
Simple, E�icient and E�ective Encodings of
Local Deep Features for Video Action Recognition

Ionut C. Duta
University of Trento, Italy
ionutcosmin.duta@unitn.it

Bogdan Ionescu
University Politehnica of Bucharest, Romania

bionescu@imag.pub.ro

Kiyoharu Aizawa
University of Tokyo, Japan
aizawa@hal.t.u-tokyo.ac.jp

Nicu Sebe
University of Trento, Italy

niculae.sebe@unitn.it

ABSTRACT
For an action recognition system a decisive component is repre-
sented by the feature encoding part which builds the �nal repre-
sentation that serves as input to a classi�er. One of the shortcom-
ings of the existing encoding approaches is the fact that they are
built around hand-cra�ed features and they are not also highly
competitive on encoding the current deep features, necessary in
many practical scenarios. In this work we propose two solutions
speci�cally designed for encoding local deep features, taking ad-
vantage of the nature of deep networks, focusing on capturing
the highest feature response of the convolutional maps. �e pro-
posed approaches for deep feature encoding provide a solution
to encapsulate the features extracted with a convolutional neural
network over the entire video. In terms of accuracy our encodings
outperform by a large margin the current most widely used and
powerful encoding approaches, while being extremely e�cient for
the computational cost. Evaluated in the context of action recog-
nition tasks, our pipeline obtains state-of-the-art results on three
challenging datasets: HMDB51, UCF50 and UCF101.
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1 INTRODUCTION
Human action recognition is one of the most challenging tasks in
computer vision and multimedia, which receives a high a�ention
from the research community due to a large number of potential ap-
plications. From the previous research works we can identify two
main directions for this task. �e �rst is based on hand-cra�ed fea-
tures, represented by well-known descriptors, such as Histogram
of Oriented Gradients (HOG) [6, 22], Histogram of Optical Flow
(HOF) [22] and Motion Boundary Histograms (MBH) [7]. �ese
descriptors are extracted from a video using di�erent approaches to
establish the region of extraction, such as at interest points [21], us-
ing a dense sampling [44, 49], along motion trajectories [40, 45, 47].
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�e second direction for this task relies on learning the features
throughout a neural network, obtaining very competitive results
[4, 19, 27, 35, 36, 41, 42, 51, 54]. Along the action recognition
pipeline we can distinguish three main components: feature ex-
traction, encoding and classi�cation.

Feature encoding is used for building a �nal video representa-
tion which serves as input for a classi�er and is one of the key
components for the performance of the overall task pipeline. In this
work we address the feature encoding step and propose solutions
to improve it in the case of deep features. It is well-known that
deep features are di�erent from the hand-cra�ed ones. For instance,
deep features contain high discriminative power while hand cra�ed
features contain low level information. �erefore, a research ques-
tion arises: ”Can we exploit the e�ectiveness of encoding with deep
features?” In general, for hand-cra�ed features adding more sta-
tistical information into the encoding step improves the results,
this is one of the reasons for which improved Fisher Vectors (iFV)
method [31] outperforms Vector of Locally Aggregated Descriptors
(VLAD) [17]. However, for deep features this fact is not anymore
checked. As a ma�er of fact, in our preliminary experiments and
also in recent works such as [52], we can notice a completely di�er-
ent behavior of deep features compared to hand-cra�ed features,
where a simpler encoding approach such as VLAD outperforms a
method which relies on higher order information such as iFV. �us,
another question arises: ”Is it bene�cial for the encoding step to
rely on higher order information in case of deep features?” Another
important aspect is that with the current availability of a large
number of already trained networks, many works are using these
networks as a black box feature extraction tool, due to several
reasons, such as the availability of not enough training data, of
not enough resources, etc. �en, some techniques for hand cra�ed
features are used to encode the extracted deep features. However,
we argue that existing techniques (which are built around deep
features) are not optimal also for deep features encoding. �erefore,
investigating the encoding approaches for deep features is still an
open area of research.

�e main contributions of this work are the following: (1) we pro-
pose two encoding approaches speci�cally built for deep features.
�e �rst solution is extremely e�cient for the computational cost,
however less performant in terms of accuracy for more challenging
datasets, while the other provided solution gives the best accuracy
including for challenging datasets but being more demanding for
the computational cost than the �rst solution. Our solutions take
advantage of the convolutional networks, capturing the highest



feature response of the convolutional maps which actually results
from the highest neuron activation from the network. Speci�cally,
a�er we extract some local deep features from a video, we have
two approaches to group the features: one is based on the channel
information from the feature maps of the network and the other on
the similarity information. In the end we perform a max-pooling
over the resulted group of features. Our proposed solutions respect
three essential characteristics for a highly competitive video repre-
sentation: (i) simple and generic, our solutions are straightforward
to implement and are highly discriminative, working even with a
simple model such as a linear classi�er; (ii) e�cient, our proposed
approaches are able to run faster than real-time; (iii) e�ective, our
proposed methods outperform the other encoding approaches in
terms of accuracy (such as, iFV and VLAD) by a large margin. (2)
we propose a very competitive pipeline for action recognition to
work with deep features. Our pipeline can be easily adopted to
work with networks that are not speci�cally trained or �ne-tuned
for a particular dataset or even are trained on a di�erent task. We
cover all those cases in our work and we present a robust frame-
work with state-of-the-art results on three challenging datasets for
action recognition.

�e rest of the paper is organized as following: Section 2 summa-
rizes the related works. Section 3 introduces our encoding solutions.
Section 4 presents the local deep feature extraction pipeline. �e
experimental evaluation is presented in Section 5. �e conclusions
are drawn in Section 6.

2 RELATEDWORK
Due to the fact that feature encoding step is a key factor for the
system performance, there are many works which are focused to
build a powerful representation that serves as input for a classi-
�er. Super vector-based encoding methods are among the most
powerful representation generators. Improved Fisher Vectors (iFV)
[31] is one of the state-of-the-art super vector-based encoding
methods which performs a so� assignment of the features and
incorporates �rst- and second-order information. Vector of Lo-
cally Aggregated Descriptors (VLAD) [17] is a simpli�cation of iFV
capturing only �rst-order information and performing a hard as-
signment of the features. Super Vector Coding (SVC) [57] method
keeps the zero-order and �rst-order statistics, thus SVC can be
seen as a combination between Vector �antization (VQ) [37] and
VLAD.

�ere are many works with the main goal to improve the afore-
mentioned widely used approaches. �e work in [28] proposes
to improve VLAD by concatenating the second- and third-order
statistics, and using supervised dictionary learning. �e work in
[24] uses Random Forests in a pruned version for the trees to build
the vocabulary and then additionally concatenate second-order
information similar as iFV. �e works in [22, 23] consider a Spa-
tial Pyramid approach to capture the information about features
location, however, the scalability is an issue for this method, as
it increases considerably the size of the �nal representation and
it is not feasible for dividing the video in more than 4 segments.
�e work in [2] proposes to use intra-normalization to improve
VLAD performance. �e RootSIFT normalization is proposed in [1]
to improve the performance of the framework for object retrieval
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Figure 1: �e pipelines for deep feature encoding.

by computing square root of the values to reduce the in�uence
of large bin values. In [10] the VLAD approach is empowered
with spatio-temporal information by considering the feature po-
sition within the video, while in [11] the performance of VLAD
is boosted by using a double assignment approach. �e work in
[30] uses a multi-layer nested iFV encoding to boost the perfor-
mance. Di�erent from aforementioned methods which are initially
built to encode hand-cra�ed features, our work proposes solutions
speci�cally designed for local deep features encoding.

Recently, encouraged by deep learning breakthroughs, many
works [4, 19, 27, 35, 36, 41, 42, 51, 54] encapsulate all three main
steps: feature extraction, encoding and classi�cation, in an end-
to-end framework. �e work in [35] uses two streams, to capture
both appearance and motion information. �e works in [14, 15] are
based on rank pooling for encoding; the authors in [4] extend this
idea to dynamic images to create a video representation. In [42] a
3D convolutional neural network is proposed which is able to learn
both appearance and motion information from a video. Over the
previous approaches, our proposed methods have the advantage of
being able to use any available trained network without the need
to train, re-train or �ne tune it, obtaining impressive performance,
even improving the original network results. Furthermore, our
methods can easily combine di�erent networks, with di�erent
source of information, to create an e�ective video representation.

3 DEEP FEATURE ENCODING
In this section we present our proposed encoding approaches for
local deep features: VCMPF (Vector of Channel Max Pooled Fea-
tures) and VLMPF (Vector of Locally Max Pooled Features). �e
overview of the main steps for each encoding method is illustrated
in Figure 1.

3.1 VCMPF
�e upper part of Figure 1 represents the path to obtain the VCMPF
representation for a given video. We exploit the nature of deep
features and obtain an automatic codebook represented by the
channels of the network layer from where we extract the features
(see Section 4 for details about feature extraction), thus we have
512 channels. �erefore, each local deep feature extracted from a
video is a 512 dimensional vector, and each dimension represents
the response for its corresponding channel. Formally, we can rep-
resent the codebook for the channels as Ch={ch1, ch2, ..., ch512}
and the extracted features for a given video are represented by
X={x1, x2, ..., xn} ∈ Rn×d, where d is the feature dimensionality
and n is the total number of the local features of the video. In the
assignment, for each local feature xj (j=1, ...,n) we obtain the index
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Figure 2: �e pipeline for local deep feature extraction.

(within its vector) where the highest response (the maximum abso-
lute value of the feature vector) is located and then we assign the
feature to the corresponding channel with the obtained index. In
this case the assignment step is extremely fast as it is not necessary
to compute any distances, which in general is demanding for the
computational cost.

�e next step is to apply PCA over all features. �is is an op-
tional step, however, it can be useful in practice due to the high
dimensionality of the local deep features. We apply PCA a�er the
assignment step with the goal to conserve all 512 dimensions of
the initial feature vector, and thus, keep all the initial channels as a
codebook. �e assignment step provides a division of the features
in 512 groups. For each group i (i =1, ..., 512) we compute a vector
representation vchi=[vchi1 ,v

chi
2 , ...,v

chi
d∗ ], where d∗ is the feature

dimensionality a�er PCA. Eachvchis (s iterates over the dimensions
of the feature, s=1, ...,d∗) is formally computed as:

vchis = sign(xj,s) max
xj∈chi

|xj,s | (1)

where sign() returns the sign of a number and |.| represents the
absolute value. �e equation above performs a max pooling over
each group of features based on the channel assignment. With
this approach we capture the highest feature responses over each
channel. �e concatenation of all [vch1 ,vch2 , ...,vch512 ] gives the
VCMPF encoding, which is a row vector with the size 512×d∗.

3.2 VLMPF
For VLMPF, we initially learn a codebook with k-means, using a
large set of randomly selected features extracted from a subset of
videos. �e resulted codebook C={c1, c2, ..., ck } contains k visual
words. In the bo�om part of Figure 1 are presented the main steps
to obtain the VLMPF representation. A�er we obtain the features
for a video, we can optionally apply PCA to reduce their dimension-
ality. �en we perform a hard assignment of the features, where
each local feature is assigned (based on the Euclidian distance) to
its nearest visual word from the learned codebook C . Similar as
above, for each resulted group of features we compute a vector rep-
resentation vci=[vci1 ,v

ci
2 , ...,v

ci
d∗ ], where vcis is formally computed

as:
vcis = sign(xj,s) max

xj:NN (xj )=ci
|xj,s | (2)

where NN (xj) denotes the nearest neighborhood visual word of
the codebook C for the feature xj.

�is equation performs a max pooling over each group of fea-
tures resulted from the similarity-based information. Basically,
VLMPF retains the maximum response for each dimension and for
each visual word separately. All concatenated vectors [vc1 ,vc2 , ...,vck ]
provide the VLMPF encoding, which is represented by a row vector
of k×d∗ dimensions.

�ese two proposed approaches for deep feature encoding, rep-
resent a competitive and practical solution to encode the features
extracted with convolutional neural network from the entire video.

4 DEEP FEATURE EXTRACTION
�is section presents the framework to extract the local deep fea-
tures for a video. �e approaches based on convolutional networks
(ConvNets) [4, 19, 27, 35, 36, 41, 42, 51, 54] have recently obtained
very competitive results over traditional hand-cra�ed features.

Our framework for local feature extraction uses three streams: a
spatial stream for capturing the appearance, a temporal stream for
capturing the motion and a spatio-temporal stream for capturing
at the same time both appearance and motion information. All
these three networks are individually applied on a video to extract
the local deep features. Figure 2 illustrates the framework for local
deep feature extraction, where we initially obtain from a given
video the requested input necessary for each network and then we
extract the feature maps with spatial information.

In our framework the appearance information is obtained by
using the VGG ConvNet in [36], which is a network with 19 layers.
VGG19 is also characterized by a smaller size of the convolutional
�lters of 3×3 and the stride is only 1 pixel. �ese characteristics
enable the network to explore �ner-grained details from the fea-
ture maps. �is network is trained on the ImageNet dataset [8],
with state-of-the-art results for image classi�cation. �e VGG19
ConvNet requests as input an image with 224×224 pixels and three
channels for the color information. We initially extract the individ-
ual frames from a video and then we accordingly resize them to
the required input size of the network. For each individual frame
we take the output of the last convolutional layer with spatial in-
formation, which for this network is represented by pool5. �e
motivation of choosing this layer is related to the fact that deeper
layers provide high discriminative information. By taking a layer
with spatial information we can extract local deep features for each
frame of the video, instead of a global deep feature, increasing the
robustness of the approach. �e pool5 layer provides as output a



feature map with a spatial size of 7×7 and 512 channels. From the
obtained feature map we extract the local deep features by taking
individually each spatial location and concatenate the values along
all 512 channels, obtaining local deep features with 512 dimensions.
�erefore, from each frame we extract 7×7=49 local deep features
and each feature is a 512 dimensional vector. For each video we
obtain in total #f rames×49 local deep features. In the experimen-
tal section we refer to the local deep features extracted from the
Spatial Convolutional Network as SCN.

�e motion information extraction is based on the re-trained
network in [51]. �is deep network, also VGG, is initially proposed
in [36] and contains 16 layers. �e authors in [51] re-trained the
VGG ConvNet for action recognition task with new input data
using several good practices for the network re-training, such as
pre-training to initialize the network, smaller learning rate, more
data augmentation techniques and high dropout ratio to prevent
over��ing. �e VGG ConvNet is re-trained for action recognition
task using the UCF101 dataset [39]. For the temporal ConvNet
the input consists in 10-stacked optical �ow �elds, each �eld pro-
vides an image for the vertical motion and another image for the
horizontal motion information. �us, the input for this network
is represented by 20-stacked optical �ow images. From a given
video we extract the optical �ow �elds using the OpenCV imple-
mentation of the TVL1 algorithm [55]. Similar as in the previous
ConvNet, for the temporal ConvNet we also take the output of the
last convolutional layer with structure information represented by
pool5 layer. �e spatial size of this pool5 layer is also 7×7 and 512
channels. As illustrated in Figure 2, the �nal local deep features
for an input are obtained by concatenating the values from each
spatial location along all the channels, resulting in 49 local features
for an input. �e total number of local deep features extracted for
a video when using temporal ConvNet is (#f rames−9)×49. We
further refer to the local deep features extracted with Temporal
Convolutional Network as TCN.

For the spatio-temporal stream we use the 3D ConvNet [42]. �is
network is trained on Sports-1M dataset [19] and contains 16 layers:
8 convolutional, 5 max-pooling, 2 fully connected layers, and the
so�max output layer. �e network is designed to capture both
appearance and motion information by using 3D convolutional
kernels. �e input of the network is a 16 frame-long clip extracted
from the video. Similar to the previous two networks used in our
pipeline, we use a sampling step size of one frame to iterate over
the frames of the video for creating the input clips. �e last layer
with spatial information has spatial size of the feature maps of
4×4. Due to this relatively small spatial size of the feature maps
for this layer and also for having an equal size of the feature maps
for all three networks, we extract for this spatio-temporal network
the conv5b layer. �e conv5b layer contains two feature maps,
each of them 7×7×512. For obtaining a single feature map out of
this two, we take maximum value for each position of the both
feature maps from conv5b. A�er this step, we obtain the same
size as previous two networks, therefore, we can apply the same
framework to extract the local deep features. �e total number
of local deep features obtained with this network for a video is
(#f rames−15)×7×7. We further refer to the features extracted
with this Convolutional 3D network as C3D.

5 EXPERIMENTS
�is section presents the experimental part where we evaluate the
proposed approach for action recognition.

5.1 Datasets
We evaluate our framework on three of the most popular and
challenging datasets for action recognition: HMDB51 [20], UCF50
[32], and UCF101 [39].

�e HMDB51 dataset [20] contains 51 action categories, with a
total of 6,766 video clips. It is one of the most challenging dataset
with realistic se�ings. We use the original non-stabilized videos,
and we follow the original protocol using three train-test splits [20].
We report average accuracy over the three splits as performance
measure.

�e UCF50 dataset [32] contains 6,618 realistic videos taken
from YouTube. �ere are 50 human action categories mutually
exclusive and the videos are split into 25 prede�ned groups. We
follow the recommended standard procedure and perform leave-
one-group-out cross validation and report average classi�cation
accuracy over all 25 folds.

�e UCF101 dataset [39] is a widely adopted benchmark for
action recognition, consisting in 13,320 realistic videos and 101
action classes. We follow for evaluation the recommended default
three training/testing splits and report the average recognition
accuracy over these three splits.

5.2 Experimental setup
For the motion stream of the local deep feature extraction pipeline,
the work in [51] provides three trained models for each split of
the UCF101 dataset. We accordingly use the models for each split
of the UCF101 for feature extraction. For the other two datasets,
HMDB51 and UCF50, we use only the model trained on the split1
of UCF101 to extract the local deep features. We compare our pro-
posed encodings (VCMPF and VLMPF) with two state-of-the-art
super vector-based encoding approaches represented by Vector of
Locally Aggregated Descriptors (VLAD) [17] and Fisher Vectors
(iFV) [31]. We set the size of the codebook to 256 visual words
for our VLMPF, VLAD and iFV. �is is a standard used size of
the codebook in many works, and by keeping this se�ing we can
easily and fairly compare di�erent approaches. �e codebook is
learned from a randomly 500k sampled features from a subset of
videos. Before classi�cation, for VCMPF and VLMPF we individu-
ally normalize each representation resulted from each feature type
by applying L2 normalization. Many works, such as [47, 44], show
that iFV and VLAD perform be�er if a�er feature encoding the
Power Normalization (PN) is applied followed by L2-normalization
(| |siдn(x) |x|α | |). �us, we also adopted this normalization strategy
for iFV and VLAD, se�ing α to the standard widely used value
of 0.5. �e reason for which iFV and VLAD work be�er when
using PN is due to the fact that their resulted �nal representation
contains large peaks within the vector and PN helps to reduce them
and make the vector smoother. Instead, our proposed encodings
do not provide a �nal vector containing large peaks, therefore, it is
not necessary to apply also PN. For the classi�cation part, in all the
experiments we use a linear one-vs-all SVM with the parameter
C=100.



64 128 256 512
40

45

50

55

60

Dim. PCA 

A
c
c
u

ra
c
y
 (

%
)

 

 
TCN

C3D

SCN

64 128 256 512
40

45

50

55

60

Dim. PCA 

A
c
c
u

ra
c
y
 (

%
)

 

 
TCN

C3D

SCN

Figure 3: Evaluation of the dimensionality reduction with PCA for VCMPF (le�) and VLMPF (right).

Table 1: Accuracy comparison on all three datasets. Best results are in bold.

HMDB51 (%) UCF50 (%) UCF101 (%)
SCN TCN C3D SCN TCN C3D SCN TCN C3D

256 512 256 512 256 512 256 512 256 512 256 512 256 512 256 512 256 512
iFV 36.6 41.8 51.0 56.6 46.1 49.0 75.7 81.0 95.2 96.1 84.7 88.8 67.8 74.1 84.1 85.4 77.7 79.8

VLAD 37.2 40.3 51.1 53.9 46.8 49.1 78.4 80.2 95.5 95.4 86.4 89.0 69.9 73.4 83.7 85.2 78.6 81.4
VCMPF 44.0 44.1 55.8 57.2 51.7 52.1 85.1 85.1 97.0 97.1 93.4 93.7 78.3 78.8 86.5 86.9 83.5 84.1
VLMPF 43.5 44.7 56.6 58.8 52.8 53.4 84.7 85.3 96.8 96.8 93.7 93.7 78.5 78.6 85.9 86.9 84.5 84.7

5.3 Parameter tuning
We examine the in�uence on the accuracy of dimensionality reduc-
tion using PCA. �e le� graph from Figure 3 presents the evolution
of the accuracy while the number of feature dimensions is changed
for the VCMPF encoding approach. By reducing the feature di-
mensionality by a factor of two, a reasonable trade-o� with the
accuracy is achieved. In the right graph of Figure 3 we present the
situation of decreasing the feature dimensionality in the case of
VLMPF encoding approach where the best accuracy is obtained
with all 512 dimensions, while the 256 dimensionality for the fea-
tures represents the trade-o�. Following this evaluation we use in
the next experiments the feature with full dimensionality (512) and
also reducing their dimensionality to 256 with PCA.

5.4 Comparison to other encodings
In this part we compare our proposed encoding approaches with
other highly competitive encoding methods, such as improved
Fisher Vectors (iFV) and Vector of Locally Aggregated Descriptors
(VLAD). �e comparison is conducted in both e�ectiveness and
e�ciency.

5.4.1 E�ectiveness comparison. In Table 1 we present the ac-
curacy comparison of our encoding with iFV and VLAD over all
three datasets. For all three considered local deep features (SCN,
TCN and C3D) we report the results for full feature dimensionality
(512) and also a�er applying PCA to reduce their dimensionality
by a factor of two. We can clearly see that both proposed encoding
approaches, VCMPF and VLMPF, outperform by a large margin
the state-of-the-art super vector-based encoding approaches iFV
and VLAD over all three datasets and feature types. For instance,
for C3D features with full dimensionality, VLMPF outperforms iFV

by 4.4 percentage points and VLAD by 4.3 percentage points on
the challenging HMDB51 dataset.

Very interestingly, in the case of deep features, iFV does not
perform always be�er than VLAD, which is actually the case for
hand-cra�ed features presented in many works, such as [44, 29]. It
is well-known by the research community that for hand-cra�ed
features iFV gives a be�er accuracy than VLAD, one of the reasons
is due to the fact that iFV considers high order statistics to build the
�nal representation. However, in the case of deep features, consid-
ering high statistical information for the encoding method does not
guarantee an improvement for accuracy. However, our encoding
methods, specially designed for encoding local deep features, give
impressing results for all three datasets.

5.4.2 E�iciency comparison. For the e�ciency comparison we
randomly sampled 500 videos from HMDB51 dataset and we report
the number of frames per second and the number of seconds per
video that an encoding method is able to process. �e timing
measurements are performed on a single core Intel(R) Xeon(R)
CPU E5-2690 2.60GHz.

Table 2 presents the e�ciency comparison over all three deep
features using both full dimensionality of the features (512) and
reduced with PCA to 256. �e table shows that our approaches are
the most e�cient. �e most demanding for the computational cost
is iFV and this is due to the computation of �rst- and second-order
information and also to the use of a so� assignment approach.
VLMPF is comparable with VLAD in computational cost, however
VLAD is slightly slower due to the computation of the residuals.
�e fastest approach is our VCMPF, which outperforms including
the other proposed encoding, and this is due to the assignment step
which avoids the computation of the expensive distances. �e last



Table 2: Computational e�ciency comparison. We report the number of frames per second (fr/sec) and seconds per video
(sec/vid). Last two columns show the dimensionality generated by each encoding method for 256 and 512 feature dimension-
ality. Best results are in bold.

SCN 256 SCN 512 TCN 256 TCN 512 C3D 256 C3D 512 256 512
fr/sec sec/vid fr/sec sec/vid fr/sec sec/vid fr/sec sec/vid fr/sec sec/vid fr/sec sec/vid dim dim

iFV 253.2 0.357 168.7 0.536 301.4 0.300 197.6 0.457 308.7 0.293 202.3 0.447 131,072 262,144
VLAD 1967.5 0.046 1143.8 0.079 2213.8 0.041 1299.5 0.070 2372.5 0.038 1375.0 0.066 65,536 131,072

VCMPF 4435.9 0.020 3485.1 0.026 4731.4 0.019 3612.5 0.025 5019.5 0.018 3682.2 0.025 131,072 262,144
VLMPF 2049.4 0.044 1192.6 0.076 2329.2 0.039 1370.9 0.066 2455.0 0.037 1426.0 0.063 65,536 131,072

Table 3: Fusion strategies for VCMPF and VLMPF. DF (Deep Features) represent all three local deep features (SCN, TCN, C3D),
except for UCF50 dataset where we excluded TCN features from the fusion; HMG (Histograms of Motion Gradients) [12]; and
iDT (improved Dense Trajectories) [47] is represented with HOG, HOF, MBHx andMBHy. �e best performance results are in
bold for each fusion type over each feature representation combination. �e best result over each dataset is also underlined.

(a) VCMPF

HMDB51 (%) UCF50 (%) UCF101 (%)
DF DF+HMG DF+HMG+iDT DF DF+HMG DF+HMG+iDT DF DF+HMG DF+HMG+iDT

Early 64.2 66.6 69.9 94.4 95.3 96.6 93.1 93.8 94.1
sLate 61.5 63.2 66.5 93.0 94.1 95.6 91.3 91.9 92.3
wLate 63.2 63.9 68.2 93.9 94.9 96.5 91.7 92.2 92.9

sDouble 63.2 64.6 68.0 93.5 94.5 95.8 91.9 92.5 92.7
wDouble 65.2 67.1 70.5 94.6 95.4 96.9 93.1 93.8 94.1

(b) VLMPF

HMDB51 (%) UCF50 (%) UCF101 (%)
DF DF+HMG DF+HMG+iDT DF DF+HMG DF+HMG+iDT DF DF+HMG DF+HMG+iDT

Early 65.3 66.7 70.2 94.5 95.3 96.7 93.1 93.6 94.1
sLate 63.6 64.7 68.0 93.5 94.4 95.6 91.5 92.0 92.3
wLate 65.1 65.7 69.3 93.9 94.9 96.5 91.7 92.2 93.0

sDouble 65.0 65.9 69.0 94.0 95.0 96.0 92.3 92.6 92.8
wDouble 66.9 68.0 71.6 94.8 95.4 96.9 93.1 93.6 94.1

two columns presents the dimensionality of a video representation
generated by each encoding approach. VLAD and our proposed
encoding approach, VLMPF, generate the lower dimensionality for
a video representation.

5.5 Fusion strategies
In the previous experiments we show that our proposed approaches
are superior to the other encoding methods. Also from the previous
experiments we can notice that our VCMPF is not considerably
a�ected by the dimensionality reduction to 256, while the accuracy
for our VLMPF drops more. Considering this observation, for the
next experiments we reduce the feature dimensionality to 256 for
VCMPF, while for VLMPF we keep full dimensionality of 512. �is
se�ing provides also the same size of the video representation
generated by VCMPF and VLMPF.

�e UCF101 dataset is an extension of UCF50 and the TCN
features are extracted using a network trained on UCF101. To
avoid the risk of over��ing on UCF50 dataset we exclude the
TCN features when performing any fusion. �erefore, for a fair
comparison, in the next results, which are used as a comparison

with the state-of-the-art, we use as deep features only SCN and
C3D for UCF50 dataset.

As feature fusion, we use three combinations. (1) DF stands
for deep features represented by fusing SCN, TCN and C3D (note
that, as we said before, for UCF50 we excluded TCN features). (2)
DF+HMG, we add to deep features a hand-cra�ed descriptor repre-
sented by Histogram of Motion Gradients [12], which is focused on
capturing the motion information within the video in an e�cient
approach. (3) DF+HMG+iDT, in addition, we fuse the improved
Dense Trajectories [47] descriptors represented by HOG, HOF,
MBHx and MBHy. iDT represents a state-of-the-art approach for
extracting hand-cra�ed descriptors. �e hand-cra�ed descriptors
are extracted using the code provided by the authors [12, 47], with
the suggested default se�ings. All hand-cra�ed descriptors are
individually encoded as suggested, using iFV, and then before clas-
si�cation, we individually apply on each resulted representation
Power Normalization (with α=0.1) followed by L2 normalization
as recommended in [12].

�e fusion between features is performed using several strate-
gies. ”Early” represents an early fusion by concatenating each



Table 4: Comparison to the state-of-the-art.

HMDB51 (%) UCF50 (%) UCF101(%)
Jain et al. [16] (2013) 52.1 Solmaz et al. [38] (2013) 73.7 Wang et al. [48] (2013) 85.9
Zhu et al. [58] (2013) 54.0 Reddy et al. [32] (2013) 76.9 Karpathy et al. [19] (2014) 65.4
Oneata et al. [26] (2013) 54.8 Shi et al. [34] (2013) 83.3 Simonyan et al. [35] (2014) 88.0
Wang et al. [47] (2013) 57.2 Wang et al. [45] (2013) 85.6 Wang et al. [46] (2015) 86.0
Kantorov et al. [18] (2014) 46.7 Wang et al. [47] (2013) 91.2 Sun et al. [41] (2015) 88.1
Simonyan et al. [35] (2014) 59.4 Ballas et al. [3] (2013) 92.8 Ng et al. [54] (2015) 88.6
Peng et al. [30] (2014) 66.8 Everts et al. [13] (2014) 72.9 Tran et al. [42] (2015) 90.4
Sun et al. [41] (2015) 59.1 Uijlings et al. [43] (2014) 80.9 Wang at al. [51] (2015) 91.4
Wang et al. [46] (2015) 60.1 Kantorov et al. [18] (2014) 82.2 Wang et al. [50] (2015) 91.5
Wang et al. [50] (2015) 65.9 Ciptadi et al. [5] (2014) 90.5 Zhang et al. [56] (2016) 86.4
Park et al. [27] (2016) 56.2 Narayan et al. [25] (2014) 92.5 Peng et al. [29] (2016) 87.9
Seo et al. [33] (2016) 58.9 Uijlings et al. [44] (2015) 81.8 Park et al [27] (2016) 89.1
Peng et al. [29] (2016) 61.1 Wang et al. [46] (2015) 91.7 Bilen et al. [4] (2016) 89.1
Yang et al. [53] (2016) 61.8 Peng et al. [29] (2016) 92.3 Diba et al. [9] (2016) 90.2
Bilen et al. [4] (2016) 65.2 Duta et al. [12] (2016) 93.0 Fernando et al. [14] (2016) 91.4
Fernando et al. [14] (2016) 66.9 Seo et al. [33] (2016) 93.7 Yang et al. [53] (2016) 91.6
Our VCMPF(DF) 65.2 Our VCMPF(DF) 94.6 Our VCMPF(DF) 93.1
Our VCMPF(DF) + iFV(HCF) 70.5 Our VCMPF(DF) + iFV(HCF) 96.9 Our VCMPF(DF) + iFV(HCF) 94.1
Our VLMPF(DF) 66.9 Our VLMPF(DF) 94.8 Our VLMPF(DF) 93.1
Our VLMPF(DF) + iFV(HCF) 71.6 Our VLMPF(DF) + iFV(HCF) 96.9 Our VLMPF(DF) + iFV(HCF) 94.1

resulted individual representation and then performing a �nal L2
normalization over the resulted �nal representation. ”sLate” repre-
sents a late fusion by performing a sum over the classi�ers output
obtained from each individual feature type. ”wLate” represents
also a late fusion but using a weighted sum of the classi�ers out-
put. �e weights combination is tuned taking values in the [0;1]
interval with the step 0.1. In addition, we perform a double fusion,
where besides the individual classi�er output obtained for each
feature type we use also the classi�er obtained from the early fu-
sion. We have also ”sDouble” from sum over all classi�ers output
and ”wDouble” for weighted sum over the classi�ers output, with
similar strategy as late fusion to establish the weights.

�e results for each fusion strategy is presented in Table 3a for
VCMPF and in Table 3b for VLMPF. We can notice that fusing hand-
cra�ed descriptors with the deep features boosts the accuracy. In
general, early fusion outperforms late fusion and the weighted sum
over the classi�ers output gives be�er results than just performing
the sum. �e double fusion combines the bene�ts of early and late
fusion, achieving the best results overall that serves as comparison
to the state-of-the-art.

5.6 Comparison to state-of-the-art
�e comparison of our framework for action recognition to the
state-of-the-art is presented in Table 4. We compare the state-of-
the-art to both proposed solutions for feature encoding: VCMPF
and VLMPF. For both solutions we present the results using only
deep features (DF) represented by SCN, TCN and C3D (note that,
as explained above, in all the cases we excluded TCN features
for UCF50 dataset). In addition, we present the results where we
combine our representation with the improved Fisher Vector (iFV)
applied over hand-cra�ed features (HCF). �e hand-cra�ed features
are represented by Histogram of Motion Gradients (HMG) [12] and

improved dense trajectories (iDT) approach (represented by the
descriptors: HOG, HOF, MBHx andMBHy) [47]. It is important
to mention that our results are obtained without re-training or
�ne-tuning the ConvNets for the datasets used in this work (except
TCN features for UCF101). For instance, the competitive results on
HMDB51 datasets are obtained using features extracted from three
di�erent ConvNets, none of which had access to any data from
HMDB51 during the training. Our results outperform even recent
works on action recognition, obtaining state-of-the-art results on
all three datasets: HMDB51, UCF50 and UCF101.

6 CONCLUSION
In this work we present two competitive solutions speci�cally de-
signed for encoding the local deep features. �e provided solutions
are useful in many practical scenarios for working with deep fea-
tures to generate a robust �nal representation. In this work we
show that our powerful encodings for deep features outperform by
a large margin the existing state-of-the-art encoding approaches,
which are built around hand-cra�ed features, such as VLAD and
improved Fisher Vectors, this motivating the necessity of an en-
coding approach adapted for local deep features. Furthermore, our
proposed solutions are highly e�cient, being able to run faster than
real time. Our encoding approaches provide a solution to encode
the features extracted with a ConvNet over the entire video. Our
proposed pipeline for action recognition is pushing the state-of-the-
art further by 4.7, 3.2 and 2.5 percentage points on the HMDB51,
UCF50 and UCF101 datasets respectively.
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[1] R. Arandjelović and A. Zisserman. �ree things everyone should know to improve

object retrieval. In CVPR, 2012.
[2] R. Arandjelovic and A. Zisserman. All about VLAD. In CVPR, 2013.
[3] N. Ballas, Y. Yang, Z.-Z. Lan, B. Delezoide, F. Prêteux, and A. Hauptmann. Space-

time robust representation for action recognition. In ICCV, 2013.
[4] H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould. Dynamic image

networks for action recognition. In CVPR, 2016.
[5] A. Ciptadi, M. S. Goodwin, and J. M. Rehg. Movement pa�ern histogram for

action recognition and retrieval. In ECCV, 2014.
[6] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In

CVPR, 2005.
[7] N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented histograms

of �ow and appearance. In ECCV. 2006.
[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale

hierarchical image database. In CVPR, 2009.
[9] A. Diba, A. M. Pazandeh, and L. Van Gool. E�cient two-stream motion and

appearance 3d cnns for video classi�cation. In ECCV ws, 2016.
[10] I. C. Duta, B. Ionescu, K. Aizawa, and N. Sebe. Spatio-temporal vlad encoding

for human action recognition in videos. In MMM, 2017.
[11] I. C. Duta, T. A. Nguyen, K. Aizawa, B. Ionescu, and N. Sebe. Boosting VLAD

with double assignment using deep features for action recognition in videos. In
ICPR, 2016.

[12] I. C. Duta, J. R. R. Uijlings, T. A. Nguyen, K. Aizawa, A. G. Hauptmann, B. Ionescu,
and N. Sebe. Histograms of motion gradients for real-time video classi�cation.
In CBMI, 2016.

[13] I. Everts, J. C. Van Gemert, and T. Gevers. Evaluation of color spatio-temporal
interest points for human action recognition. TIP, 2014.

[14] B. Fernando, P. Anderson, M. Hu�er, and S. Gould. Discriminative hierarchical
rank pooling for activity recognition. In CVPR, 2016.

[15] B. Fernando, E. Gavves, J. Oramas, A. Ghodrati, and T. Tuytelaars. Rank pooling
for action recognition. TPAMI, 2016.

[16] M. Jain, H. Jégou, and P. Bouthemy. Be�er exploiting motion for be�er action
recognition. In CVPR, 2013.

[17] H. Jégou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and C. Schmid. Aggregating
local image descriptors into compact codes. TPAMI, 34(9):1704–1716, 2012.

[18] V. Kantorov and I. Laptev. E�cient feature extraction, encoding and classi�cation
for action recognition. In CVPR, 2014.

[19] A. Karpathy, G. Toderici, S. She�y, T. Leung, R. Sukthankar, and L. Fei-Fei.
Large-scale video classi�cation with convolutional neural networks. In CVPR,
2014.

[20] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: a large video
database for human motion recognition. In ICCV, 2011.

[21] I. Laptev. On space-time interest points. IJCV, 64(2-3):107–123, 2005.
[22] I. Laptev, M. Marsza lek, C. Schmid, and B. Rozenfeld. Learning realistic human

actions from movies. In CVPR, 2008.
[23] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories. In CVPR, 2006.
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[45] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense trajectories and motion
boundary descriptors for action recognition. IJCV, 103(1):60–79, 2013.

[46] H. Wang, D. Oneata, J. Verbeek, and C. Schmid. A robust and e�cient video
representation for action recognition. IJCV, 2015.

[47] H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV,
2013.

[48] H. Wang and C. Schmid. Lear-inria submission for the thumos workshop. In
ICCV Workshop, 2013.

[49] H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid. Evaluation of local
spatio-temporal features for action recognition. In BMVC, 2009.

[50] L. Wang, Y. Qiao, and X. Tang. Action recognition with trajectory-pooled deep-
convolutional descriptors. In CVPR, 2015.

[51] L. Wang, Y. Xiong, Z. Wang, and Y. Qiao. Towards good practices for very deep
two-stream convnets. arXiv preprint arXiv:1507.02159, 2015.

[52] Z. Xu, Y. Yang, and A. G. Hauptmann. A discriminative cnn video representation
for event detection. In CVPR, 2015.

[53] X. Yang, P. Molchanov, and J. Kautz. Multilayer and multimodal fusion of deep
neural networks for video classi�cation. In ACMMM, 2016.

[54] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and
G. Toderici. Beyond short snippets: Deep networks for video classi�cation. In
CVPR, 2015.

[55] C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime tv-l 1
optical �ow. In Pa�ern Recognition. 2007.

[56] B. Zhang, L. Wang, Z. Wang, Y. Qiao, and H. Wang. Real-time action recognition
with enhanced motion vector cnns. In CVPR, 2016.

[57] X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classi�cation using super-vector
coding of local image descriptors. In Computer Vision–ECCV 2010, pages 141–154.
2010.

[58] J. Zhu, B. Wang, X. Yang, W. Zhang, and Z. Tu. Action recognition with actons.
In ICCV, 2013.


	Introduction
	Related work
	Deep Feature Encoding
	VCMPF
	VLMPF

	Deep Feature Extraction
	Experiments
	Datasets
	Experimental setup
	Parameter tuning
	Comparison to other encodings
	Fusion strategies
	Comparison to state-of-the-art

	Conclusion

