Co-operation in Networks of Autonomous SME
EP 20723 - PLENT

Paolo Onesti, Democenter
Bruno Mussini, Democenter
Flavio Bonfatti, University of Modena
Why SME networks?

- **Risk factors for SMEs**
 - limited design and production capabilities
 - limited investment capabilities
 - no time and resources to afford process re-engineering initiatives
 - difficulties in production planning and control

- **Qualities of SMEs**
 - lean structure
 - adaptability of products and resources to market evolution
 - habit to establish sub-contracting relations
 - good technological level of their products
Benefits from co-operative manufacturing

• **Access new markets**
 – by producing more complex and advanced products
 – by reaching higher production volumes

• **Increase (global) reactiveness**
 – by sharing workload peaks and shortages among the nodes

• **Redirect investments**
 – by diverting them from competition with partners to new technologies and process re-engineering

• **Improve (local) management**
 – by sharing planning and control culture
Obstacles to co-operation

• *Individualistic and independent behaviour*
 – many SMEs are family business

• *Redundancy of functions replicated in the network*
 – marketing, purchasing, design, engineering, etc.

• *Historical distrust between enterprises*
 – traditionally in competition

• *Lack of management platforms and tools*
 – for local production planning and control
 – for network management and planning
Virtual Enterprise vs. SME Network

<table>
<thead>
<tr>
<th>Virtual Enterprise</th>
<th>SME Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialisation</td>
<td>Flexibility</td>
</tr>
<tr>
<td>Dedicated nodes</td>
<td>Interchangeable nodes</td>
</tr>
<tr>
<td>Stratified structure</td>
<td>Flat (star-like) structure</td>
</tr>
<tr>
<td>Decomposition</td>
<td>Aggregation</td>
</tr>
<tr>
<td>Applied to large company</td>
<td>Applied to SMEs</td>
</tr>
<tr>
<td>Shared practice</td>
<td>Individual practice</td>
</tr>
<tr>
<td>Temporary</td>
<td>Steady</td>
</tr>
<tr>
<td>Focus on network creation</td>
<td>Focus on network management</td>
</tr>
<tr>
<td>Local co-ordination</td>
<td>Global co-ordination</td>
</tr>
<tr>
<td>Self regulated nodes interaction</td>
<td>Need for a co-ordinating unit</td>
</tr>
</tbody>
</table>
The PLENT project
*PL*anning small-medium *E*nterprise *N*etworks

- Domain 8 - Integration in Manufacturing
- Started January 1996, duration 30 months, concluded July 1998
- 12 Partners from 3 EU countries (Italy, Spain, Greece) and one from an east Europe country (Hungary)
- Strong participation of end-users: 7 manufacturing SMEs in the consortium

Objective

Develop a set of innovative software tools to support co-operative planning in networks of autonomous SMEs
The PLENT users

- **The Italian network**
 - was created in 1994 by three SMEs to produce a complex motor-wheel in competition with Japanese industries

- **The Spanish network**
 - a large firm and some subcontracting SMEs producing FMSs

- **The Greek network**
 - works in the textile and garment sector

- **The Hungarian network**
 - made of small producers and dealers working in the food industry
The PLENT model

- A network of operational nodes with equal rights
 - nodes are (possibly competing) SMEs

- An independent co-ordinating unit is created
 - to interact with customers and assign tasks to selected nodes

- Each node is free to decide its involvement
 - by declaring the available manufacturing capacity

- The co-ordinating unit assigns tasks by applying prefixed rules
 - based on node productive capacity, status and reliability
 - supported by proper planning and evaluation software tools
The PLENT architecture

- Local DB
- N
- WFM
- CU
- Log
- NOS phases product nodes
- NOS management
- WorkLoad Distribution
- Performance Evaluation
- Re-planning (RRP, MDLY, SDLY)
Node detail (N)

- Local Planner
- Node Mngr
- Node Ni
- Rest of the Network
- to WFM

Rest of the Network
Network preparation

Network topology
Network Operational Scheme

Product design

CU

Capacity declarations

node_i
node_k
node_n

Network Operational Scheme
Manufacturing phases at the node level
Transport phases between nodes

Capacity declarations
Which phases
Which capacity for phase
Network planning and negotiation

Co-ordinating Unit planning

- Splits the order into tasks
- Distribute tasks to the nodes

Negotiation

- A node can reject a task
- CU computes a new task distribution
Network execution

Exceptions

Delays and wastes

Re-planning

Task re-assigned and delay notified to customer
Network performance evaluation

Historical Data Processing

Performance indicators

Bonus / malus factors

Malus
- Delay caused
- Materials wasted
- Other perturbations

Bonus
- Delay recovered
- Materials recovered
- Additional capacity
Concluding remarks

• **Project status**
 - software installation in progress
 - on field validation from December 1997 to May 1998

• **Project impact on SMEs**
 - promotes the idea of co-operative production
 - forces establishing rules for disciplined collaboration
 - introduces the use of advanced IT network support tools
 - induces enhancing the local existing IT applications
 - ultimately, creates a state-of-the-art IT culture in SMEs