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Problems with data collections

I With the availability of large
document collections online,
it becomes more difficult to
represent and extract
knowledge from them

I We need new tools to
organize and understand
these vast collections
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Topic Models

Topic Models provide methods for statistical analysis of document
collections & other discrete data

I Uncover the hidden topical patterns in the collection

I Discover patterns of word-use and connect documents that
exhibit similar patterns
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Discover Topics from a Document Collection
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Image Annotation with Topic Models

1

1Source: Y.Shao et al. Semi-supervised topic modeling for image
annotation, 2009
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Intuition behind LDA (Latent Dirichlet Allocation)

2

Simple intuition: Documents exhibit multiple topics
2Source: http://www.cs.princeton.edu/ blei/modeling-science.pdf
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Generative Process

Cast this intuition into a probabilistic procedure by which
documents can be generated:

I Choose a distribution over topics for a document
I For each word, choose a topic according to the distribution
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Generative Process (2)
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Statistical Inference: a Reverse Process

In reality, what we observe are only documents. Given these
documents, our goal is to know what topic model is most likely to
have generated the data:

I What are the words for each topic?

I What are the topics for each document?
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Graphical Models Notation

I Nodes are random variables
I Edges denote possible dependence
I Observed variables are shaded
I Plates denote repetitions

E.g, this graph is:

p(y , x1, ..., xN) = p(y)
∏N

n=1 p(xn|y)
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Notations

I Word: 1...V

I Document: w = (w1,w2, ...,wNd ) sequence of N words

I Corpus: D = (w1,w2, ...,wM) collection of M documents
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LDA: Graphical Model
I α, β: Dirichlet prior

I M: number of doc

I Nd : number of words in d

I z : latent topic

I w : observed word

I θ: distribution of topic in
doc

I φ: distribution of words
generated from topic z

Using plate notation:
I Sampling of distribution over topics for each document d
I Sampling of word distributions for each topic z until T topics

have been generated
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LDA: Graphical Model

Key Problem

Compute posterior distribution of the hidden variables given a
document
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Algorithm for Extracting Topics

I How to estimate posterior distribution of hidden variables
given a collection of documents?

I Direct: e.g., via expectation-maximization (EM) [Hofmann,
1999]

I Indirect: estimate the posterior distribution over z. E.g., Gibbs
Sampling [Griffiths & Steyvers, 2004]
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Gibbs Sampling for LDA

I Random start

I Iterative
I For each word, we compute:

I How dominate is a topic z in doc d? How often was topic z
already used in doc d?

I How likely is a word for a topic z? How often was the word w
already assigned to topic z?
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Gibbs Sampling for LDA

P(zi = j |z i ,wi , di , ·) ∝
CWT

wi j
+ β∑W

w=1 C
WT
wj + Wβ

CDT
di j

+ α∑T
t=1 C

DT
di t

+ Tα

I Topic of each word will be sampled from this distribution

I #times word wi ⇒ topic j (except the current)

I total words ⇒ topic k

I #words in doc d ⇒ topic j (except the current)

I #words in doc m
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Gibbs Sampling Convergence

I Random Start

I N iterations

I Each iteration updates
count-matrices

Convergence:

I count-matrices stop
changing

18 / 43



Introduction Latent Dirichlet Allocation Gibbs Sampling Short Text Enrichment with Topic Models

Estimating θ and φ

φ
′(j)
i =

CWT
ij + β∑W

k=1 C
WT
kj + Wβ

θ
′(d)
j =

CDT
dj + α∑T

k=1 C
DT
dk + Tα
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Short & Sparse Text Segments

I The explosion of
I e-commerce
I online communication, and
I online publishing

I Typical examples
I Web search snippets
I Forum & chat messages
I Blog and news feeds/summaries
I Book & movie summaries
I Product descriptions
I Customer reviews
I Short descriptions of entities, such as people, company, hotel,

etc.
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Challenges

I Very short
I From a dozen of words to several sentences
I Noisier
I Less topic-focused

I Sparse
I Not enough common words or shared context among them

I Consequences
I Difficult in similarity measure
I Hard to classify and clustering correctly
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Synonym & Polysemy with Topics
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Short Text Enrichment with Topic Models

I Take advantage of available large collections, learn a topic
model

I Use this model to analyze topics for short text documents

I Enrich short text documents with topics that have high
probability
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Short Text Enrichment with Topic Models

I Deal with problems of sparse and short texts: word choice,
synonym, polysemy

I Increase the co-occurrence phenomenon among them

I Expand and enrich the shared context of data

I General and flexible: can be applied for different tasks,
domains, languages
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Applications

I Author Name Disambiguation
Enrich books’ titles, scientific/general domain, in English

I Online Contextual Advertising
Enrich webpages and advertisements, general domain, in
Vietnamese

I Query Classification
Enrich queries, art domain, in English
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Author Name Disambiguation

Author Name Disambiguation

I Ambiguous author name: Different authors having the same
name

I Author Name Disambiguation: a crucial service in catalogue
searching & data integration
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Author Name Disambiguation

Author Name Disambiguation: A Framework
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Author Name Disambiguation

Metadata enriching module with Topics
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Author Name Disambiguation

Wikipedia Preprocessing
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Author Name Disambiguation

Sample topics extracted from the estimated model

Toolkit: GibbsLDA++; 1000 iterations; 2.8GHz computer; Heap size: 3G; took

14 hours
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Author Name Disambiguation

Hidden Topic Inference for Metadata
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Author Name Disambiguation

Results
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Online Contextual Advertising

Online Contextual Advertising

A solution for “reaching the right person with the right message
at the right time”.
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Online Contextual Advertising

Contextual Matching & Ranking
Contextual Matching & 

Ranking

15

• A set of Web pages P = {p1, p2, …, pn}
• A set of ads: A = {a1, a2, …, am}

Matching & Ranking:
• For each p ! P (p is called “target page”)
• Match & rank all ads in A w.r.t p such that k-top ads          
A* = {ap1, …, apk} " A are most relevant to the content 

of p

Target Page Advertisements

I A set of Web pages P = p1, p2, , pn

I A set of ads: A = {a1, a2, , am}
Matching & Ranking:

I For each p ∈ P (p is called “target page”)
I Match & rank all ads in A w.r.t p such that k-top ads

A∗ = {ap1, , apk} ⊂ A are most relevant to the content of p
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Online Contextual Advertising

Webpage & Advertisement Enriching with Topics
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Online Contextual Advertising

Topic Analysis of Large News Collections

Using Latent Dirichlet Allocation (LDA) [Blei et al. 2003] & Gibbs Sampling

[Griffiths & Steyvers 2004]
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Online Contextual Advertising

Sample topics extracted from the estimated model

Full results at http://gibbslda.sourceforge.net/vnexpress-200topics.txt 37 / 43
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Online Contextual Advertising

Result
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Query Classification

Query Classification Task

I Classifying queries to a target taxonomy

I Domain: Art, Culture & History images
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Query Classification

Query enriching with Topics
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Query Classification

Result

Setting
Hits

%Top 3# 1 # 2 # 3
∑

Top 3

Baseline 1 13 17 5 33 60%

Baseline 2 15 14 7 35 63.6%

TM 1 14 15 5 32 58.2%

TM 2a 22 14 6 40 72.7%

TM 2b 31 9 6 44 80%

Table: Results of Query Classification: with Click Through Information

41 / 43



Introduction Latent Dirichlet Allocation Gibbs Sampling Short Text Enrichment with Topic Models

Query Classification

Conclusions

I Topic Models can be useful tools for statistical analysis of
document collections

I These models make explicit assumptions about the process
responsible for generating a document

I Topic Models estimated from large corpora can be exploited
to deal with the problem of short and sparse text,
experimented in different tasks with promising results
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Query Classification
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