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Abstract. In this paper, we propose a new multi-modal behavioural
biometric that uses features collected while the user slide-unlocks the
smartphone to answer a call. In particular, we use the slide swipe, the
arm movement in bringing the phone close to the ear and voice recogni-
tion to implement our behaviour biometric. We implemented the method
on a real phone and we present a controlled user study among 26 partic-
ipants in multiple scenario’s to evaluate our prototype. We show that for
each tested modality the Bayesian network classifier outperforms other
classifiers (Random Forest algorithm and Sequential Minimal Optimiza-
tion). The multimodal system using slide and pickup features improved
the unimodal result by a factor two, with a FAR of 11.01% and a FRR
of 4.12%. The final HTER was 7.57%.

Keywords: Smartphone, Behavioral Biometrics, Sensors, Transparent Authen-
tication

1 Introduction

The last decade mobile handheld devices have gone through a major evolu-
tion; smaller yet more powerful processors, better batteries and improved hard-
ware such as gps, wifi and connectivity chips are all developments that enabled
this progression. Most relevant examples are the Android platform launched by
Google in 2008 [1] and the iPhone smartphone by Apple in 2007 [2]. Since their
introduction these devices have overtaken most competitors and together cap-
tured a very dominant market share: in 2014 Android and iOS combined account
for 96.3% of the smartphone operating system market [3].
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Continuing hardware improvements combined with extensive user research
have resulted in highly capable smartphones that provide users with rich com-
munication capabilities. While this improves users’ lives on one hand, it brings
very serious security and privacy threats to the user on the other. A typical
modern smartphone allows the user to do mobile banking, have full control over
her email, continuously keep track of her location and many ways to indulge
in social communications through popular apps such as Facebook, Whatsapp,
Instagram and Twitter.

All these apps store privacy sensitive data about the user, which often become
easily accessible once access to the phone is obtained. Unwanted access gained
after a phone is lost, or even temporal access when not paying attention for a
short period of time could have serious consequences.

Authentication techniques have traditionally been based on something a user
knows (password, PIN), something she owns (keys, badges) or a combination of
those two (ATM card + PIN). Certain properties make these insecure; passwords
and pins are easily forgotten, but also easily guessed [4]. Keys and badges can
be lost, or duplicated. Besides, requiring smartphone’s users to carry an extra
device for the sole purpose of authentication is not realistic. Recent updates
in both Android and iOS include such biometric authentication; face-unlock on
Android [5], and fingerprint unlock on iOS [6].

Biometric authentication is the process of verifying ones identity based on
biometric features. The study and development of biometric authentication so-
lutions have come a long way since it’s first mention by Bertillon in 1870s [25].
Most popular features are physiological and behavioural features. Physiological
characteristics are based on features of the body, e.g. fingerprints, hand geom-
etry, iris or retina scans. Behavioural characteristics are based on behaviour,
e.g. keystrokes, gait, signature placement and voice. Other biometrics use chem-
ical features (based on events that happen in a persons body, measured by e.g.
odour or temperature) and cognitive features (based on brain responses to spe-
cific stimuli, e.g. odour or sound).

Initial biometrics used information from a single source. These so-called uni-
modal systems had to deal with a range of problems like noisy data, spoof at-
tacks and unacceptable high error-rates. Some of these issues can be addressed
by combining multiple sources of information [7]. Due to the presence of multiple
(mostly) independent features, the performance is expected to increase [3].

Using biometrics authentication for smartphone users faces two important
challenges. First, users may use the phone in different situations and context (i.e.
while walking, sit on a chair, standing up, in the dark, etc.). Thus any realistic
solution should accomodate the possibility that data acquisition may fail or that
a particular feature might be temporarily unavailable. Second, the solution must
require as small effort as possible to users. Studies suggest that usability issues
are a major driver of users’ adoption decisions [9]. A recent study [33] reports
that 70% users do not use any PIN/passwords to protect mobile phones because
these are more annoying to users compared to other telephony related problems
such as lack of coverage or low voice quality.
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To partially address these challenges this paper presents a novel multimodal
biometric system for smartphone users authentication. The system uses slide-
unlock features, pickup movements and voice features while placing or answering
a call. Being multi-modal the solution aim at robustness, such that users can
still be authenticated even if some of the modalities fail.

To address the problem of usability, our authentication scheme requires zero
effort to users. To the best of our knowledge this is the first authentication
solution for smartphone that is completely unobtrusive. Users are not required
to perform any action for the sole purpose of authentication. In fact, entering
a password or PIN is more noticeable. Last but not least, our system can be
implemented on most of the smartphones available on the market today.

The rest of this paper is organized as follows: Section 2 discusses related work,
Section 3 describes the background knowledge. Section 4 presents the solution
and the validation methology. Section 5 describes how we configured parameters
in the models we used. Section 6 and Section 7 present and discuss the results
of our approach. The paper is concluded in Section 8.

2 Related Work

This section reports related work that specifically take mobile devices into con-
sideration. A wider survey of biometric authentication in general can be found
in [10] and [11].

2.1 Unimodal Systems

In [12], Frank et al. consider touch operations for continuous authentication
where a single type of operations are used (strokes or slides). An Equal Error
Rate (EER) of 13% has been reported for one single stroke, and 2% to 3% for
11 subsequent strokes. In [13], a user is authenticated not only on the password
pattern they input, but also the way they perform that input. A lab study and
a long-term study provide evidence that it is possible to distinguish users and to
improve the security of password patterns and even simple screen unlocks. The
accuracy rate of the simple unlock is 57% at best (two-finger vertical unlock),
while the accuracy of the password patterns is around 77%. In [14], Angulo et al.
explored the same approach for improving password-patterns with biometrics.
Using a Random Forest classifier an EER of approximately 10.4% is achieved.
Sae-Bae et al. [15] present a multi-touch gesture-based authentication technique.
A classifier that uses pattern recognition techniques classifies movements char-
acteristics of the center of the palm and fingertips. An average EER of 10% with
single gestures was achieved, with improvements up to 5% EER when combining
multiple gestures in a sequence.

In [16] Derawi et al. authenticate users based on gait recognition using accelerom-
eters available in any modern mobile device. Using a low end phone (the Google
G1 phone containing the AK8976A embedded accelerometer sensor) an EER of
20% is reached.
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Tao et al. [17] implement a fast face detection and registration method based
on a Viola-Jones detector [18]. A face-authentication method based on subspace
metrics is developed. Experiments using a standard mobile camera showed that
the method is effective with an EER of 1.2%.

2.2 Multimodal Systems

In [19], Saevanee et al. used SMS texting activities and messages in a multimodal
authentication system. Keystroke dynamics and linguistic profiling was used to
discriminate users with error rates of 20%, 20% and 22%, respectively. A fusion
of these three led to an overall EER of 8%.

Buriro et al. [20] presented a sensor-enhanced touchstroke based smartphone au-
thentication. Their study makes use of two human behaviors, i.e., how a person
holds her phone and how she types her 4-digit free text PIN. Using Bayesian
classifier and Random Rorest classifier, they achieved 1% EER.

Aronowitz et al. [21] introduced a new biometric modality called chirography
which is based on user’s writing on multi-touch screens using their fingers. By
fusing this with face and voice features, an EER of 0.1% is reached in an office
environment, and 0.5% in noisy environments.

In [22] Ferrer et al. introduced a multimodal biometric identification system that
is based on the combination of geometrical, palm and fingerprint features of the
users’ hand.

In [23] a multimodal authentication approach is presented by Kim et al., us-
ing teeth and voice data acquired using mobile devices. The individual match-
ing scores obtained from these biometric traits are combined using a weighted-
summation operation. An EER of 2.13% was reported.

In [24], McCool et al. introduced a fully automatic bi-modal face and speaker
system. A Nokia N900 was used during tests and EER results of 13.3% and
11.9% for female and male trials respectively have been reported for the fused
score. This is a 25% performance improvement for the female trials, and 35%
improvement for male trials.

3 Background

In this section we explain the technology and building blocks we used to build
our solution.

3.1 Considered Sensors

We considered three built-in smartphone sensors, namely, accelerometer, orien-
tation and gyroscope. The way in which each of these sensors work is explained
below:

The acceleration (accy,) is the acceleration applied to the device, including
the force of gravity, measured on three axis’ x, y and z. Android’s sensor API uses
a standard three-axis coordinate system. This system is defined relative to the
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device’s screen when it is held upright as shown in Figure 1 (a). The acceleration
that is applied to a device Ay is calculated using the forces (including gravity g)
that are applied to the sensor Fj itself using the following equation:

A= gy M

mass

The gyroscope (gyro,) measures the rate of rotation in radians per second
(rad/s) around all axis’. The same coordinate system as described above is
used.

The orientation (rot,) is the rotation around the x- (pitch), y- (roll) and
z-axis (azimuth) in radians (rad). Note that the orientation uses a different
coordinate system than the accelerometer and the gyroscope®

— X is defined as the vector product Y - Z (it’s tangential to the ground at the
device’s current location and roughly points West).

— Y is tangential to the ground at the device’s current location and points
towards the magnetic North Pole.

— Z points towards the center of the Earth and is perpendicular to the ground.

See Figure 1 for a graphical representation.

(a) (b)

Flg 1: (a) Coordinate system relative to the device. [Source: Android SensorEvent| (b) Coordinate
system used in Android’s orientation sensor. [Source: Android SensorManager]

3.2 Comnsidered Classifiers

Classification is a way of comparing an unknown query input sample with the
stored templates. The Classifier/Matcher is the main component of any biometric
system. The goal of the classifiers is to classify a variable y = x( called the
class variable, given a set of attribute variables X = {z1...x,}. The classifier

® http://developer.android.com /reference/android /hardware/SensorManager.html
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¢ : X — yis a function that maps a data instance X to a class value of y. The
classifier itself it learned from a dataset D, consisting of samples over (X, y).
Relating this to our scenario, the attribute variables X are the features that we
extract from the touch events, motion sensors and microphone; they are the
slide, pickup and voice samples. The class variable y is either target (meaning
the instance belongs to the class learned during training) or unknown (meaning
the instance does not appear to belong to the previously learned class).

We performed verification with three different classifiers, i.e., One-class BayesNET
(BN) classifier, One-class Random Forest (RF) and One-class Sequential Mini-
mal Optimization (SMO)-a Weka version of support vector machine (SVM). We
chose these classifiers because they were shown to be very effecient in previous
behavioral-based work [20,20]

We imported Weka library in our project and implemented our prototypes
on smartphone.

During the training phase we only have training data available for a sin-
gle instance class; the genuine user (the target class). At prediction time new
instances with unknown class labels will have to be classified as either the tar-
get class or unknown. To handle this type of learning problem, typically called
one-class classification, we wrap each classifier in a one-class classifier®.

3.3 Performance Metric

Based on the binary outcome of this function (accept or reject), two types of
errors can occur; false rejections and false acceptances. A false rejection occurs
when a legitimate user is rejected access from the system and a false accept occurs
when a imposter is granted access to the system. The errors are measured in the
so-called False Rejection Rate (FRR) and False Acceptance Rate (FAR). These
rates are calculated as follows:

FAR(A) = & ffIA) @)
FRR(A) = & ]ZéA) 3)

Given a specific threshold A, the FAR is defined as the number of false
acceptances (FA) divided by the number of imposters nl and the FRR is defined
as the number of false rejections (FR) divided by the number of genuine users
nG.

To evaluate the interaction of these error rates the Weighted Error Rate
(WER) is used. The WER shows the combined error rate of both FAR and FRR
with a weight « assigned to each. If the false accepts are considered worse than
false rejects (focus on security), a weight > 0.5 should be used. If false rejects

5 http://weka.sourceforge.net/packageMetaData/oneClassClassifier /
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are worse than false accepts (focus on usability), than a weight < 0.5 is more
appropriate. A special error rate is the EER where both errors have the same
weight (i.e. @ = 0.5). The WER is defined [27] as follows:

WER(a, A) = aFAR(A) + (1 — o) FRR(A) (4)

Given a specific weight «, the goal is to find the optimal threshold A}, for
which the WER is as low as possible. This function can be defined as:

A = arginin |aFAR(A) + (1 — a)FRR(A)| (5)

In our opinion the usability of an authentication system is of paramount
importance for its adoptability. Therefore, in our system, we consider a false
reject worse than a false accept, and we’ll use @ = 0.4 in our evaluations.

As proposed by Poh et al. in [27], the final evaluation looks at the performance
of the system after deciding on the weight « and the optimal threshold A . This
is measured by the so called Half Total Error Rate (HTER), which is calculated
as follows:

HTER(AY) = FAR(AZ)J;FRR(A;;) ®

The lower the HTER, the better the system performs given the chosen weight

4 Our Solution

In [28] Conti et al. introduce a new biometric measure to authenticate smart-
phone users; the movement a user performs when answering (or placing) a phone
call. Several experiments with a prototype in a controlled environment have
shown that the method is effective and that the performance is comparable to
that of other transparent authentication methods, like face or voice recognition.
These experiments also highlighted an issue with the data acquisition process,
due to the variability in determining the end of the arm movement. To address
this issue without compromising the unobtrusive nature of the initial idea we
extended the solution as follows.

When placing or answering a phone call, three common steps have to be
taken: 1) the user must unlock her phone, 2) bring it to her ear and 3) speak
into the microphone. Our multimodal authentication solution uses features from
all three steps to determine whether or not the current user is genuine, or if she
is an imposter.

The complete system consists of four parts: slide movement recognition,
pickup movement recognition, voice recognition and fusion. The data features
are described in this section, while the next section describes the actual classifi-
cation framework including fusion.
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4.1 Setup

We conducted a controlled user study to test our mechanism in terms of per-
formance and robustness. We recruited 26 participants of which 16 were male,
and 3 operated their phone using their left hand. All of them were familiar with
the slide-to-unlock pattern. Ages of our volunteers were ranging from 14 to 55.
2 participants were 14-19, 12 were 20-29, 7 were 30-39, 1 was 40-49 and 4 were
50 or older.

We created an Android application that targets SDK version 4.4 (Kitkat)
and minimally requires version 4.0.3 (Ice Cream Sandwich). We implemented
both the training phase and the classification phase using Weka 3.7 on android
smartphone. The training module allows the user to anonymously record slide
movements, pickup movements and voice samples which are sent to a central
server. The classification module was implemented as a proof of concept and to
analyze the performance on mobile phones.

A central server running on the Amazon cloud platform collected the training
features in a database. A local running Java application (using Java 1.7) using
the same classification module as implemented in Android was then used to
test the robustness of the system. We used a Google Nexus 4 device by LG
running Android 5.1 during the study. This device has a 4.7 inch screen, a
Qualcomm APQ8064 Snapdragon 1.5GHz Quad-core processor, 2GB RAM, an
accelerometer, gyroscope and proximity meter.

In each session, we first explained the purpose of the study to the participant
and asked them if we could use their data anonymously, and noted their age
and gender. After that we moved to the actual trials. Each user was required
to collect at least 20 slide samples, 20 pickup samples and 10 voice samples.
Samples that where distorted in any way could be removed by the user.

For the slide and pickup movements we instructed the participant to first do
five movements while sitting or standing still and after that five while walking
around. Then the user was asked to open a news app and read the fifteenth
headline, which required the user to count while scrolling to the headlines. This
usually confused users, and many had to recount from the top because they tried
to wrap their head around the purpose of this task, and lost count. The goal
of this distraction task was to minimize the learning effect that can occur when
doing the same movement many times in quick succession. After the user read
the article, she was again requested to record five movements while sitting, and
five movements while walking.

4.2 Data Collection

We use the default Android slide lock as depicted in Figure 2. The center knob
can be dragged towards any direction. When the user drags the knob and then
release it at least as far as the circular boundary (slightly visible in the right
image in Figure 2), the phone will be unlocked. If the knob is released before
reaching the boundary, the phone stays locked.

During the training phase a pickup event starts when the user clicks the start
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Fig. 2: Android slide lock. On the left the default state, on the right the state when a user drags
the knob towards the circular boundary.

button, and ends automatically when the phone is at the user’s ear (detected by
the proximity detector). When used in combination with the other two modali-
ties (e.g. during authentication), the sample starts when the slide unlock ends,
and also finishes when the phone reaches the user’s ear.

The Android system continuously delivers SensorEvents ” to an event listener.
As we use three sensor (accelerometer, gyroscope, orientation sensor), a deliv-
ered event can be produced by one of the sensors. Every time we receive a new
event for any of the sensors, we extract the x, y and z values, and store them.

For the voice sample recording we requested the user to simply speak into
the microphone as if they were answering a phone call, but to make sure to use
a relatively lengthy sentence to fill the 2.5 seconds of recording. Most users used
a sentence similar to Hello, this is John Doe. Who am I speaking to?. An audio
sample is recorded for 2500 ms at a sample rate of 8 kHz using 16 bits per sample
with one channel. The resulting pulse-code modulation (PCM) data is stored in
a temporary WAV file on the device.

4.3 Feature Extraction

Slide A slide sample starts when the user touches the knob for the first time, and
ends when the knob is released (e.g. the user stops the touch event). One slide
is a path encoded as a sequence of vectors (t,,Zn,Yn,Pn,Sn). Only complete
samples (samples that would unlock the phone in the original non-biometric
implementation) are considered, others are simply discarded.

During the slide event the features in Table 1 are recorded at a average sam-
pling rate of 150 Hz. From the given MotionEvent we extract multiple features.
The time offset (t,) indicates the offset since the start of the touch event in
milliseconds.

The z- and y-position (z,,y,) are measured in pixels and indicate the exact
position of the knob (controlled by the users touch) on the screen. Over time

" http://developer.android.com /reference/android /hardware/SensorEvent.html
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Table 1: Slide features
Feature [Unit

Time offset|ms

X-position |px

Y-position |px

Pressure Normalized value between 0 and 1

Size Normalized value between 0 and 1

these coordinates create a path from the initial position of the knob towards the
boundary of the circle, indicating exactly how the user moved the knob.

The touch pressure (p,,) of the touch event indicates the approximate pressure
applied to the surface of the screen. The value is normalized to a range from 0
(no pressure at all) to 1 (normal pressure), but values higher than 1 may be
generated depending on the calibration of the input device.

The size (s,) is a scaled value of the approximate size of the area of the
screen being touched. The actual value in pixels corresponding to the touch is
normalized with the device specific range of values and scaled to a value between
0 and 1.

Pickup During the pickup event the features in Table 2 are extracted at a
average sampling rate of 190 Hz. The time offset (t,) indicates the offset since
the start of the pickup event in milliseconds. One pickup movement is encoded as

a sequence of vectors (acc?, accl, accs, gyro®, gyro¥, gyros, rotZ, rot¥, rotz t,).

Table 2: Pickup features

Features ‘Units

1-3|X-acceleration|Y-acceleration |Z-acceleration| m/s2

4-6| X-gyroscope | Y-gyroscope | Z-gyroscope |rad/s

7-9| X-orientation | Y-Orientation | Z-Orientation| rad

10| Time offset ms

Voice Using the recorded voice sample, we calculate the Mel-frequency cepstral
coefficients (MFCCs) [29] and store them in a feature vector. MFCCs have been
very popular in the realm of speech recognition due to its ability to represent the
speech amplitude spectrum in a compact form [30]. Creating MFCCs is done by
1) converting the waveform to frames, 2) take the discrete Fourier transform, 3)
take the Log of the amplitude spectrum, 4) Mel-scaling and smoothing and 5)
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applying discrete cosine transform. The MFCC features are then used as data
instances that we use to create models for our classifiers

4.4 Data Fusion

In our multimodal mechanism we use multiple biometric traits (slide movement,
pickup movement and voice) which need to be fused to output one single deci-
sion: accept or reject. We fused these modalities at match-score level. However,
because each modality performed differently, we give each modality a weight,
based on it’s unimodal performance.

Consider three modalities z, y and z, having an error rate (er) of 0.1, 0.2
and 0.3 respectively. Obviously, modality = is much better than y and z, and
should therefore have a higher weight. For each classifier ¢ we can calculate a
success index. The success index indicates how much the classifier contributes
to the sum 1 — er(c) for each classifier c.

er(c)

index(c) =1 — ——— (7)
; er(i)

The eventual weight can then be calculated using:

index(c)

- (8)
> index(i)

i=1

weight(c) =

Filling in the values for three modalities x, y and z, they would get weights
of 0.42; 0.33 and 0.25 respectively. Better modalities get get higher weights.

4.5 Decision Making

To measure the performance of the classifiers we use the cross-validation method.
The dataset is randomized and then split into &k folds of equal size. In each
iteration, one fold is used for testing, and the other k — 1 folds are used for
training the classifier. We use & = n, meaning we apply leave-one-out cross-
validation. The test results are averaged over all folds, which give the cross-
validation estimate of the accuracy. This method is useful because we are dealing
with small datasets and the idea is to test each sample. Using cross-validation
we utilize the greatest amount of training data from the dataset.

When evaluating the performance of a biometric system, multiple crite-
ria should be considered [27]. Biometric authentication systems make decisions
based on the following decision function:

£ accept, if c(I,x) > A
xTr) =
reject, otherwise
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where ¢(I, f) is the output of the underlying classifier ¢ that indicates how
certain it is that the claimed identity I is correct based on the given dataset
(features) x. The threshold A defines when an identity claim is accepted or
rejected. Access to the system is accepted if the score is greater than or equal to
the threshold, and rejected otherwise.

5 Parameters

Before we can show any results, we first need to identify the exact data and
models under test. During the research we did many extensive tests to find
the optimal setup. These tests led us to the best performing combination of
parameters. The actual performance of the best classifier will be discussed and
evaluated in the next section.

The tests have been carried out on a random subset (length: 10) of the
participants in the user test. For each configuration considered we calculated
the equal error rate (EER) based on all samples of the genuine user, and 10
random samples per other (non-genuine) user.

5.1 Parameters

For each modality we use all attributes, and do a grid search to find the best
performing set of parameters. We also record the average model generation time
so we can filter out configurations that would take too long on mobile phones.

Table 3: Best classifier per modality.

Slide Pickup Voice
Classifier Comp. Time| EER [Comp. Time| EER |[Comp. Time| EER
BayesNET 64 0.1242 762 0.2045 205 0.2681
Random Forest 4453 0.1434 13988 0.2083 4402 0.2452
SMO 8433 0.1864| ~144000 - 548 0.2709

Table 3 gives for each modality an overview of the best performing classifiers.
The parameter tests show that the Bayesian network classifiers yield the best
results overall. Only with the voice modality the Random Forest classifier yields
slightly better results. However, the Bayesian network is much faster.

From this point on when talking about the classifier, we mean the Bayesian
classifier, with its parameters configured as shown in Table 4.

6 Results

The results we present here are based on the user data we collected during the
controlled users tests, fed into the classifiers with their parameters configured as
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Table 4: Parameter configuration per modality

Modality |[Naive Bayes|Markov blanket|Max parents|Score type|Alpha
Slide T T 5 Entropy | 0.25
Pickup T F 3 Bayes 0
Voice F F 5 Entropy 0

described in Section 5. For each user this gives us a certainty number (higher
means more similar to the reference model) for both genuine and impostor sam-
ples.
It is important to note that when testing a classifier for user u, we use all samples
from all other users to do our impostor tests. By doing so, we have much more
impostor samples than genuine samples, leaving the FRR much more sensitive
to deviations than the FAR.

Given the data from the user we can find the optimal threshold A}. The
optimal threshold is the threshold for which the Weighted Error Rate (WER) is
at its minimum (see Equation 5).

6.1 Unimodal Systems

Slide Given oo = 0.4, we found that the optimal threshold A}, = 49. Re-running
the tests with this threshold gives us a FAR of 22.28% and a FRR of 4.84%.
The HTER (defined in Equation 6) can now easily be computed:

22.28% + 4.84
HTER(49) = M — 13.56% (10)

Pickup The optimal threshold A} = 42. Running the tests with this threshold
gives us a FAR of 26.69% and a FRR of 6.19%.

26.69% + 6.19%

HTER(42) = 5

= 16.44% (11)

Voice The optimal threshold A} = 85. Running the tests with this threshold
gives us a FAR of 63.92% and a FRR of 12.69%.

92% + 12.
HTER(85) = 639 %; 69% _ 38.30% (12)

It is evident that slide and pickup modalities are better than voice modal-
ity. Still, we are using it here to show how the use of multimodal biometric
authentication can improve a unimodal authentication system.
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6.2 Multimodal Systems

Slide+Pickup Modalities As described in Section 4.4 we use a match-score
level fusion method, using weights for each classifier output. We calculate the
weight using Equation 8. In the previous subsection we have seen that the slide
and pickup classifiers have a HTER of 13.56% and 16.44% respectively. Filling
in the equation this gives us a weight of 0.55 for slide and 0.45 for pickup.

The optimal threshold A} = 55. Re-running the tests with this threshold
gives us a FAR of 11.01% and a FRR of 4.12%. Calculating the HTER gives us:

11.01% + 4.12%
HTER(55) = % = 7.51% (13)
Comparing the slide and pickup modalities individually with this multimodal
system, we can see that the latter performs almost twice as good.

Slide+Pickup+ Voice Modalities We have seen that the slide, pickup and
voice classifiers have HTERs of 13.56%, 16.44% and 38.30% respectively. Using
Equation 8 this results in weights 0.40 (slide), 0.38 (pickup) and 0.22 (voice).

The optimal threshold A% = 62. Running the tests with this threshold gives
us a FAR of 10.72% and a FRR of 3.93%. Calculating the HTER, gives us:

10.28 3.93
HTER(62) = # = 7.33% (14)
A quick comparison shows that adding voice modality to the multimodal
system using slide and pickup features does not improve the results significantly
but still better (HTER 7.33% vs HTER 7.57%).

7 Discussion

The results show that the slide modality is better than the pickup modality.
The main cause for this observation is that the pickup classifier is much more
sensitive to the kind of activity the user performs while unlocking her phone.
Because the rotation, gyroscope and acceleration of the device are the main
features of the modality, the user’s activity while unlocking has major influence
on the classifier outcome: walking, running, standing in a crowded bus; they all
have different impact on the motion sensors of the device.

The slide modality on the other hand does not use motion sensors but rather
uses touchscreen. Touchscreen determines finger position, pressure and size on a
screen which are much less influenced by external factors, making the modality
more robust in a range of different scenario’s.

When combining the slide and pickup modalities, we can see that the FAR
improves significantly.
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The voice modality is obviously not good enough (based on our experiments)
and may not be deployed in real world because of higher error rates - FAR of
63.92% and FRR of 12.69%. The reason(s) for worst voice results may be due to
the low quality of the open source library and by the fact we applied only basic
clustering mechanisms. Still, the fusion of all three modalities yielded better
results.

System like ours are suitable for risk-based authentication scenarios (e.g. mo-
bile banking applications), where security may need to be traded for availability
dynamically and adaptivelly.

8 Conclusion and Future Work

In this paper we proposed a new multimodal biometric system for smartphone
user authentication that focusses on usability. The system uses features collected
during a slide-unlock movement on a smartphone. We use finger position, pres-
sure, size and time offset to generate a model and classify future slide movements.
We shown how fusion of unimodal systems to multimodal ones using slide, pickup
and voice modalities can significantly improve performance.

We have applied three different classifiers, i.e., BN, RF and SVM. BN clas-
sifier outperformed the other classifiers in terms of error rates and computation
time.

From the three unimodal traits we tested (slide, pickup and voice); the slide
modality performed best with a FAR of 22.28% and a FRR of 4.84%, resulting in
a HTER of 13.56%. The pickup modality performed slightly worse, with an FAR
and FRR of 26.69% and 6.19% respectively, and an HTER of 16.44%. However,
with their fusion, we were able to achieve much improved performance (by a
factor of two). A FAR of 11.01% and a FRR of 4.12% were reached, resulting in
a HTER of 7.57%.

The voice based model performed much worse as the open source library
we used was simply not good enough. However, we have shown the potential
improvement of a multimodal system using slide, pickup and voice modalities.

This research can be extended in multiple directions. To validate the results
presented here a larger user study should be conducted. The impact situations,
context and environment may have on this type of biometrics need to be inves-
tigated further.
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