Human-Computer Interaction

Prof. Antonella De Angeli, PhD

Antonella.deangeli@disi.unitn.it

Module aims

- Present the techniques and issues involved in promoting usable and engaging interaction design
- Present new and emerging platforms for interaction
- Give examples on how to
 - document users needs and goals
 - translate user needs/goals into design specifications
 - evaluate the quality of user interfaces and design alternatives

Reading List

CORE READING:

Sharp, H., Rogers, Y., & Preece, J. (2007). Interaction Design: beyond human-computer interaction. New York: John Wiley & Sons, Inc. 2nd Edition

- NOTE THE HANDOUTS AND LECTURE NOTES DO NOT REPLACE THE CORE READING
- Dix, A., Finlay, J., Abowd, G. D., & Beale, R. (2004). *Human-Computer Interaction* (third Edition): Pearson Prentice Hall.
- Benyon, D., Turner, P., & Turner, S. (2005). *Designing Interactive Systems*. Harlow England: Addison-Wesley.

On-line resources

- http://www.sigchi.org/
 - ACM special interest group
- http://www.id-book.com/
 - companion website for Preece et al.'s book
- http://hcc.cc.gatech.edu/
 - web portal maintained by Georgia Tech.
- http://www.baddesigns.com/
 - illustrated examples of things that are hard to use because they do not follow human factors principles

Human-computer interaction

"a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them"

(ACM SIGCHI, 1996, p.5)

Goals of HCI

 "To develop or improve the safety, utility, effectiveness, efficiency, and usability of systems that include computers"

- Interacting with computers 1989, p. 3

Disciplines contributing to HCI

- Computer Science
- Cognitive psychology
- Social and organisational psychology
- Ergonomics & Human-Factors
- Linguistics
- Artificial Intelligence
- Philosophy, sociology, and anthropology
- Engineering
- Design

Design

- Technology-driven design
 - Technology influences the design of the interface which give the user the functionality and interaction mechanisms of the system
- User-centered design
 - Human values and user requirements define the functionality of the interface which runs the design of the technology

Interaction Design

- "the design of spaces for human communication and interaction"
 - Winograd (1997)
- designing interactive products to support people in their everyday and working life
- Creating (user) experiences which fit, extend, and enhance the way people work, communicate and interact
- Increasingly, more application areas, more technologies and more issues to consider when designing 'interfaces'

Interaction Design -ID

Unit 1

Learning outcomes

- Understand what ID is
- Understand and apply PACT analysis
- Understand the basic step of the user-centred design

What is Interaction Design (ID)?

- Designing interactive products to support people in their everyday and working lives
- ID is a process:
 - a goal-directed problem solving activity informed by intended use, target domain, materials, cost, and feasibility
 - a creative activity
 - a decision-making activity to balance trade-offs

Bad design

 Elevator controls and labels on the bottom row all look the same, so it is easy to push a label by mistake instead of a control button

– People do not make the same mistake for the labels and buttons on the top row. Why not?

Goals of interaction design

- Develop usable products
 - Usability means easy to learn, effective to use
- Which also provide an <u>enjoyable</u> <u>experience</u>
- Involve users in the design process –
 User-centred system design

Importance of Interaction Design

- Poor design can:
 - reduce user productivity
 - increase learning times
 - increase errors
 - induce frustration
 - lead to system rejection by the user
- Poor design is easy, good design is hard!

Good design

- Takes into account:
 - Who the users are People
 - What activities are being carried out Activities
 - Where the interaction is taking place Context
 - What technologies are used Technologies
- User-centric View of Design Problems: PACT Analysis

PACT Analysis

- 'User-centric' framework for thinking about a design problem
- Take each category ——People-Activities- Context and Technology — and work through it
- Use the analysis to help focus/orient early design thinking
- Important: revisit the analysis
 - As you get deeper into the problem the analysis should change and/or get richer

People: Who are the users/stakeholders?

- Those who interact directly with the product
 - those who manage direct users
 - those who receive output from the product
 - those who make the purchasing decision
 - those who use competitor's products
- •Three categories of user (Eason, 1987):
 - primary: frequent hands-on
 - secondary: occasional or via someone else
 - tertiary: affected by its introduction, or will influence its purchase

People: variability

- Consider range of characteristics of people
- Physiologically
 - Age differences, physical abilities
- Psychologically
 - Attention, perception, memory
 - Forming the right 'mental model'
- Socially and Culturally

People: What are the users' capabilities?

Humans vary in many dimensions:

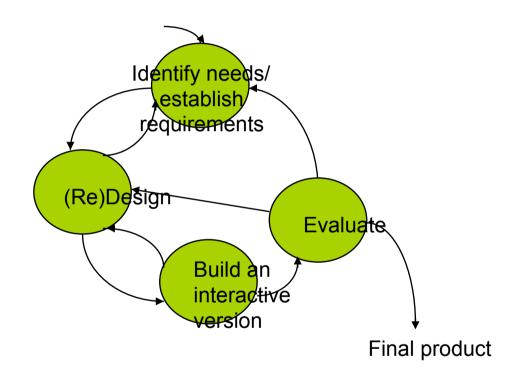
- size of hands may affect the size and positioning of input buttons
- motor abilities may affect the suitability of certain input and output devices
- height if designing a physical kiosk
- strength a child's toy requires little strength to operate, but greater strength to change batteries
- different abilities (e.g. sight, hearing, dexterity)

Activities

- What is the overall purpose of the activity?
- Temporal aspect
 - Regular or infrequent
 - Time pressure
 - Continuous or interruptions
 - Processing time nnn
- Cooperation
 - One or more actors
- Complexity
 - Well defined or vague?
- Safety critical
 - Impact of error
- The nature of the content
 - Type of data to be processed
 - Type of media

Context

- Where does the interaction occur?
 - Physical context
 - · Noise, light, time
 - In the office, on the move
 - Social context
 - Individual activity, group activity
 - Computer-mediated social activity
 - Social norms
 - Psychological context
 - Motivation, attitudes
 - Cognitive demands
 - Level of arousal


Technology

- Input
 - Getting data in; getting commands; security
- Output
 - video vs. photographs; speech vs. screen
- Communication
 - Between people, between devices, speed,
- Content
 - What data in the system: a web site is all about content

User-centred design process

- 1. Identify <u>needs and</u> establish requirements
- Generate alternative solutions/designs
- 3. Build interactive prototypes that can be communicated and assessed
- 4. Evaluating design

User centred design

ITERATE...

Key characteristics

- Focus on users early in the design and evaluation of the artefact
- Identify, document and agree specific usability and user experience goals at the beginning of the project
- Iteration is inevitable. Designers never get it right first time

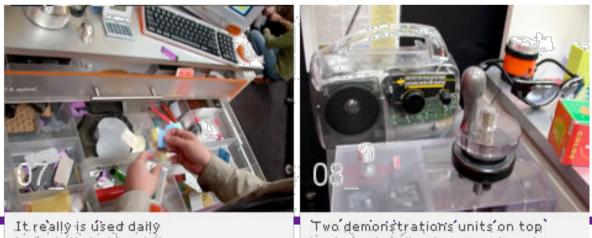
Understanding user needs

- ASK-WATCH-ANALYSE
- Users rarely know what is possible they can't tell you what they 'need' to help them achieve their goals
- Take into account people's capabilities
- Look at existing tasks:
 - their context
 - what information do they require?
 - who collaborates to achieve the task?
 - why is the task achieved the way it is?
- Envisioned tasks:
 - can be rooted in existing behaviour
 - can be described as future scenarios

Develop alternative design

- Humans stick to what they know works
- But considering alternatives is important to 'break out of the box'
- Designers are trained to consider alternatives, software people generally are not
- How do you generate alternatives?
 - 'Flair and creativity': research and synthesis
 - —Seek inspiration: look at similar products or look at very different products


IDEO TechBox


- Library, database, website all-in-one
- Contains physical gizmos for inspiration

From: www.ideo.com/

The TechBox

Human-Computer Interaction

How do you choose among alternatives?

- Evaluation with users or with peers, e.g. prototypes
- Technical feasibility: some not possible
- Quality thresholds: Usability goals lead to usability criteria set early on and checked regularly
 - —safety: how safe?
 - —utility: which functions are superfluous?
 - —effectiveness: appropriate support? task coverage, information available
 - —efficiency: performance measurements
 - Easy to learn
 - Easy to remember how to use

Idea generation

 http://grouplab.cpsc.ucalgary.ca/papers/ videos/

Key points

- ID is concerned with designing interactive products to support people in their everyday and working lives
- ID involves taking into account a number of interdependent factors including context of use, type of task and kind of user and available technology
- PACT framework
- Four basic activities in the design process:
 - Identify needs and establish requirements
 - Design potential solutions (re-design)
 - Choose between alternatives (evaluate)
 - Build the artifact

Exercise

- How does making a call differ when using:
 - Cell phone
 - Public phone box
 - Home phone
- Brainstorm the variety of P, A, C and Ts that are possible
- Explore design implications
 - Write detailed concrete stories...
 - Think about how these might affect design

Reading

- Sharp et al. (2007)
 - Chapter 1: What is Interaction design
 - Chapter 9: The process of Interaction design
 - (Chapter 6 in 1st Edition)
- Benyon: chapter 2