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Abstract—Besides appearance information, the video contains
temporal evolution, which represents an important and useful
source of information about its content. Many video representa-
tion approaches are based on the motion information within the
video. The common approach to extract the motion information
is to compute the optical flow from the vertical and the horizontal
temporal evolution of two consecutive frames. However, the
computation of optical flow is very demanding in terms of
computational cost, in many cases being the most significant
processing step within the overall pipeline of the target video
analysis application. In this work we propose a very efficient
approach to capture the motion information within the video.
Our method is based on a simple temporal and spatial derivation,
which captures the changes between two consecutive frames. The
proposed descriptor, Histograms of Motion Gradients (HMG), is
validated on the UCF50 human action recognition dataset. Our
HMG pipeline with several additional speed-ups is able to achieve
real-time video processing and outperforms several well-known
descriptors including descriptors based on the costly optical flow.

Index Terms—Real-time Video Classification, Action Recogni-
tion, Histograms of Motion Gradients - HMG.

I. INTRODUCTION

Over the recent years an explosive growth in video content
has occurred and continues growing. As an example of this
fulminant increase, Cisco forecast1 mentioned that the IP video
would account for 80% of all IP traffic by 2019. With this
huge amount of multimedia content, computational efficiency
has become as important as the accuracy of the techniques.

Even though in the past several years there has been an
important progress in video analysis techniques, in particular on
improving the accuracy of human action recognition in videos
[27, 29, 20, 25, 16, 28], the current methods in terms of com-
putational time are able to run with 1-3 frames per second. For
instance in the work [25] is reported that the popular approach
of [13] runs with 1.4 frames per second. Fast video analysis
is important in many applications and this issue of efficiency
became very important for large-scale video indexing systems
or automatic clustering of large video collections.

1http://newsroom.cisco.com/press-release-content?articleId=
1644203
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Fig. 1: The general pipeline for video classification.

In this work we propose a very efficient video representation
which captures the video temporal motion information and is
able to perform in real-time when dealing with video classifica-
tion tasks. The Bag of Visual Words (BoVW) framework with
its variations [14, 27, 29] has been widely used and showed its
effectiveness in video analysis challenges. The BoVW pipeline
represented in Fig.1, contains in general three main steps: fea-
ture extraction, feature encoding and classification. In addition
to these main steps, the framework contains some pre/post pro-
cessing techniques, such as PCA, feature decorrelation and nor-
malization, which can influence considerably the performance
of the pipeline. The commonly used approach for classification
is employing a fast SVM classifier over the resulted video
representations. The encoding step creates a final representation
of the video and a very widely used approach is counting the
frequency of the visual words. However, recently super-vector
based encoding methods, such as Vector of Locally Aggregated
Descriptors (VLAD) [9] and Fisher Vector (FV) [18], obtained
state-of-the-art results for many tasks.

The video contains two important sources of information: the
static information in the frames and the motion between frames.
The feature extraction step focuses mainly on these two direc-
tions. The first direction has the goal to capture the appearance
information in frames, such as Histogram of Oriented Gradients
(HOG) [5, 14]. The other direction is based on optical flow
fields like Histogram of Optical Flow (HOF) [14] and Motion
Boundary Histograms (MBH) [6]. These descriptors are ex-
tracted and combined using Space Time Interests Points (STIP)
[13], dense sampling [30, 25] or extracting the descriptors along
some trajectories [22, 27, 29].

Temporal variation within the videos provides an important
source of information about its content. Usually, the temporal
information is computed with an optical flow method. There is a
large number of approaches for extracting the optical flow fields,
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from relatively old methods, such as [15, 8] to relatively recent
approaches like [7, 3, 31, 4], which use complex algorithms
to compute the motion information. The main drawback of
those methods is the high computational cost to extract the
motion information from the videos. This drawback becomes
the bottleneck in many applications. For instance, the authors
in [27] report that optical flow takes more than 50% of the
total time for feature extraction. We present in this paper a
new efficient descriptor, called Histograms of Motion Gradients
(HMG), which is based on the motion information. The pro-
posed HMG descriptor captures the motion information using
a very fast temporal derivation, which enables us to have similar
computational cost as HOG but with a significant improvement
in accuracy.

The main contributions of this work can be summarized with
the following:

• We introduce a new descriptor (HMG), which captures the
motion information by using a simple temporal derivation,
without the need of using the costly optical flow. We make
available the code for descriptor extraction2;

• We adopt several speed-ups, such as fast aggregation of
gradients responses, reuse subregions of aggregated mag-
nitude responses, and frame subsampling, which make the
pipeline more efficient;

• We propose an integration of our descriptor in a specifically
designed video classification framework which allows for
real-time performance while maintaining the high accuracy
of the results.

The rest of the paper is organized as follows. Section II intro-
duces our new proposed descriptor with the adopted approaches
for improving the efficiency. In Section III the experimental
evaluation and the comparison with state-of-the-art are pre-
sented. Finally, Section IV concludes this work.

II. PROPOSED METHOD

In this section we introduce the proposed method to capture
motion information within the video. We present several speed-
ups that make the framework very efficient, being able to achieve
real-time processing.

A. Histograms of Motion Gradients

Our descriptor, Histograms of Motion Gradients (HMG), is
based on a temporal derivation to compute the motion informa-
tion. The illustration of the process of capturing the temporal
information is presented in Fig. 2. For each two consecutive
frames we first compute the temporal derivation:

T(i,i+1) =
@(Fi, Fi+1)

@t

(1)

The temporal derivation is computed very effectively by apply-
ing a simple and fast filter of [1 -1] for each two consecutive
frames (Fi, Fi+1). The result of this operation is illustrated
in the middle image of Fig. 2, where we can observe that
the information about the motion between two frames is kept.
Obviously, after applying the temporal derivation some values

2http://disi.unitn.it/⇠duta/software.html
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Fig. 2: Visualization of the process for capturing the motion infor-
mation for HMG descriptor. The blue color represents the negative
values after temporal derivation.

are negative, depending on the result of derivation between the
pixels in frame i and frame i + 1. For a better visualization,
we represent the negative values with blue color for the middle
image of Fig. 2.

After the computation of temporal derivative, we compute the
spatial gradients of the resulted motion image, which allows
us to compute the magnitude and the angle of the gradients
responses. In the left part of Fig. 2 there are represented the
horizontal and vertical gradients, computed with:

X(i,i+1) =
@T(i,i+1)

@x

, Y(i,i+1) =
@T(i,i+1)

@y

(2)

For the computation of spatial gradients we use also the
simple and fast filter of [1 0 -1], similar as for HAAR-features.
The gradients with this mask are computed much faster than, for
instance, Gaussian derivatives. Basically, the gradients with this
filter are obtained by making the difference between a frame
and its shifted values with one position, once horizontally and
once vertically. This makes the computation of gradients very
efficient.

After we obtain the spatial derivatives, similar as for HOG,
we compute the magnitude and the angle:

mag =
p
X

2 + Y

2
, ✓ = arctan

�
Y

X

�
(3)

where each operation from the above formulas is element-wise.
The result of these operations is a 2-dimensional vector field

per each new motion frame. We quantized the magnitude in
8 orientations. The next step is to perform the aggregation
of those quantized responses over blocks in both spatial and
temporal direction. Then we concatenate the responses over
several adjacent blocks. We provide in the next subsection the
details about the procedure of dividing the video in blocks and
volumes. Afterwords, the pipeline in Fig. 1 continues with the
next step by applying some pre-processing operations before
feature encoding, such as normalization and PCA with decor-
relation of features.

B. Speed-up HMG extraction

For our proposed descriptor we use a dense sampling strategy
to extract the features. In addition to the presented approach
for capturing the motion information very efficiently and using
fast filters for derivatives, we describe several speed-ups that
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improve the efficiency of the descriptor extraction process of
HMG. The efficiency improvement is performed by taking the
advantage of the densely sampled approach and by adopting to
our new descriptor several speed-ups presented in [25].

1) Reuse of blocks: Our choice to establish the region of
the descriptor extraction is the use of dense sampling since
this method has a big potential for efficiency. It can be also
easily extended to an even faster version using parallelization.
Furthermore, in several works, it has been found to be more ac-
curate than keypoint-based sampling in images [10] and videos
[30, 17]. We take advantage of the densely sampled descriptor
nature in order to speed up the feature extraction time. Fig. 3
illustrates an example for dividing the video into blocks, and
how a volume is created of several adjacent blocks. Our HMG
descriptor is extracted on a single scale over each block, which
consists of 8 by 8 pixels by 6 frames. The size of the blocks
is also our dense sampling rate. The green part from the Fig.
3 represents a video volume, where the responses over several
adjacent blocks are concatenated for creating the final descriptor.
Each video volume consists of 3 by 3 by 2 blocks, corresponding
to x, y and t axis. By choosing the sampling rate equally with
the block size, then we can reuse the blocks for making the
descriptor extraction efficient. For instance, each block can be
reused for 18 times (excepting the blocks on the borders) for the
current size of the video volume: 3 by 3 by 2 blocks.

2) Fast aggregation of responses: After we compute the
magnitude and the angle, the resulted responses are aggregated
for each block. We adopted the approach of [23]. Basically we
compute the aggregation of all the frame pixels by doing just
a multiplication of three matrices. After the spatial aggregation
of 8 by 8 pixels and the temporal aggregation of 6 frames, each
block is characterized by 8 values as we consider 8 orientations
for quantization of responses. Having 8 bins and a size of 3
by 3 by 2 for video volume, the original dimensionality of our
descriptor is therefore 144.

3) Frame subsampling: For efficiency reasons we evaluate
HMG by subsampling video frames. Subsequent frames con-
tain redundant information, and the computational cost can be
substantially improved by frame subsampling. We evaluate the
impact on the accuracy and efficiency of our descriptor by
skipping frames. A detailed analysis of the trade-off between
accuracy and computational time is presented with the experi-
mental results.

III. EXPERIMENTAL EVALUATION

The general pipeline used for evaluation is the one presented
in Fig. 1. For evaluation of our proposed HMG descriptor the
baseline is to use dense sampling with 8 by 8 pixels by 6 frames
as in [25] and the gradient magnitude quantized in 8 orientations.
The final descriptor is a concatenation of 3 by 3 by 2 blocks.
For the pre-processing step of we perform RootSIFT [1] nor-
malization and then we apply PCA to reduce the dimensionality
by a factor of two and decorrelate the features. This yields a
final descriptor dimension of 72. We use spatial pyramid in
all our experiments, we divide all the frames of the video into
three horizontal parts which intuitively roughly correspond to a
ground, object, and sky devision.
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Fig. 3: The process of dividing the video in blocks and volumes. The
green part represents an illustration of a volume created from 3 by 3
by 2 blocks.

The codebook for each experiment needed for feature encod-
ing is built from randomly sampled 500K features of the training
set. For the resulted vectors after descriptor encoding we apply
power normalization followed by L2 for the super-vector based
encoding methods and power normalization followed by L1 for
all other visual word assignment methods. The parameter ↵ for
power normalization is initially fixed to 0.5. We perform the
classification with SVMs, with a linear kernel for super-vector
based encoding methods and histogram intersection kernel for
all other encoding methods, with C = 100.

We initially compare our descriptor with dense HOG, HOF,
MBHx and MBHy using the available code of [24, 25]. For
these descriptors we use the same settings and speed-ups as
presented for HMG, see Section II. The optical flow for HOF,
MBHx and MBHy is computed with Horn-Schunk method [8]
using Matlab Computer Vision System Toolbox as the work
[25] recommends this approach as a good trade-off between
accuracy and computational cost. The timing measurements are
performed on a single core Intel(R) Xeon(R) CPU E5-2690
2.60GHz, using 500 randomly sampled videos from the dataset
(10 videos for each class), which is presented in the next section.
We report the average of the number of seconds per video and
the number of frames per second that the system can process.

A. Dataset
We perform the evaluation on the challenging UCF50 Human

Action Recognition dataset [19]. In total, this dataset contains
6,618 realistic videos taken from YouTube with 50 human action
categories mutually exclusive, which range from general sports
to daily life exercises. For all categories, the videos are split
into 25 predefined groups. We perform leave-one-group-out
cross validation as recommended by [19], and report average
classification accuracy over all 25 folds.

B. Comparison to dense descriptors
In this part we present a first comparison between the pro-

posed HMG descriptor and the most popular descriptors for
action recognition: HOG, HOF, MBHx and MBHy [25]. The
comparison is conducted in terms of accuracy and computational
cost. All the descriptors benefit of the same settings and the same
speed-up approaches presented above for HMG descriptor. All
dense descriptors are extracted using only the intensity infor-
mation. All the computational time measurements for descriptor



TABLE I: Comparison to dense descriptors.
descriptor HOG HOF MBHx MBHy HMG
Acc 0.762 0.799 0.784 0.792 0.814
sec/video 2.67 4.03 4.37 4.37 2.73
frame/sec 73.50 48.61 44.80 44.84 71.73

computation include also the loading time of the video and
converting the frames to graylevel. For this set of experiments
we use Fisher Vector (FV) [18] as encoding method, with the
common setting of 256 clusters.

The comparative results are presented in Table I. Our ap-
proach of computing the motion information by applying a
simple and efficient temporal filter does not affect significantly
the computational cost comparably with the fast HOG descrip-
tor. While the efficiency is kept, in terms of accuracy our
HMG descriptor outperforms with a large margin HOG, by
5.2 percentage points. This significant improvement of perfor-
mance while preserving the efficiency shows that the motion
information captured by our descriptor is very discriminative
for videos and can be considered as an option for the applica-
tions based on video analysis, especially for those where the
computational cost is crucially important. Remarkably, HMG
outperforms even descriptors based on classical optical flow
which are more demanding for computational cost. For instance,
HMG outperforms HOF by 1.5 percentage points in terms of
accuracy, moreover, the descriptor extraction for HMG runs with
approximately 72 frames/second while HOF runs only at around
49 frames/second. This big difference in efficiency is due to the
optical flow computation, which can take up to 50% of the cost
for HOF extraction.

C. Feature Encoding

After descriptor extraction, the feature encoding is another
important step for the system performance, and at the same time,
demanding in terms of computational cost. There are different
approaches for feature encoding with important differences in
accuracy and efficiency. Choosing the proper encoding method
is another key factor which can influence substantially the final
result. As we are going to present a real-time video classification
pipeline, we investigate the proper encoding method for a trade-
off between accuracy and computational time.

In this part we compare our dense HSM descriptor with
dense HOG, HOF, MBHx and MBHy for Bag-of-Visual-Words
(BoVW) using three approaches for visual word assignment: k-
means, hierarchical k-means (hk-means) and Random Forests
(RF) [2]. In addition we use other two variations of BoVW:
Fisher Vectors (FV) [18] and Vector of Locally Aggregated
Descriptors (VLAD) [9]. For k-means and hk-means we use
the implementation made available of VLFeat [26]. For both
we create a codebook of 4096 visual words. For hk-means we
learn a hierarchical tree of depth 2 with 64 branches per node.
RF are well-known for their speed, they are binary decision
trees, learned in a supervised manner by randomly picking
several descriptor dimensions at each node with several random
thresholds. The split with the highest Entropy Gain is selected.
We follow the recommendations of [23, 24, 25], using 4 binary
decision trees of depth 10, which create a codebook of 4096
visual words.

TABLE II: Trade-off accuracy/efficiency for different visual word
assignment methods.

k-means hk-means RF FV VLAD
HOG 0.731 0.720 0.718 0.762 0.732
HOF 0.789 0.779 0.738 0.799 0.818
MBHx 0.772 0.760 0.731 0.784 0.787
MBHy 0.783 0.774 0.750 0.792 0.798
HMG 0.781 0.759 0.735 0.814 0.810
sec/video 8.42 0.37 0.05 2.09 0.25
frame/sec 24 526 3788 94 794

For FV we keep the codebook size of 256 clusters. We tested
VLAD representation with 256 and 512 visual words, however,
we report in this paper the version with the codebook size of
512 as this version obtains a significant improvement in our ex-
periments. Furthermore, for this codebook size the resulted final
vector has equal dimensionality with FV in the presented case of
256 clusters. Different from the traditional approach, instead of
sum pooling for VLAD encoding method we perform average
pooling. This is a simple technique to cancel the big influence
of the most frequent visual words and from our results this has
a consistent positive influence on the accuracy. We perform the
assignment step for VLAD using dot product to compute the
similarity between two vectors instead of euclidian distance,
this improves considerably the computational efficiency for the
assignment step.

The results for different encoding methods are presented in
Table II, which confirm that super-vector encoding methods
give a better video representation than the other encoding ap-
proaches. The superiority of super-vector encoding methods
is due to the fact that it captures information related to the
mean and variance of the features and not only the membership
information of the features to the clusters. Our HMG descriptor
is very competitive for all the encoding methods, especially for
super-vector encoding methods, which outperforms all the other
descriptors with 0.814 accuracy for FV.

The computational cost for the encoding step is not dependent
on the type of features, it depends on the number of visual words
and the dimensionality of descriptors. As all our descriptors have
the same dimensionality, we reported the computational cost for
encoding a descriptor (can be any) with 72 dimensions. The
RF approach for encoding step is by far the fastest and takes
0.05 per video, however, the accuracy drops significantly for all
descriptors related to the best encoding method for accuracy.
The results for hk-means represents a good trade-off between
accuracy and computational efficiency, can process the video at
a frame rate of 526. When the speed is crucial important then
RF is the best choice.

After these experiments we can take the conclusion that super-
vector based encoding methods give the best performance. For
feature encoding, VLAD represents the best trade-off between
accuracy and computational efficiency, running at a frame rate
of 794. Considering this, for the further experiments we will
consider only FV and VLAD as encoding methods.

D. Normalization

After feature encoding, for the resulted vector of the video
representation we apply before classification Power Normal-
ization followed by L2-normalization (||sign(x)|x|↵||2, where



TABLE III: Trade-off between frame sampling rate and accuracy. We
keep video volumes from which descriptors are extracted the same
for all sampling rates. †Frames/second is measured in terms of the
total number of frames of the original video, not in terms of how
many frames are actually processed during descriptor extraction.�frames/block

sample rate

� �
6
1

� �
3
2

� �
2
3

� �
1
6

�

HOG

VLAD 0.750 0.751 0.751 0.763
FV 0.820 0.817 0.814 0.820
sec/video 2.67 1.54 1.15 0.78
frame/sec† 73.50 127.07 170.99 250.79

HOF

VLAD 0.824 0.817 0.805 0.784
FV 0.834 0.820 0.817 0.799
sec/video 4.03 2.28 1.68 1.06
frame/sec† 48.61 86.04 116.27 184.73

MBHx

VLAD 0.797 0.793 0.791 0.772
FV 0.816 0.806 0.797 0.779
sec/video 4.37 2.45 1.80 1.12
frame/sec† 44.80 80.03 108.96 174.60

MBHy

VLAD 0.808 0.804 0.803 0.785
FV 0.824 0.819 0.814 0.794
sec/video 4.37 2.44 1.80 1.12
frame/sec† 44.84 80.27 108.67 174.37

HMG

VLAD 0.821 0.813 0.820 0.818
FV 0.850 0.845 0.843 0.829
sec/video 2.73 1.59 1.19 0.80
frame/sec† 71.73 123.47 164.17 245.45

0  ↵  1 is the normalization parameter), we call this PNL2.
The effect of this normalization is reducing the peaks within the
vector. We perform the ↵ parameter tuning with the step 0.1
and the conclusion is that a very small ↵ improves considerably
the accuracy. The best results are obtained with ↵ = 0.1 and
the difference to the previous results can be noticed in the first
column with results of the Table III, where for instance, the
accuracy of HMG with FV increases from 0.814 to 0.850.

E. Frame subsampling

Subsequent video frames contain similar information. In this
set of experiments we investigate the impact on the accuracy
results when frames are skipped, with the goal of speeding up
the feature extraction process. We evaluate when skipping 2, 3
and 6 frames. The modality of frame subsampling is similar as
in the work [25]. For a fair comparison, the descriptors describe
the same video volume for the process of subsampling frames.
For instance, if we sample every 2 frames, our baseline for the
size of the block of 8 by 8 pixels by 6 frames is changing to 8
by 8 by 3 frames; for skipping 3 frames we have only 8 by 8
pixels by 2 frames; and when sampling every 6 frames the block
size became 8 by 8 pixels by 1 frame. The results for frame
subsampling with PNL2 are presented in Table III.

By subsampling frames the computational cost is significantly
improved, making the pipeline more efficient. HOG descrip-
tor is not negatively affected by skipping frames because this
descriptor capture the appearance information and subsequent
video frames contain similar information. Therefore, for HOG
descriptor we can skip frames with a step of 6 without loosing
accuracy for both FV and VLAD, being able to process more
than 250 frames per second. For the descriptors based on optical
flow a frame sampling rate of 3 gives a good trade-off, improv-
ing considerably the computational cost. HMG with VLAD can

TABLE IV: Comparison to IDT [29] in terms of accuracy and
computational cost.

HOG HOF MBH HMG sec/video frames/sec
IDT [29] 0.826 0.851 0.889 - 50.5 3.9
dense 0.820 0.834 0.832 0.850 10.9 18.0

have a frame sampling rate of 6 without decreasing significantly
the accuracy.

F. Comparison with Improved Trajectories approach

The Improved Dense Trajectories (IDT) [29] represents a
state-of-the-art video representation approach. We compare our
approach with IDT in terms accuracy and of computational
efficiency without subsampling frames. As in [29] there are
reported the results for FV with 256 clusters, we perform the
comparison with our dense approach using the same encoding
method. As the code of [29] provides four main descriptors
(HOG, HOF, MBHx and MBHy), for a fair comparison we
compare its extraction time with dense extraction time also for
four descriptors: HOF, MBHx, MBHy and HMG. Notice that
dense HOG and HMG has similar computational time, so it is
not relevant for time measurement which is chosen. The com-
parison with IDT is presented in Table IV. For the computational
efficiency the dense approach outperforms by a large margin
IDT, being 4.6 times faster. Dense approach is able to process
a video with 18 frames per second while IDT can process only
3.9 frames per second. Even though [29] provides a fast code
in C++, the Matlab implementation for dense descriptors is
considerably less demanding for the computational cost due to
several factors. First, IDT uses a more complicate algorithm to
extract the descriptors and furthermore, their approach improves
the accuracy by canceling the camera motion. For doing this it
is necessary to compute two times the optical flow, which makes
the algorithm more demanding for computational efficiency.
Another reason is that the dense descriptors are computed more
efficiently, being able to reuse the blocks for many times and
without the need to compute any trajectories. Very interesting
that our HMG descriptor is able to compete even with HOF from
IDT, with almost similar performance of 0.85.

G. Real-time video classification

For a real-time video classification system we recommend
two frameworks. The first framework is using FV (with 256
clusters) for feature encoding and performing early fusion by
concatenating HOG (with sampling rate of 6) and HMG (with-
out subsampling frames). Applying a linear SVM is very fast, for
instance to get the predicted class for a video the computational
cost is less then 0.001 seconds, this means that the classification
time is negligible compared to other steps along the pipeline.
This first framework obtains an accuracy of 0.854 and is able to
process the video in real-time at 27 frames per second.

The second pipeline for real-time video classification that we
recommend is using VLAD (with 512 clusters) for encoding
step and is doing early fusion (before applying linear SVM)
of HOG, HMG (both with frame sampling rate of 6), HOF,
MBHx add MBHy. To compute optical flow only once, the
frame sampling rate should be equal for all descriptors based on
optical flow, frame sampling rate of 3 is a good trade-off for all



TABLE V: Comparison with the state-of-the-art.
Method Accuracy
Kliper-Gross et al. [11] (2012) 0.727
Solmaz et al. [21] (2012) 0.737
Reddy et al. [19] (2012) 0.769
Uijlings et al. [25] (2014) 0.818
Wang et al. [27] (2013) 0.856
Wang et al. [29] (2013) 0.912
Wang et al. [28] (2015) 0.917
Peng et al. [17] (2014) 0.923
HMG + IDT 0.930

these descriptors. This second real-time framework obtains an
accuracy of 0.842 and can process a video with an appreciable
efficiency of 38 frames per second.

H. Comparison to state-of-the-art

When accuracy is crucially important for the application we
recommend using FV (with 256 clusters) for feature encoding
and combining our HMG descriptor with IDT descriptors. We
extract all the descriptors of IDT (HOG, HOF, MBHx and
MBHy) with the default settings provided in [29]. We per-
form early fusion between HMG and IDT by concatenating
all features. For all features we apply separately before early
fusion PNL2 normalization with ↵ = 0.1. This combination
improves the accuracy from 0.912 reported in [29] to 0.930. This
significant improvement of performance shows that our HMG
descriptor brings complementary information for IDT and can
be used to boost the performance of the system. Table V presents
the comparison with state-of-the-art approaches. The proposed
combination for accuracy between HMG and IDT obtains state-
of the art results outperforming including the recent work of [28]
which considers as encoding method the spatial FV [12] together
with spatio-temporal pyramid [14]. Our results are better than
[28] which considers a hybrid representation by combining two
different representations.

IV. CONCLUSION

We introduce in this work a new descriptor, HMG (His-
tograms of Motion Gradients), that captures motion information
without the need of computing optical flow, which obtains
very competitive results while achieving a low computational
complexity. Tested on UCF50 dataset, our descriptor is able
to outperform including well-known descriptors based on the
expensive computation of optical flow. In the end, after several
evaluations of the trade-off between accuracy and computational
efficiency we propose two frameworks which can be used for
real-time video classification. For the future work we will focus
on further improvement of computational efficiency by using
parallel computation. Furthermore, for new features we consider
the idea of learning a new representation by training a convolu-
tional neural network with the resulted motion frames obtained
after temporal derivation.
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[1] R. Arandjelović and A. Zisserman. Three things everyone should know

to improve object retrieval. In CVPR, 2012.
[2] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[3] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical

flow estimation based on a theory for warping. In ECCV. 2004.
[4] T. Brox and J. Malik. Large displacement optical flow: descriptor

matching in variational motion estimation. TPAMI, 33(3):500–513, 2011.
[5] N. Dalal and B. Triggs. Histograms of oriented gradients for human

detection. In CVPR, 2005.
[6] N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented

histograms of flow and appearance. In Computer Vision–ECCV 2006,
pages 428–441. Springer, 2006.
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