Natural Language Processing of Recipes

Supervisor: Claire Gardent

Ripan Hermawan - Le Dieu Thu - Jenia Berzak

Menu

STARTER

- Introduction
- Resources & Data
- MAIN COURSE
 - Linguistic Processing
 - Information Extraction

DESSERT

- Vectors & Clustering
- Conclusions

Menu

- STARTER -Introduction -Resources & Data MAIN COURSE - Linguistic Processing - Information Extraction DESSERT
 - Vectors & Clustering
 - Conclusions

From Computer Cooking Contest CCC 2009 @ ICCBR 2009

Who says that only human beings are able to cook delicious meals?

We aim to teach our computers the cuisine...

Problem definition

How to match the content of the fridge to a dish?

- Computer Cooking Contest
 @ICCBR 2009: the
 International Conference
 on Case-Based Reasoning
- Using a computer for the design of the menu
- When appropriate, modify the recipe to match the ingredients we have

Recipe Adaptation

Query: cook a main dish with turkey, pistachio, and pasta without garlic

Possible Solution: Replace "chicken" by "turkey" in a recipe for pistachio chicken

The Tasks

 Strategy: Ingredients are similar if they participate in the similar actions, have similar properties

Resources & Data

- A database of 1,459 recipes:
 - Title
 - Ingredients description
 - Preparation instructions

Challenges for Linguistic Processing

- Imperative sentences
- Unusual use of words
- Missing verb complement
- Referring expression and anaphora
- Domain specific vocabulary

<RECIPE> <TI>Almond Roca Cookies</TI> <IN>1 c Butter</IN>

- <IN>1/2 c Brown sugar</IN>
- <IN>1/2 c Sugar</IN>
- <IN>1 Egg yolk</IN>
- <IN>1 ts Vanilla</IN>
- <IN>2 c Flour</IN>
- <IN>10 oz Chocolate chips</IN>
- <IN>1 c Finely chopped nuts</IN>
- <PR> Cream butter and sugar, add egg yolk and vanilla. Stir in flour. Spread mixture thinly on greased cookie sheet. Bake at 350 degrees for 15 to 20 minutes. Melt chocolate over hot water and spread over warm baked cookies. Sprinkle on nuts and press them firmly. Cut in bars while still warm. Let stand until chocolate is dry.

</PR>

</RECIPE>

Resources & Data

- Hierarchy of Ingredients
 - Extracted from external database by Orpailleur group
 - Each node may contain the synonyms of the same ingredients
- Recipes database with annotated ingredients

<TI>Almond Roca Cookies</TI> <IN> <IN_I>1 ts Vanilla</IN_I> <ING>vanilla</ING> <QT>1</QT> <U>tsp</U>... </IN>

Menu

STARTER

- Introduction
- Resources & Data
- MAIN COURSE
 - Linguistic Processing
 - Information Extraction

DESSERT

- Vectors & Clustering
- Conclusions

Linguistic Processing

- Before extracting information, the corpus must be pre-processed including:
 - Sentence
 Segmentation
 - Tokenization
 - Normalization
 - Part of Speech Tagging
 - Syntactic Parsing

Segmentation, Tokenization & Normalization

<PR> Cream butter and sugar, add egg yolk and vanilla. Stir in flour. Spread mixture thinly on greased cookie sheet. ...

<STEP>'cream', 'butter', 'and', 'sugar', ',', 'add', 'egg', 'yolk', 'and', 'vanilla', '.' </STEP> <STEP>'stir', 'in', 'flour', '.'</STEP> <STEP>'spread', 'mixture', 'thinly', 'on', 'greased', 'cookie', 'sheet', '.'</STEP>

- Segment the string of characters into sentences
- Sentences are divided into tokens, basic unit for linguistic processing
- Normalization: convert to lowercase, filter invalid tokens
- **Difficulties:** sentence (word) boundaries, excluding punctuations (stop word, ice-cream), etc.

Part of Speech (POS) Tagging Syntactic Categorization of Words

melt/VB the/AT butter/NN and/CC cook/VB the/AT leeks/NNS and/CC garlic/NN for/IN 3/CD minutes/NNS over/IN medium/JJ heat/NN ./

Tag	Meaning
NN	noun, singular, common
NNS	noun, plural, common
VB	verb, base: uninflected present,
	imperative or infinitive
CC	conjunction, coordinating
CD	numeral, cardinal
JJ	adjective

 Assign to each word a syntactic category using Brown tag set

Part of Speech Tagging (cont)

Parsing Syntactic Analysis

Parsing Grammar

DET: { <dt at abn abl abx ap ap\$ pp\$ wdt cd>}</dt at abn abl abx ap ap\$ pp\$ wdt cd>	# Determiner
ADV: { <ql qlp rb rb\$ rbr rbt>}</ql qlp rb rb\$ rbr rbt>	# Adverb
ADJ: { <ap jj jj+jj jjr jjs jjt>}</ap jj jj+jj jjr jjs jjt>	# Adjective
N: { <nn nns nps nps\$ pps ppss>}</nn nns nps nps\$ pps ppss>	# Noun
COR: { <cc>}</cc>	# Coordinating Conjunction
NP: {(<det>*<adv>*<adj>*<n>+)}</n></adj></adv></det>	# Noun Phrase
NP: { <np>(<cor><np>)+}</np></cor></np>	# Noun Phrase
NP: { <np><pp>}</pp></np>	# Noun Phrase
P: { <in>}</in>	# Preposition
PP: { <p><np>}</np></p>	#Prepositional Phrase
V: {((<be.*>*<v.*>+) (<h.*>*<v.*>+) (<m.*>*<v.*>+) (<[</v.*></m.*></v.*></h.*></v.*></be.*>	DO.*> <v.*>))<rp>*} # Verb</rp></v.*>
VP :{(<adv>?<v><adv>?(<cor>?<adv>?<v><adv< td=""><td><pre>>?)*)<pp>*<adv>?<np><pp>*} # Verb Phrase</pp></np></adv></pp></pre></td></adv<></v></adv></cor></adv></v></adv>	<pre>>?)*)<pp>*<adv>?<np><pp>*} # Verb Phrase</pp></np></adv></pp></pre>
S: { <np>*<vp>}</vp></np>	# Sentence

- Develop a parser for the corpus based on POS tags
- Define the grammar tailored for the corpus

Parsing: Results Examples

Information Extraction from Parsed Corpus

External

data

Morphological Normalizing, Ingredient Matching, Grouping

- Stemming: reduce a wordform to a base-form/root (carrots -> carrot, mixing -> mix)
- Ingredient Matching: match Noun Phrase with Ingredient
- Ingredient Grouping: group same ingredients that have different names (milk powder, dry milk)

```
\langle VP \rangle
<ORG>mix/VB margarine/NN
and/CC milk/NN
powder/NN</ORG>
<V>mix</V>
<NP>
    <ING> margarine oleo,
    margarine </ING>
</NP>
<NP>
    <ING>milk powder, dry
    milk</ING>
</NP>
\langle VP \rangle
```

Menu

• STARTER

- Introduction
- Resources & Data
- MAIN COURSE
 - Linguistic Processing
 - Information Extraction
- DESSERT
 - -Vectors & Clustering
 - -Conclusions

Syntactic Vectors

Goals: 1. Associate each ingredient with all its actions and properties.

2. Group ingredients according to this information

Extracted Information:

- Co-occurrences of verbs and ingredients: if both appear in the same verb phrase
- Co-occurrences of adjectives and ingredients: if both appear in the same immediate noun phrase
- Syntactic vectors summarize the co-occurrences information extracted from the parser output.

Syntactic Vectors

- A vector is simply a frequency distribution of verbs and adjectives co-occurrences for a given ingredient.
- Each ingredient is represented as a vector of features.
- Each feature is either a verb or an adjective.
- Each feature value represents the number of co-occurrences of the ingredient with the feature in the recipes corpus.

Syntactic Vectors

- 537 vectors (ingredients)
- 514 features (dimensions):
 - 300 verb features
 - 214 adjective features
- Examples of vectors

Ingredient	Verbs				Adjectives		
	add	beat	brown		hard	chopped	
Onion	78	0	15		0	8	
Egg, whole egg	58	98	0		2	0	

Vectors

• Frequent verb features of "potato"

Clustering

- Clustering ingredients using K-Means clustering algorithm.
- Experimenting with different configurations:
 - Different numbers of clusters
 - Clustering verbs using ingredients as features

Clustering Results

- Most clusters are hard to interpret.
- "good" clusters:
 - garlic, onion
 - fettucine/fettuccine, green bean, macaroni, ravioli
- "bad" clusters:
 - coconut, duck, popcorn
 - milk, salt, tomato, vanilla

Future Improvements

- Bigger dataset
- Normalization of the vectors
- Adding features (other syntactic relations, semantics)
- Using other clustering methods (hierarchical clustering, concept analysis with a lattice)

Future Improvements

Improving features:

- Unifying verbs and adjectives that convey the same meaning (e.g. boil and boiled)
- Separating different grammatical functions / thematic roles (e.g. pour the sauce over the potatoes)
- Filtering/weighting frequent verbs that take almost any ingredient
- Filtering/weighting very low frequency features

Summary

- Grouping ingredients using a distributional analysis of syntactically parsed text for the task of ingredient substitution for recipe adaptation.
- Current results:
 - good linguistic processing and information extraction
 - clusters are difficult to interpret
- Experiments with some of the suggested changes yield promising results.

