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Abstract—Digital graphics tools are nowadays capable of

rendering highly photorealistic imagery, which easily puzzle

our perception of reality. This poses serious ethical and legal

issues, which in turn create the need for further technologies

able to ensure the trustworthiness of digital media as a true

representation of reality, especially when depicting humans. In

this work, we propose a novel forensic technique to tackle the

problem of distinguishing computer generated (CG) from real

humans in videos. It exploits the temporal information inherent of

a video sequence by analyzing the spatio-temporal appearance of

facial expressions in both CG and real humans. Even if rendering

facial expression has reached outstanding performances, CG face

appearance over time still presents some underlying mechanical

properties that greatly differ from the natural muscle movements

of real humans. We build an efficient classifier on a set of features

describing facial dynamics and spatio-temporal changes during

smiling to distinguish CG from human faces. Experimental

results demonstrate the effectiveness of the proposed approach.

I. INTRODUCTION

In November 2013, Sweetie, a 10-year-old Filipina girl,
opens a profile in a video chat room and is immediately
contacted by thousands of people for sex act online. But
Sweetie is not a real baby, she is just an incredibly life-
like computer generated (CG) girl set up by a Dutch child
protection group to identify network pedophiles (Fig. 1) [1].
A happy ending story, which poses serious doubts about
our ability to distinguish between real and synthetic media,
wondering if the line between physical and virtual worlds is
well traced anymore.

As this, and numerous similar examples illustrate, the
tremendous advances in computer graphics, supported by pow-
erful computing facilities, promote the easy creation and fast
distribution across the Web of stunning realistic CG contents,
often indistinguishable from real imagery at naked eye, thus
easily puzzling our perception of reality. Since these tech-
nologies continue to evolve, complex ethical and legal issues
arise, posing significant challenges for the trustworthiness of
digital media as a true representation of reality, especially
when depicting humans.

Over the last decade, digital forensics has rapidly emerged
as an effective solution to cope with these problematic issues,
proposing a plethora of valuable solutions for recognizing

WIFS‘2014, Deecember 3-5, 2014, Atlanta, Georgia.

ISBN 978-1-4673-5593-3 ©2014 IEEE.

Fig. 1: Sweetie, the stunning realistic avatar created by ‘Terre des
Hommes Netherlands’, a Dutch service that fights for child rights.
[image courtesy of ’Terre des Hommes Netherlands’].

CG imagery. State-of-the-art techniques exploited statistical
models based on wavelet statistics [2], color compatibility [3],
low- to mid-level statistics based on Markov process model
[4], and texture features [5]. Based on the assumption that
different physical pipelines are followed for generating CG and
photographic imagery, several techniques have been proposed,
exploiting the noise introduced by the recording camera [6],
traces of demosaicing [7], chromatic aberration [8] and traces
of camera image processing such as gamma correction [9]. A
hybrid classifier based on wavelet features and pattern noise
statistics has been proposed in [10]. Recently, few forensics
methods for recognizing CG humans have been proposed,
based on face asymmetry [11] and repetitive pattern of facial
expressions in [12].

Despite their valuable contribution, almost all previous
techniques are focused to work only on static images. Even if
a video could be thought as a succession of independent still
images, the application of image-based forensics technique
would be complex and time consuming and would not exploit
the rich multi-dimensional information of a video. The method
proposed in [12] analyses also video sequences, but the time
evolution of faces is not taken into account and multiple
instances of the same facial expression have to be present
in the video sequence. Recently, two forensic methods have
been proposed to exploit the multi-dimensional information of
a video for recognizing CG characters, but they do not focus
on the analysis of facial expression dynamics [13][14].

In this work we propose a novel forensic technique that
takes into account the temporal dimension of a video for
discriminating between CG and real human characters. The
key idea is that facial expressions in CG characters present
intrinsic mechanical properties in terms of motion over time
that greatly differ from the natural facial muscle movements



responsible for real characters expressions. In order to detect
such differences, we extract a set of characteristic features
describing facial dynamics and spatio-temporal appearance
[15] over smile expression (just a single expression is re-
quired). Such features are then used to train a Support Vector
Machine (SVM) [16], building a classifier able be successfully
distinguish between real and CG characters.

The structure of the paper is the following: in Section II we
present the proposed forensic technique, describing in details
the set of features used to feed the classifier for discriminating
between CG and real characters, while in Section III we
present the extensive experimental analysis. Finally in Section
IV some concluding remarks are drawn.

II. PROPOSED APPROACH

In order to discriminate between CG and real humans in
video, we propose a novel forensic technique based on the
spatio-temporal evolution of facial expressions. The key idea
behind this work is that, exploiting the rich temporal data
inherent to video, the variation of human dynamics over time
can be modeled: deviations from a smooth and spontaneous
temporal evolution, typical of natural human beings, will be
taken as a clue to recognize CG motion. In particular, facial
expressions in real characters represent an intrinsic fingerprint
of each individual, being a combination of voluntary and
involuntary muscle movements. On the other hand, even
if technologies for rendering facial expression has reached
outstanding performances, natural human facial dynamics are
difficult to be perfectly rendered in CG synthesis, where
subtle visual and temporal artifacts may be present due to
limited geometric and physical model accuracy. For instance,
the variation among multiple instances of the same facial
expressions is smaller for CG characters with respect to natural
human beings [12].

In this work, we propose to measure such differences in CG
and real human expressions evolution (from the neutral to the
expressional and back to neutral state) by exploiting dynamics
and spatio-temporal features extracted from videos represent-
ing smiling persons. To this end, we leverage the set of features
proposed in [15] to characterize smiling expressions over time
by analyzing each temporal phase of a smile, as described
in details in Section II-B. The reasons behind the selection
of smile expressions are twofold. Firstly, smile expressions
are likely to frequently occur in videos, since they can show
many different feelings, such as happiness, embarrassment,
politeness, etc. Secondly, smile detection has been largely
studied and many approaches allow to automatically recognize
and extract video shots of smiling people (e.g., [17]).

A schema of the proposed approach is reported in Fig. 2.
Given a standard video sequence containing human or CG
characters as input, we start by detecting extensive facial
landmarks in the first frame using a multi-level deep neural
network, and subsequently track them over the rest of video
[17][18]. The tracked features are used to fit a 3D head model
in order to compute the 3D motion of the head, together with
the individual 3D landmarks movements. The 2D movements
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Fig. 2: Schema of the proposed method.

on the face can then be represented as a reprojection of the
3D movements onto the image plane. The tracked landmarks
are further normalized with respect to rotation, translation
and scale in order to have aligned points suitable for feature
extraction and comparison [19]. Details about these first steps
of the algorithm are discussed in Section II-A.

Since we are interested in smiling expression, we manually
select the frame sequence depicting people with an enjoyment
smile; as a future work, we plan to fully automatize this step
by using Face++ smile analysis framework [17].

Based on the computed landmarks, we calculate facial
expression dynamics on the eyelid and lip corners from each
temporal phase: transition from a neutral state, going through
an unfolding smile and returning to the initial state (i.e., onset,
apex and offset). Besides dynamic features, we extract spatio-
temporal features from the eye and lip region by employ-
ing Completed Local Binary Pattern from Three Orthogonal
Planes (CLBP-TOP) to describe the spatio-temporal changes
in the face appearance [15]. Finally, a gaussian kernel SVM
[16] is fed with these sets of characteristic features and trained
to build a classifier able to distinguish between CG and real
human faces. Details about these last steps of the algorithm
are discussed in Section II-B.

A. Facial landmark detection and 3D model reconstruction

In order to be able to extract consistent dynamic and spatio-
temporal features from aligned and normalized faces, we firstly
have to accurately locate and track extensive facial features. To



Fig. 3: Shown in the top row are 3 frames of an example video
sequence, where the 83 features used for facial tracking have been
superimposed; shown in the bottom row are the corresponding
reconstructed 3D models.

this end, we use a recent landmark detection algorithm [17],
which provides an accurate location of 83 facial keypoints,
including eyebrows, eyes, nose and mouth (see top row of
Fig. 3). This technology is based on a multi-level deep
convolutional network, where each level is trained to locally
refine a subset of the facial landmarks, found in previous
levels, by applying explicit geometric constraints. We decided
to exploit it, since it is able to deal with multiple head poses,
complex lighting environment, complex facial expression and
multi-angle faces. By using such tracked landmarks, we fit
a 3D head model to the face in each frame, so recovering
the projection parameters (i.e., a 3⇥ 3 rotation matrix R and
1 ⇥ 3 translation vector T ) that relate the 3D model to the
observed face in the video frame. To this end, we employ
the recent algorithm in [19] that tackles the problem of non-
rigid structure from motion by using a spatial, rather than
temporal, smoothing constraint. This is done by mapping each
3D point in the model to its input 2D shape in the feature
space of a rotation invariant kernel. The learned mapping
has the advantage that can be easily evaluated for the 3D
reconstruction of any new 2D shape. Shown in the bottom row
of Fig. 3 are the reconstructed 3D head models corresponding
to the 3 sample frames of a video shown in the top row.

We then exploit the knowledge of the 3D head motion to
model the 2D movements of a face by reprojecting the 3D
landmarks movements onto the image plane. The projection
parameters also allow for the alignment and normalization
of faces in each frame, before the feature extraction step. In
particular, in order to get a frontal view of the reconstructed 3D
model, each 3D point `

i

, with i 2 {1, . . . , 83}, in the model
is transformed by applying the inverse of the rotation matrix
R, i.e., `f

i

= R

�1
`

i

. Following, a normalization is applied, by
setting the origin of the coordinate system to be the middle
point between the two eye centers (c1 and c2, as shown Fig.
4a), and their distance from the origin is set to be equal to 100
pixels. In particular, each point `f

i

is scaled and translated to
get a normalized point, as follows:
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Fig. 4: Panel (a) shows the numbered facial points used in the
computation of the smile dynamics, together with the three facial
regions used for the spatio-temporal descriptors. Panel (b) depicts
the considered facial displacement for dynamics evaluation.

where c1 and c2 are eye centers, ⇢ denotes the Euclidean
distance between two given points. Since the normalized face
is frontal, the depth coordinate (z) of each point can be
ignored; thus, the 2D aligned normalized landmarks will be
denoted as l

i

= (x
i

, y

i

).

B. Features extraction

The set of features selected in this work for discriminating
between CG and real humans are extracted from videos
representing smiling persons. According to the Facial Action
Coding System [20], a smile corresponds to Action Unit 12,
defined as an upward movement of the lip corners. It consists
of three stages: the onset, where the face changes its expression
from neutral to smiling state; the apex, which is the stable
period in which the smiling expression is maintained; and the
offset, where the face returns to the neutral state. Given the
amplitude of a smile S to be the Euclidean distance of the
lip corners to the lip center during the smile, we can define
the onset as the longest continuous increase in S, the offset
as the longest continuous decrease and the apex as the phase
between the onset and the offset. Notice that, since the faces
are normalized and aligned (Section II-A), we can compute
the center and the length of the lip only in the initial frame.

Given the tracked landmarks (Section II-A), we extract
two sets of features from faces: dynamic features and spatio-
temporal features, as in [15].

Smile dynamics describe the movements of the tracked
facial landmarks over the expression duration. In particular, we
compute the vertical displacement of the eyelid Deyelid,y and
the horizontal and vertical amplitude signals from lip corners
motion Dlip,x and Dlip,y , respectively, as follows:
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where l

t

i

indicates the location of the i

th landmark point in
frame t (see Fig. 4b). Subsequently, this set of features is split
into the 3 phases of a smile and a total of 15 corresponding
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TABLE I: 15 Facial Dynamic Features extracted from a smile
expression in video, where V (t) = dD

dt and A(t) = d2D
dt2

denote
speed and acceleration, respectively, ⌘ defines the number of frames
in the analyzed sequence and ! indicates the frame rate of the video.

characteristics are computed as in Table I, where apices (+)
and (�) denote the onset and the offset segments of the related
feature, respectively. The selected dynamic features, extracted
for the vertical eye aperture and for both the vertical and
horizontal amplitude of the movement of the lip corners, will
sum up to a vector of dimension 3 ⇥ 15 = 45. Please note
that, in [15] authors suggest to exploit also eyebrow and cheek
displacements. However, we chose to exclude them from our
set of features, primarily because the detection and tracking
of eyebrow and cheek landmarks often results to be a difficult
and inaccurate task (mainly due to illumination issues inherent
of the examined videos or to the absence of eyebrow in some
video sequences).

Spatio-temporal local texture descriptors, i.e., the Com-
pleted Local Binary Pattern from Three Orthogonal Planes
(CLBP-TOP) [21], are used as a second set of features, in order
to describe the temporal changes in the texture of a face . They
are a natural extension to image sequences of the Completed
Local Binary Pattern (CLBP), firstly proposed in [22]. CLBP
calculates local pixel differences d
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the central pixel and g
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, with p 2 {0, 1, . . . , P �1}, are its P
circularly and equally spaced neighbors. The operators used
to code the sign (S) and magnitude (M) of the difference d
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where R is the radius of the neighboring area, c indicates the
mean value of the magnitude m

p

= |d
p

| and c

l

stands for the
mean gray level of the whole image. The final CLBP histogram
is build as the concatenation of histograms in Eq. (1). Since
it only uses the x and y dimension of an image, CLBP is
purely spatial. CLBP-TOP extends such computation to the

3rd dimension of a video, i.e. time t, by computing the CLBP
histograms on the three orthogonal planes xy, xt and yt, which
are then concatenated to form the final texture descriptor. In
order to reduce the dimensionality of the feature space, thus
decreasing the computational complexity of the algorithm, we
employ the uniform CLBP-TOP histograms [21]. We extract
them from three patches around the eyes and the mouth (see
Fig. 4a) only during the onset phase of a smile, since this is
the phase showing the change from neutral to smiling status
[15]. By setting P = 8, the spatio-temporal texture descriptor
consists in a histogram of 3 ⇥ 354 = 1062 bins. Note that
before extracting the uniform CLBP-TOP histograms, faces
need to be normalized with respect to rotation, cropped and
resized by setting inter-ocular distance to 50 pixels. As a result,
normalized frames are of size 125 ⇥100 pixels.

Finally, the extracted dynamic features and the spatio-
temporal local texture descriptors are concatenated to form a
unique feature vector of dimension 1107, which is then used
to train a classifier in order to distinguish between CG and
real human characters.

III. EXPERIMENTAL RESULTS

In order to verify the efficiency of the facial expression
dynamics and the spatio-temporal texture descriptors for rec-
ognizing CG characters in video, we started by constructing
a database of both CG and real humans smiling in video
sequences. We collected from the Web 35 highly realistic CG
characters performing happiness expression, a non-trivial task
due to the lack of a publicly available database. On the other
hand, videos depicting smiling real humans were collected
from two public datasets: Boğaziçi University Head Motion
Analysis Project Database (Buhmap) [23], and UvA-Nemo
Smile Database (UvA) [24]. In particular, we constructed
2 different databases of real smiling humans to be tested
against the CG characters: (i) 35 videos randomly selected
out of the 440 sequences in the Buhmap database; (ii) 35
videos randomly collected out the 1240 sequences in the Uva
database. Shown in Fig. 7 and Fig. 8 are 3 frames (representing
onset, apex and offset) of 5 real and 5 CG tested videos,
respectively1.

For each test video, we calculated dynamics and spatio-
temporal features, as described in Section II, and trained an
SVM with RBF kernel. In our experiments, 3-fold cross-
validation was used for evaluation and the SVM optimal
parameters (c,�) were found with the “grid-search” method.
The two bar plots on the left in Fig. 5 illustrate the achieved
results in terms of classification accuracy when discriminating
between CG and natural characters in videos. We analyzed
both the Buhmap and the UvA dataset, achieving a global
accuracy of 95.7% and 97.1%, respectively (gray bars). These
results demonstrate the successful nature of the proposed
forensic technique in distinguishing CG characters from real

1In Fig. 8, from top to bottom, the videos have been downloaded from
youtu.be/z0cZin2xDmQ, youtu.be/-wtv4bsLWvw, youtu.be/CvaGd4KqlvQ,
youtu.be/o˙7CfWlkqm8, and youtu.be/˙v8I8NJ6Oyc
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humans based on smile features, confirming that the underly-
ing mechanical properties of a CG smiling character greatly
differs from the natural muscle movements of real humans.

Since the UvA database contains both videos of spontaneous
(597) and deliberate (597) smiles, we investigated these two
categories separately, since posed smile may not show the
same natural smooth facial movements as the spontaneous
ones. To this end, we randomly selected 35 videos of spon-
taneously smiling people, and other 35 videos of deliberate
smiles. The two bar plots on the right in Fig. 5 show the
relative classification accuracy: 98.6% and 92.3% for the
spontaneous videos in UvA and the posed expressions in UvA,
respectively (gray bars). The slightly lower accuracy achieved
for the deliberate smiles database may indicate that the CG and
forced smiles share some common properties that differentiate
them from a fully natural spontaneous smile.

As a last experiment, we tried to analyze the relative
influence of the dynamic and the spatio-temporal features on
the global performances of the proposed framework. To this
end, we built two different classifiers by considering either
the dynamic features or the texture descriptors. In Fig. 5
the achieved accuracy classification for each of the consid-
ered dataset is shown. Results demonstrate that the fusion
of dynamics and spatio-temporal features (gray bars) allows
to reach the best accuracy for CG classification. We may
notice that using only dynamic features (black bars) we obtain
an accuracy always higher than 90%, while performances
decrease when using only the spatio-temporal (diagonal-lines
texture bars), achieving an accuracy lower than 90% over all
the databases. To further investigate this point, we analyzed
some of the dynamics features. Fig. 6 shows the plots of two
selected features (vertical axis), namely the duration feature
extracted from the eyelid displacements (panel (a)) and the
mean speed of horizontal component of the lips (panel (b)),
both collected on onset phase, for each tested CG (⌃) and
UvA (⇤) videos (horizontal axis). It is clear that these two
features are already highly discriminating, even if not self-
sufficient for precise classification. We want to point out that
in [15] also eyebrow and cheek displacements are exploited.
However we chose to exclude them from our set of features,
since such landmarks are often hard to detect and track
due to either illumination issues inherent of the examined
videos or to the possible absence of eyebrow in some video
sequences. Anyway, we verified that the selected dynamics
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Fig. 6: Plot of two extracted dynamic features over the entire CG
and UvA video databases: in panel (a) the duration features extracted
from the eyelid displacements, while in panel (b) the mean speed of
horizontal component of the lips, both collected on onset phase.

allow the trained classifier to reach a very high detection
accuracy and demonstrated that the eyelid and lip corners
displacements are sufficient, together with the spatio-temporal
texture descriptors, to accurately characterize CG and real
human smiles.

IV. CONCLUSION

In this work, we presented a novel forensics technique for
distinguishing CG from real humans in videos, by exploiting
the temporal dimension of a video sequence and in particular
the spatio-temporal appearance of facial expressions. The main
idea behind this contribution is that, even if rendering facial
expression has reached outstanding performances, facial ex-
pressions in CG characters present intrinsic mechanical prop-
erties in terms of dynamics which are very different from the
natural facial muscle movements responsible for expressions in
real human beings. We demonstrated that such differences in
expressions evolution can be accurately detected by analyzing
a set of characteristic facial dynamic features and spatio-
temporal local texture descriptors. In particular, we focused on
the smile expression since this is the most frequently observed
and its automatic detection is pretty accurate. Nevertheless,
the proposed idea could be modified to work also on all other
expressions. Experimental results validated the effectiveness
of the proposed approach on different datasets.
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