
hand-crafted features under this framework for boosting further
the performance of action recognition.
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