Unit 2

Learning outcomes

- Introduce concepts of usability and user experience
- Understand fundamental design principles
- Develop
 - awareness of how to apply them in design
 - Critical ability to evaluate other people design

Usability

- "Extent to which a product can be used by specified users to achieve specified goals with <u>effectiveness</u>, <u>efficiency and</u> <u>satisfaction</u> in a specified context of use."
 - ISO 9241-11:1998 Ergonomic requirements for office work with visual display terminals (VDTs) -- Part 11: Guidance on usability.

Usability

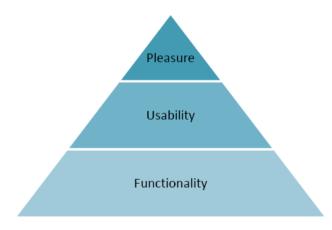
- Usability is a quality attribute that assesses how easy user interfaces are to use.
- Five quality dimensions:
 - Learnability: How easy is it for users to accomplish basic tasks the first time they encounter the design?
 - Efficiency: Once users have learned the design, how quickly can they perform tasks?
 - Memorability: When users return to the design after a period of not using it, how easily can they reestablish proficiency?
 - Errors: How many errors do users make, how severe are these errors, and how easily can they recover from the errors?
 - Satisfaction: How pleasant is it to use the design?
 - http://www.useit.com/

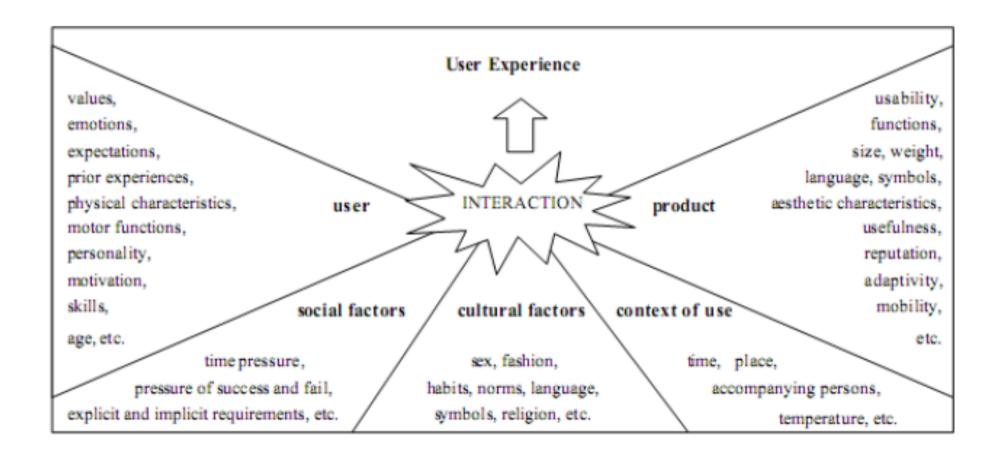
Usability

- Quality = absence of problems
 - discover usability problems and reduce their frequency and severity.
 - It can be measured
 - Objective data (performance data derived by behavioural data, user observations)
 - Subjective data (self-report, questionnaire or interview)

MANCHESTER 1824

Is usability all that matters here?




Hierarchy of consumer needs

- Jordan's (2000)
- Functionality = "a product will be useless if it does not contain appropriate functionality, a product cannot be usable if it does not contain the functions necessary to perform the tasks for which it is needed".
- Usability, = "once people had become used to having appropriate functionality they then wanted products that were easy to use".
- Pleasure= "having become used to usable products, it seems inevitable that people will soon want something more: [...] products that bring not only functional benefits but also emotional ones"

User experience UX

- The User Experience (UX) is a complex response to the interaction with computing systems.
- This response is a consequence of
 - individual predispositions of the user (e.g., attitudes, motivations and needs
 - characteristics of the interactive system (e.g., purpose, functionality and usability)
 - contextual dependencies (e.g., task and environment).

User experience UX

Positive

- good design is more than absence of problems.
- add "extra value" to design (emotion, fun, personal fulfillment)
- Holistic
- Pragmatic qualities (traditional usability dimensions),
- Hedonic qualities (non-task related, beauty, challenge, stimulation and self-expression)

Subjective

- Usability focuses performance and tasks: can be objectively measured
- Hedonic attributes relate to the user's self which issubject to deep variations among individuals.

User experience goals

- Satisfying
- Fun
- Enjoyable
- Entertaining
- Helpful
- Motivating
- Aesthetically pleasing
- Motivating
- Enhancing sociability

- rewarding
- support creativity
- emotionally fulfilling
- ...and more

Design metrics UX

- Usability
 - Easy of use and efficiency
- Aesthetics
 - sensorial experience generated by the look and feel of the interface and to the extent to which this experience matches individual preferences and goals.
- Symbolism
 - meanings and associations elicited by a system.
 - As opposed to aesthetics which can be 'visceral', symbolism requires cognitive processing (the individual recognizes a symbol and associate a meaning to it).

- Generalizable abstractions for thinking about different aspects of design
- The do's and don'ts of interaction design
 - Prescriptive statements
- What to provide and what not to provide at the interface
- Derived from a mix of theory-based knowledge, experience and common-sense

- Visibility
- Feedback
- Constraint
- Mapping Consistency
- Affordance

Visibility

- This is a control panel for an elevator.
- How does it work?
- Push a button for the floor you want?
- Nothing happens. Push any other button? Still nothing. What do you need to do?

It is not visible as to what to do!

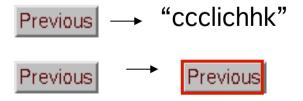
From: www.baddesigns.com

Visibility

...you need to insert your room card in the slot by the buttons to get the elevator to work!

How would you make this action more visible?

- make the card reader more obvious
- provide an auditory message, that says what to do (which language?)
- provide a big label next to the card reader that flashes when someone enters
- make relevant parts visible
- make what has to be done obvious


Transparency

- useful feedback
- easy to understand
- intuitive to use
- clear & easy to follow instructions
- appropriate online help
- context sensitive guidance of how to proceed when stuck

Feedback

- Sending information back to the user about what has been done
- Includes sound, highlighting, animation and combinations of these
 - e.g. when screen button clicked on provides sound or red highlight feedback:

Constraints

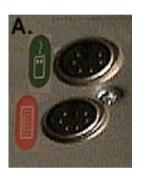
- Restricting the possible actions that can be performed
- Helps prevent user from selecting incorrect options
- Three main types (Norman, 1999)
 - Physical
 - cultural
 - Logical

Physical constraints

- Refer to the way physical objects restrict the movement of things
 - E.g. only one way you can insert a key into a lock
- How many ways can you insert a CD or DVD disk into a computer?
- How physically constraining is this action?
- How does it differ from the insertion of a floppy disk into a computer?

Affordances

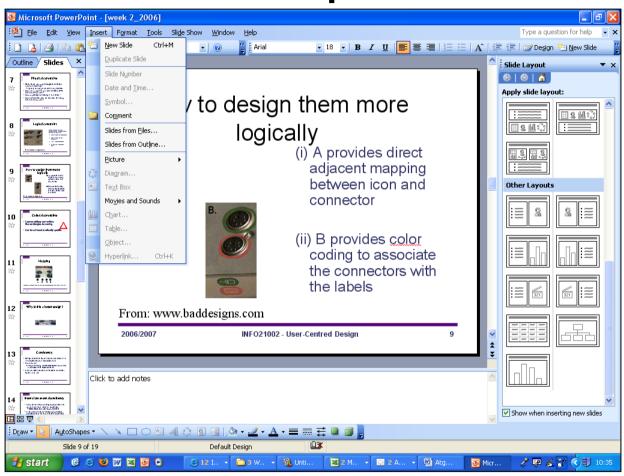
- Refers to an attribute of an object that allows people to know how to use it
 - e.g. a mouse button invites pushing, a door handle affords pulling
- Norman (1988) used the term to discuss the design of everyday objects
 - Learned conventions of arbitrary mappings between action and effect at the interface
 - Some mappings are better than others
- Much popularised in interaction design to discuss how to design interface objects
 - e.g. scrollbars to afford moving up and down, icons to afford clicking on


Logical constraint

- Exploits people's everyday common sense reasoning about the way the world works
 - Where do you plug the mouse?
 - Where do you plug the keyboard?
 - Top or bottom connector?
 - Do the colour coded icons help?

From: www.baddesigns.com

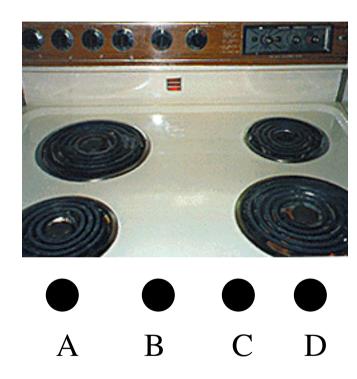
How to design them more logically



- (i) A provides direct adjacent mapping between icon and connector
- (ii) B provides color coding to associate the connectors with the labels

From: www.baddesigns.com

Example


Cultural constraints

 Learned arbitrary conventions like red triangles for warning

Can be universal or culturally specific

Mapping

•Relationship between controls and their movements and the results in the world

Why is this a better design?

Consistency

- Design interfaces to have similar operations and use similar elements for similar tasks
- For example:
 - always use ctrl key plus first initial of the command for an operation – ctrl+C, ctrl+S, ctrl+O
- Main benefit is consistent interfaces are easier to learn and use

Internal and external consistency

- Internal consistency: designing operations to behave the same within an application
 - Difficult to achieve with complex interfaces
- External consistency: designing operations, interfaces to be the same across applications and devices
 - Very rarely the case, based on different designer's preference - Brand Identity

Keypad numbers layout

A case of external inconsistency

(a) phones, remote controls

1	2	3
4	5	6
7	8	9
	0	

(b) calculators, computer keypads

7	8	9
4	5	6
1	2	3
0		

Usability principles

- Similar to design principles, except more prescriptive
- Used mainly as the basis for evaluating systems
- Provide a framework for heuristic evaluation

Usability principles (Nielsen 2001)

- Visibility of system status
- Match between system and the real world
- User control and freedom
- Consistency and standards
- Help users recognize, diagnose and recover from errors
- Error prevention
- Recognition rather than recall
- Flexibility and efficiency of use
- Aesthetic and minimalist design
- Help and documentation

http://www.useit.com/papers/heuristic/heuristic_list.html

Recommended reading

- Sharp et al. Chapter 1
- More on design principles
 - Don Norman 1988 The design of everyday things
 - Usability: http://www.useit.com