Erasmus Mundus European Master in Language & Communication Technologies (LCT)

Freie Universität Bozen Libera Università di Bolzano Free University of Bozen - Bolzano

Named Entity Disambiguation in Digital Libraries

Le Dieu Thu

Supervisors: Raffaella Bernardi

Massimo Poesio

Patrick Blackburn

Outline

Introduction

- Ambiguous author name: Different authors having the same name
- Aim: Disambiguate those authors

Bolzano Library Catalogue Searching

- Classification Numbers: encodings (QK 620, WI) 2000), to organize books on shelves
- Subject Headings: keywords

Goal: Develop a disambiguation method that can be applied in any catalogue (even without manual annotations, e.g. CN & SH)

Support in Digital Libraries (Citescel, DDL)

Proposed Disambiguation Framework

Metadata Enriching Module

Topic Models:

Hidden Topic Discovery from Documents

Latent Dirichlet Allocation (LDA) [Blei et al. 2003]

Hidden Topic Analysis/Discovery

Topics {1, 2, ..., K} are unknown (i.e., hidden and need to be discovered)

Wikipedia data preprocessing

Wikipedia

<mediawiki ...> <siteinfo/> ... <text> <div class="thumb tright" style="backgroundcolor: #f7f7f7; ... |valign="top" | [[File:...]] <div ...> Computer science deals with the theoretical foundations of information and computation, and of practical techniques for their implementation and application.</div></div></div>'''Computer science''' or "computing science" (sometimes abbreviated "CS") is the study of the theoretical foundations of [[information]] and [[computation]], E.|coauthors=Gries,P. |title=Computing as a discipline|url=http://cs.gmu.edu/f| journal= Communications of the ACM | volume= 32 | issue=1 |date= Jan. 1989|doi= 10.1145/63|quote=Computer science and engineering is the systematic study of algorithmic processes-their theory, analysis, design, efficiency, implementation, and application-that describe ...</text>...

266M data 80,000 documents

computer science computing science cs study theoretical foundations information computation practical techniques implementation application computer systems frequently systematic study algorithmic processes create describe transform information...

Model Estimation using LDA & Gibbs Sampling

Sample topics extracted from the estimated model

Topic 0	Topic 8	Topic 23	Topic 39	Topic 68	Topic 86	Topic 96
company	album	cells	law	storm	war	school
business	music	disease	court	tropical	army	university
services	band	medical	police	damage	force	college
market	song	patients	legal	winds	battle	high
companies	released	treatment	rights	typhoon	military	students
million	singer	cell	public	cyclone	air	schools
bank	rock	blood	justice	storms	navy	education
service	guitar	health	laws	caused	ship	institute
industry	live	medicine	judge	landfall	command	year
financial	records	brain	criminal	season	attack	program
tax	vocals	protein	supreme	pacific	fire	campus

Toolkit: GibbsLDA++; 1000 iterations; 2.8GHz computer; Heap size: 3G; took 14 hours

Hidden Topic Inference for Metadata

Proposed Disambiguation Framework

Feature Representation

weight of t_i

- Features: (co-author names, title, publishers)
- Feature Representation: Vector Space Model
- Record similarity: Cosine similarity

$$cosin_sim(\mathbf{r}_i, \mathbf{r}_j) = \frac{\overrightarrow{\mathbf{r}_i} \cdot \overrightarrow{\mathbf{r}_j}}{|\overrightarrow{\mathbf{r}_i}| \cdot |\overrightarrow{\mathbf{r}_j}|} = \frac{\sum_{t \in V} w_{ti} \cdot w_{tj}}{\sqrt{\sum_{t \in V} w_{ti}^2} \cdot \sqrt{\sum_{t \in V} w_{tj}^2}}$$

Dimensionality Reduction with PCA

Principle Component Analysis (PCA): reduce each vector to few dimensions while keeping as much of the variance as possible.

•Less sparse

•More understandable model (visualization for better quantity analyses)
•Reduce speed & complexity of the Clustering process

Proposed Disambiguation Framework

Clustering Module

Clustering Module: HAC Algorithm

- Clustering algorithm: Hierarchical Agglomerative Clustering (HAC)
- Distance between Clusters (A & B): Average Linkage

$$d(\mathcal{A}, \mathcal{B}) = \frac{1}{|\mathcal{A}|.|\mathcal{B}|} \cdot \sum_{x \in \mathcal{A}} \sum_{y \in \mathcal{B}} d(x, y)$$

Experimental Settings

Settings	Records				
Baseline	$c \cup t \cup p$				
CNSH	$(c \cup t \cup p) \oplus (CN \cup SH)$				
CNSH-Enriched	$(c \cup t \cup p) \oplus (CN \cup SH) \oplus SH$ -enriched				
CNSH-PCA	$[(c \cup t \cup p) \oplus (CN \cup SH)]_{PCA}$				
HT	$(c \cup t \cup p) \oplus HT$				

- c =co-author names
- t = book's title
- p = book's publisher
- CN = book's Classification Numbers
- SH = book's Subject Headings
- SH-Enriched: Set of Enriched Subject Headings
- *PCA*: applying *PCA* to reduce dimensions
- HT: Set of most likely hidden topics inferred from the estimated topic model

SH-Enriched

- **Goal:** exploit as much as possible the manual annotation information (i.e., *CN*, *SH*)
- Extract all English books (29,000 books): group SH by CN

SH-Enriched

Classification Number	СС	DK	ET	ST	WF
	religion	observation	phonetics	metadata	microbiology
	addresses	research	grammar	PHP	organisms
	essays	project	lexicography	XSLT	soil
Subject	lectures	education	philosophy	computer	food industry
Headings	civilization	school	semantics	program	crops
	philosophy	program	cognition	language	nitrogen
	ethics	learning	phonology	software	microbial
	cognition	daycare	typology	Microsoft	innovations
	evolution	child development	linguistics	design	government policy

• Each record is enriched with the <u>first 20</u> SHs in the corresponding CN

Experimental Data

Authors sharing the first initial name & last name (e.g., R Smith) [Torvik 05, 09; Huang 06]

- Data for testing from Bolzano Library catalogue
 - 28 groups of authors (each group contains 2 30 distinguished authors)
 - books in English, having full information
 - → Preprocessing: normalization, segmentation, stop-word removal

Evaluation Metrics

 $pPre = rac{number \ of \ correct \ pairs \ in \ the \ output \ clusters}{number \ of \ total \ pairs \ in \ the \ output \ clusters}$

 $pRe = \frac{number \ of \ correct \ pairs \ in \ the \ output \ clusters}{number \ of \ total \ pairs \ in \ the \ truth \ clusters}$

$$pF1 = 2.\frac{pPre.pRe}{pPre + pRe}$$

Results

0.15

CNSH-Enriched

0.1

0.2

0.25

0.3

0

0.5

CNSH vs. CNSH-Enriched

CNSH vs. CNSH-PCA

Hidden Topic Enriching performance

Conclusions

- Proposed a framework for author name disambiguation:
 - exploit manual annotations (CN, SH)
 - use Hidden Topics estimated from Wikipedia to automatically enrich record's information
 - can be applied to federated libraries, digital libraries like CiteSeer, DBLP, PubMed
 - take advantage of available large-scale knowledge-base dataset, Wikipedia
 - can be used for different languages
 - use PCA to represent data in a more compact way
 - reduce number of dimensions → reduce speed & complexity, reduce noises
 - achieve satisfactory results
 - can be used for visualization for better quantity clustering analyses in the future

Future works

- Contribution of different features
- Experiment in a multilingual environment
- Optimize cutting points for HAC

Acknowledgement

Raffaella Bernardi Massimo Poesio Patrick Blackburn Luigi Siciliano CACAO project Marco Baroni Cristiano Cumer Manuel Kirschner European Commision & LCT program

Main References