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We study the topological charge distribution of the SU(3) Yang-Mills theory with high precision in order
to be able to detect deviations from Gaussianity. The computation is carried out on the lattice with high
statistics Monte Carlo simulations by implementing a naive discretization of the topological charge evolved
with the Yang-Mills gradient flow. This definition is far less demanding than the one suggested from
Neuberger’s fermions and, as shown in this paper, in the continuum limit its cumulants coincide with those
of the universal definition appearing in the chiral Ward identities. Thanks to the range of lattice volumes
and spacings considered, we can extrapolate the results for the second and fourth cumulant of the
topological charge distribution to the continuum limit with confidence by keeping finite volume effects
negligible with respect to the statistical errors. Our best results for the topological susceptibility is
t20χ ¼ 6.67ð7Þ × 10−4, where t0 is a standard reference scale, while for the ratio of the fourth cumulant over
the second, we obtain R ¼ 0.233ð45Þ. The latter is compatible with the expectations from the large Nc

expansion, while it rules out the θ behavior of the vacuum energy predicted by the dilute instanton model.
Its large distance from 1 implies that, in the ensemble of gauge configurations that dominate the path
integral, the fluctuations of the topological charge are of quantum nonperturbative nature.
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I. INTRODUCTION

The discovery of a fermion operator [1] that satisfies the
Ginsparg-Wilson (GW) relation [2] triggered a break-
through in our understanding of the topological effects
in Quantum Chromodynamics (QCD) and in the Yang-
Mills theory [3–7]. This progress made it possible to give a
precise and unambiguous implementation of the Witten-
Veneziano formula [5,8–10].
In lattice QCD a naive definition of the topological

charge density needs to be combined with an unambigu-
ous renormalization condition. The cumulants of the
charge, for instance the susceptibility, also require addi-
tional subtractions of short-distance singularities to make
them integrable distributions. If the topological charge
density is defined as suggested by GW fermions [1,3,4],
however, its bare lattice expression and those of the
corresponding cumulants have finite and unambiguous
continuum limits as they stand, which in turn satisfy the
anomalous chiral Ward identities [5–7]. By combining a
series of those identities, the cumulants can be written as
integrated correlation functions of scalar and pseudosca-
lalar density chains or combination of them [6,7,11].

In this form a particular regularization is not required
anymore to prove that no renormalization factor or
subtractions of short-distance singularities are required.
These expressions provide a universal definition of the
susceptibility and of the higher cumulants which satisfy
the anomalous chiral Ward identities [7].
Recently a new definition of the topological charge

was found [12], whose cumulants have a finite and
unambiguous continuum limit [12,13]. It is a naive
discretization of the charge evolved with the Yang-
Mills gradient flow. It is particularly appealing because
its numerical evaluation is significantly cheaper than the
one for the definition suggested by Neuberger’s fermions.
Here we show that in the Yang-Mills theory the cumu-
lants defined this way coincide, in the continuum limit,
with those of the universal definition appearing in the
anomalous chiral Ward identities of QCD. By implement-
ing the gradient-flow definition, we compute the topo-
logical susceptibility in the continuum limit with a
precision 5 times better than the reference computation
with the Neuberger’s definition [14]. We then determine
the ratio of the fourth cumulant over the second one in
the continuum limit by keeping for the first time all
systematics, especially finite volume effects, negligible
with respect to the statistical errors. As a byproduct we
also perform an interesting universality test at the
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per mille level by comparing the values of the topological
susceptibility at different flow times.

II. PRELIMINARIES IN THE CONTINUUM

Starting from the ordinary fundamental gauge field

Bμjt¼0 ¼ Aμ; ð2:1Þ
where Aμ ¼ Aa

μTa (see Appendix A for the generator
conventions), the Yang-Mills gradient flow evolves the
gauge field as a function of the flow time t ≥ 0 by solving
the differential equation [12]

∂tBμ ¼ DνGνμ þ α0Dμ∂νBν; ð2:2Þ
Gμν ¼ ∂μBν − ∂νBμ − i½Bμ; Bν�; Dμ ¼ ∂μ − i½Bμ; ·�;

ð2:3Þ
with α0 being the parameter which determines the gauge.
Here we focus on the gradient-flow evolution of the
topological charge density defined as1

qt ¼ 1

32π2
ϵμνρσtr½GμνGρσ�; ð2:4Þ

and of the corresponding topological charge,

Qt ¼
Z

d4xqtðxÞ; ð2:5Þ

where ϵμνρσ is the four-index totally antisymmetric tensor
and the trace is over the color index. Under a generic
variation δBμ of a given gauge field configuration, the
topological charge density changes as

δqt ¼ ∂ρ ~wt
ρ; ~wt

ρ ¼
1

8π2
ϵρμνσtr½GμνδBσ�; ð2:6Þ

see, for instance, Ref. [15]. If we now specify

δBμ ¼ ∂tBμδt; ð2:7Þ

it is straightforward to show that

∂tqt ¼ ∂ρwt
ρ; wt

ρ ¼
1

8π2
ϵρμνσtr½GμνDαGασ�; ð2:8Þ

where wt
ρ is a local dimension-five gauge-invariant pseu-

dovector field. This in turn implies that for a given gauge
field configuration

∂tQt ¼ 0; ð2:9Þ

an equation which reflects the topological nature of Qt.

When qtðxÞ is inserted in a correlation function, Eq. (2.8)
implies

hqtðxÞOðyÞi ¼ hqt¼0ðxÞOðyÞi þ ∂ρ

Z
t

0

dt0hwt0
ρðxÞOðyÞi

ðx ≠ yÞ; ð2:10Þ

where OðyÞ is any finite (multi)local operator inserted at a
physical distance from x. The lhs of Eq. (2.10) is finite
thanks to the fact that a gauge-invariant local composite
field constructed with the gauge field evolved at positive
flow time is finite [12,13]. Since there are no local
composite fields of dimension d < 5 with the symmetry
properties of wt

ρðxÞ, the integrand on the rhs of Eq. (2.10)
diverges at most logarithmically when t0 → 0. This implies
that the quantity

hqt¼0ðxÞOðyÞi≡ lim
t→0

hqtðxÞOðyÞi ðx ≠ yÞ; ð2:11Þ

is finite; i.e. the limit on the rhs exists for any finite operator
OðyÞ. The Eq. (2.11) can be taken as the definition of
qt¼0ðxÞ, i.e. the renormalized topological charge density
operator at t ¼ 0. The latter satisfies the proper singlet
chiral Ward identities when fermions are included; see the
next section for an explicit derivation. It is worth noting that
Eq. (2.10) implies that the small-t expansion of qtðxÞ is of
the form

hqtðxÞOðyÞi ¼ hqt¼0ðxÞOðyÞi þOðtÞ ðx ≠ yÞ: ð2:12Þ

In the following we will be interested in the cumulants of
the topological charge

Ct
n ¼

Z
d4x1…d4x2n−1hqtðx1Þ…qtðx2nÞic; ð2:13Þ

which, thanks to Eq. (2.9), are expected to be independent
of the flow time for t ≥ 0 with the limit t → 0 which
requires some care due to the possible appearance of short-
distance singularities. It is the aim of the next section to
address this question by using the lattice, a regularization
where the theory can be nonperturbatively defined. We will
supplement the theory with extra degenerate valence quarks
of mass m, and we will consider the (integrated) correlator
of a topological charge density with a chain made of scalar
and pseudoscalar densities [7] defined as

hqt¼0ð0ÞP51ðz1ÞS12ðz2ÞS23ðz3ÞS34ðz4ÞS45ðz5Þi; ð2:14Þ

where Sij and Pij are the scalar and the pseudoscalar
renormalized densities with flavor indices i and j. Power
counting and the operator product expansion predict that
there are no non-integrable short-distance singularities
when the coordinates of two or more densities in (2.14)
tend to coincide among themselves or with 0. When only

1If not explicitly indicated, the superscript t on the quantities
evolved with the gradient flow is always > 0.
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one of the densities is close to qt¼0ð0Þ, the operator product
expansion predicts the leading singularity to be

qt¼0ðxÞSijð0Þ⟶x→0
cðxÞPijð0Þ þ…; ð2:15Þ

where cðxÞ is a function which diverges as jxj−4 when
jxj → 0, and the dots indicate subleading contributions. An
analogous expression is valid for the pseudoscalar density.
Being the leading short-distance singularity in the product
of fields qt¼0ðxÞSijð0Þ, its Wilson coefficient cðxÞ can be
computed in perturbation theory. By using Eq. (2.10), to all
orders in perturbation theory2 we can write

hqt¼0ðxÞSijð0ÞOðyÞi ¼ hqtðxÞSijð0ÞOðyÞi

− ∂ρ

Z
t

0

dt0hwt0
ρðxÞSijð0ÞOðyÞi;

ð2:16Þ

where again OðyÞ is any finite (multi)local operator
inserted at a physical distance from 0 and x. When
t > 0, the first member on the rhs of Eq. (2.16) has no
singularities when jxj → 0. If present, the singularity has to
come from the second term, and therefore cðxÞ must be of
the form

cðxÞ ¼ ∂ρuρðxÞ ð2:17Þ

which does not contribute to the integral (over all coor-
dinates) of the correlation function (2.14).

III. CUMULANTS OF THE TOPOLOGICAL
CHARGE ON THE LATTICE

On the lattice the Yang-Mills gradient-flow equation can
be written as a first-order differential equation [12]

∂tVμðxÞ ¼ −g20f∂x;μSðVÞgVμðxÞ; VμðxÞjt¼0 ¼ UμðxÞ;
ð3:1Þ

where the Wilson action S and the link differential
operators ∂x;μ are defined in Appendix A together with
other conventions. The gauge field evolved at positive flow
time VμðxÞ is smooth on the scale of the cut-off. When
inserted at a physical distance, the gauge-invariant local
composite fields constructed with the evolved gauge field
are finite as they stand. Remarkably their universality class
is determined only by their asymptotic behavior in the
classical continuum limit [12,13]. At t > 0 any decent
definition of the topological charge density is therefore
finite. The same line of argumentation applies to the
cumulants of the topological charge. At t>0 short-distance

singularities cannot arise because of the exponential
damping of the high-frequency components of the fields
enforced by the flow evolution.
It remains to be shown, however, that the cumulants of

the topological charge distribution defined at t > 0 satisfy
the proper singlet chiral Ward identities when fermions are
included in the theory. To show this it is sufficient to work
with a particular discretization of the topological charge,
and then appeal to the above mentioned universality
argument for the other definitions. The GW discretizations
have a privileged rôle since at t ¼ 0 the lattice bare
cumulants are finite, and they satisfy the singlet chiral
Ward identities when fermions are included in the theory.

A. Ginsparg-Wilson definition of the charge density

The definition of the topological charge density sug-
gested by GW fermions is [3,4,16]

a4qtNðxÞ ¼ −
ā
2
tr½γ5Dðx; xÞ�; ð3:2Þ

where we indicate it with a subscript N since, for con-
creteness, we take Dðx; yÞ to be the Neuberger-Dirac
operator given in Appendix A in which each link variable
UμðxÞ is replaced by the corresponding evolved one VμðxÞ
when t > 0. Since there are no other operators of dimension
d ≤ 4 which are pseudoscalar and gauge-invariant, it holds
that

lim
a→0

ZqhqtNð0Þqt¼0
N ðxÞi ¼ finite; ð3:3Þ

where Zq is a renormalization constant which is at most
logarithmically divergent, while qtNð0Þ is finite as it stands.
This in turn implies that

lim
a→0

Zqa4
X
x

hqtNð0Þqt¼0
N ðxÞi ¼ finite; ð3:4Þ

since there are no short-distance singularities that contrib-
ute to the integrated correlation function because qtNð0Þ is
evolved at positive flow time. By supplementing the theory
with extra degenerate valence quarks of mass m, and by
replacing in Eq. (3.4) the topological charge at t ¼ 0 with
its density-chain expression [7] we obtain

a4
X
x

hqtNð0Þqt¼0
N ðxÞi ¼ −m5a20

X
z1;…;z5

hqtNð0ÞP51ðz1Þ

× S12ðz2ÞS23ðz3ÞS34ðz4ÞS45ðz5Þi;
ð3:5Þ

where Sij and Pij are the scalar and the pseudoscalar
densities with flavor indices i and j. Written as in Eq. (3.5),
power counting and the operator product expansion predict
that there are no non-integrable short-distance singularities

2Since the function jxj−4 lnðx2Þ−p is integrable for p > 1, the
singularity needs to be determined only up to some finite order.
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when the coordinates of two or more densities tend to
coincide. The rhs of Eq. (3.5) is finite as it stands, and it
converges to the continuum limit with a rate proportional to
a2. This in turn implies that the limits on the lhs of
Eqs. (3.3) and (3.4) are reached with the same rate if Zq is
set to any fixed (g0-independent) value. Since in the
classical continuum limit Neuberger’s definition in
Eq. (3.2) has the same asymptotic behavior of the definition
in Eq. (2.4) [17,18], we may set Zq ¼ 1 in which case

lim
a→0

hqt¼0
N ðxÞOLðyÞi ¼ hqt¼0ðxÞOðyÞi ðx ≠ yÞ; ð3:6Þ

where OLðyÞ is a discretization of the generic finite
continuum operator OðyÞ. Once inserted in correlation
functions at a physical distance from other (renormalized)
fields, qt¼0

N ðxÞ does not require any renormalization in the
Yang-Mills theory. It is finite as it stands, and it satisfies
the singlet Ward identities when fermions are included in
the theory. It is interesting to note that Eqs. (2.12) and (3.6)
imply

hqtðxÞOðyÞi ¼ hqt¼0
N ðxÞOLðyÞi þOða2Þ þOðtÞ; ð3:7Þ

where in general discretization effects depend on t. We
could have arrived at Eq. (3.6) by following a procedure
analogous to the one in the continuum; see Eqs. (2.8)–
(2.12). To all orders in perturbation theory, or in general
when Neuberger’s operator is differentiable with respect to
the gauge field [19], the change of the topological charge
density with respect to the flow time can be written,
analogously to Eq. (2.8), as [20,21] (see also [22])

∂tqtNðxÞ ¼ ∂�
ρwt

N;ρðxÞ; ð3:8Þ

where wt
N;ρðxÞ is a discretization of the dimension-five

gauge-invariant pseudovector operator wt
ρðxÞ, and ∂�

ρ is the
backward finite-difference operator.

B. Ginsparg-Wilson definition of the
charge cumulants

The Neuberger’s definition of the topological charge is
given by

Qt
N ≡ a4

X
x

qtNðxÞ; ð3:9Þ

and its cumulants are defined as

Ct
N;n ¼ a8n−4

X
x1;…;x2n−1

hqtNðx1Þ…qtNðx2n−1ÞqtNð0Þic: ð3:10Þ

For t ¼ 0 the cumulants have an unambiguous universal
continuum limit as they stand and, when fermions are
included, they satisfy the proper singlet chiral Ward

identities [5–7]. They are the proper quantities to be
inserted in the Witten-Veneziano relations for the mass
and scattering amplitudes of the η0 meson in QCD [5,8–10].
It is far from being obvious that Ct¼0

N;n coincide with those
defined at positive flow time, since the two definitions may
differ by additional finite contributions from short-distance
singularities.
For the clarity of the presentation we start by focusing on

the lowest cumulant, the topological susceptibility Ct
N;1. At

t ¼ 0, by replacing one of the two qt¼0
N with its density-

chain expression [7], we obtain

a4
X
x

hqt¼0
N ð0Þqt¼0

N ðxÞi ¼ −m5a20
X

z1;…;z5

hqt¼0
N ð0ÞP51ðz1Þ

× S12ðz2ÞS23ðz3ÞS34ðz4ÞS45ðz5Þi:
ð3:11Þ

When the susceptibility is written in this form, the
discussion toward the end of Sec. II and, in particular,
Eq. (2.17) guarantee that there are no contributions from
short-distance singularities. This result, together with the
fact that Zq ¼ 1, implies that

lim
t→0

lim
a→0

a4
X
x

hqtNðxÞqt¼0
N ð0Þi ¼ lim

a→0
a4
X
x

hqt¼0
N ðxÞqt¼0

N ð0Þi:

ð3:12Þ

By replacing on the lhs qt¼0
N ð0Þ with the evolved one, no

further short-distance singularities are introduced and we
arrive at the final result,

lim
t→0

lim
a→0

a4
X
x

hqtNðxÞqtNð0Þi ¼ lim
a→0

a4
X
x

hqt¼0
N ðxÞqt¼0

N ð0Þi:

ð3:13Þ

By replacing 2n − 1 of the charges in the nth cumulant
with their density-chain definitions, the very same line of
argumentation can be applied. The Eq. (3.13), together with
the independence up to harmless discretization effects of
Ct
N;n from the flow time for t > 0 [12], implies that the

continuum limit ofCt
N;n coincides with the one ofC

t¼0
N;n . The

cumulants of the topological charge distribution defined at
t > 0 thus satisfy the proper singlet chiral Ward identities
when fermions are included [5–7]. They are the proper
quantities to be inserted in the Witten-Veneziano relations
for the mass and scattering amplitudes of the η0 meson in
QCD [5,8–10].

C. Universality at positive flow time

For t > 0 different lattice definitions of the topological
charge density belong to the same universality class if they
share the same asymptotic behavior in the classical con-
tinuum limit [12,13]. In the rest of this paper we are
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interested in the naive definition of the topological charge
density defined as3

qtðxÞ ¼ 1

64π2
ϵμνρσGa

μνðxÞGa
ρσðxÞ; ð3:14Þ

where the field strength tensor Ga
μνðxÞ is defined as [23]

Ga
μνðxÞ ¼ −

i
4a2

tr½ðQμνðxÞ −QνμðxÞÞTa�; ð3:15Þ

with

QμνðxÞ ¼ VμðxÞVνðxþ aμ̂ÞV†
μðxþ aν̂ÞV†

νðxÞ
þ VνðxÞV†

μðx − aμ̂þ aν̂ÞV†
νðx − aμ̂ÞVμðx − aμ̂Þ

þ V†
μðx − aμ̂ÞV†

νðx − aμ̂ − aν̂Þ
× Vμðx − aμ̂ − aν̂ÞVνðx − aν̂Þ
þ V†

νðx − aν̂ÞVμðx − aν̂ÞVνðxþ aμ̂ − aν̂ÞV†
μðxÞ:

ð3:16Þ

In the Yang-Mills theory, qt¼0ðxÞ requires a multiplicative
renormalization constant4 when inserted in correlation
functions at a physical distance from other operators
[24]. The cumulants of the corresponding topological
charge Qt¼0 ≡ a4

P
xq

t¼0ðxÞ, defined analogously to
Eq. (3.10), have additional ultraviolet power-divergent

singularities, and they do not have a well defined con-
tinuum limit.
The density qtðxÞ in Eq. (3.14) shares with qtNðxÞ the

same asymptotic behavior in the classical continuum limit
[17,18]. Since for t > 0 short-distance singularities cannot
arise, Ct

N;n and Ct
n tend to the same continuum limit. The

results in the previous section then imply that the con-
tinuum limit of the naive definition of Ct

n, at positive flow
time, coincides with the universal definition which satisfies
the chiral Ward identities when fermions are added [5–7]. It
is interesting to note, however, that at fixed lattice spacing
there can be quite some differences. For instance, the
topological susceptibility defined at t > 0 with the naive
definition is not guaranteed to go to zero in the chiral limit
at finite lattice spacing in presence of fermions [25].

IV. NUMERICAL SETUP

For the numerical computation we discretize the SU(3)
Yang-Mills theory with the standard Wilson plaquette
action on a finite four-dimensional lattice with spacing
a, with the same L=a size in all four spacetime directions,
and with periodic boundary conditions imposed on the
gauge fields, see Appendix A for details. The basic
Monte Carlo update of each link variable implements
the Cabibbo-Marinari scheme [26], by sweeping the full
lattice with one heat bath update followed by L=ð2aÞ
sweeps of over-relaxation updates.

A. Ensembles generated

We have simulated three series of lattices in order to
estimate and remove the systematic effects due to the
finiteness of the lattice spacing and volume, see Table I for
details. In the first series fA1; B1;…; F1g the inverse
coupling β ¼ 6=g20 is kept fixed so that the lattice spacing
is approximatively 0.1 fm, while the physical volume

TABLE I. Overview of the ensembles and statistics used in this study. For each lattice we give the label, β ¼ 6=g20, the reference scale
t0=a2, the spatial extent of the lattice, the lattice spacing, the number Nconf of independent configurations generated, the number of
sweeps nit required to space them, and the tolerances eerr, q2err and q4err on the primary observables considered (see main
text).

Lattice β t0=a2 L=a L [fm] a [fm] Nconf nit eerr q2err q4err

A1 5.96 2.79 10 1.0 0.102 36000 30 0.19 0.0005 0.0024
B1 12 1.2 144000 0.45 0.005
C1 13 1.3 280000 0.42 0.0068
D1 14 1.4 505000 0.74 0.01
E1 15 1.5 880000 0.89 0.012
F1 16 1.6 1440000 1.04 0.015
B2 6.05 3.78 14 1.2 0.087 144000 60 0.31 0.0005 0.005
D2 17 1.5 144000 0.045 0.01
B3 6.13 4.87 16 1.2 0.077 144000 90 0.25 0.0005 0.005
D3 19 1.5 144000 0.058 0.01
B4 6.21 6.20 18 1.2 0.068 144000 250 0.20 0.0005 0.005
D4 21 1.4 144000 0.042 0.01

3We use the same notation for the naive definition of the field
strength tensor, of the topological charge and of its density on the
lattice and in the continuum, since any ambiguity is resolved from
the context.

4This renormalization constant can be fixed by enforcing the
analogous of Eqs. (3.3) and (3.6).
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increases from ð1.0 fmÞ4 to ð1.6 fmÞ4. The numberNconf of
independent gauge configurations generated scales with L8

to ensure that the relative statistical error on R, the ratio of
the fourth over the second cumulant of the topological
charge distribution see Eq. (4.2), is always at the 10% level
[27]. In the second series fB1;…; B4g the physical volume
is kept approximatively fixed, while the spacing is
decreased down to 0.068 fm. The volume is always
ð1.2 fmÞ4 to guarantee that finite-size effects on R are
within the statistical errors, while the computational cost
remains affordable. In the third series fD1;…; D4g is again
the physical volume which is kept approximatively fixed,
always at least ð1.4 fmÞ4, to guarantees that finite-size
effects in the reference scale t0 and in the topological
susceptibility χ, see Eq. (4.2), are within their (smaller)
statistical errors. In both cases the measurements at the four
lattice spacings are used to estimate discretization effects in
the observables and to extrapolate them away in the
continuum limit.

B. Computation of the observables

The primary observables that we have computed on each
configuration at t ≥ 0 are the energy density,

Et ¼ a4

4V

X
x

Fa;t
μν ðxÞFa;t

μν ðxÞ; ð4:1Þ

and the topological charge Q defined as in Sec. IIIC. The
quantum averages we are interested in are

hEti; χt ¼ h½Qt�2i
V

; Rt ¼ h½Qt�4ic
h½Qt�2i : ð4:2Þ

To numerically integrate the Yang-Mills gradient flow, we
have implemented a fourth order Runge-Kutta-Munthe-
Kaas (RKMK) method [28–30]. It is a structure-preserving
Runge-Kutta (RK) integrator, designed to exactly preserve
the Lie group structure of the gradient flow equation (see
Appendix B for details). On each lattice the field has been
evolved approximatively up to t ¼ 1.2t0, where t0 is the
reference flow-time value defined below. The observables
in Eq. (4.2) have been computed with a flow-time reso-
lution of 0.08a2 or smaller. The numerical integration of the
flow equation introduces a systematic error in the gauge
field values at positive flow time t, and thus in each
observable. In our case, at asymptotically small values of
the RK step size, it is proportional to ϵ4. There are,
however, large fluctuations in the prefactor among the
various gauge configurations (see Fig. 1). A reliable
estimate of this systematics is achieved by monitoring
the error configuration by configuration, and occasionally
adapt the step ϵ. To do so we integrate the flow equation
two times with steps ϵ and 2ϵ, where in our case

ϵ ¼ 0.08a2. Denoting with EðϵÞ
j and QðϵÞ

j the basic

observables E and Q respectively computed on the jth
field configuration evolved with step size ϵ, at small enough
ϵ the error is given by

δEð2ϵÞ
j ¼ jEðϵÞ

j − Eð2ϵÞ
j j; δQð2ϵÞ

j ¼ jQðϵÞ
j −Qð2ϵÞ

j j; ð4:3Þ

with both observables obviously measured at the same flow
time. By applying linear propagation, the error on the
average over all configurations is bounded by

δĒð2ϵÞ
j ≤ max

j
ðδEð2ϵÞ

j Þ; δQ̄2;ð2ϵÞ ≤ max
j
ðj2QjjδQð2ϵÞ

j Þ;

δQ̄4;ð2ϵÞ ≤ max
j
ðj4Q3

j jδQð2ϵÞ
j Þ;

δR̄ð2ϵÞ ≤
1

Q̄2
max

�
max

j
ðj4Q3

j jδQð2ϵÞ
j Þ;

Q̄4 þ 3ðQ̄2Þ2
Q̄2

max
j
ðj2QjjδQð2ϵÞ

j Þ
�
: ð4:4Þ

At run time, for each configuration and each flow time, the
systematic errors of the observables E, Q2 and Q4 are
compared with the given tolerances eerr, q2err and
q4err respectively. If one of the tests fails, the flow
evolution is recomputed for that configuration with a new
step size ϵ0 ¼ ð1=2Þϵ and new observables data, along with
old ϵ ¼ 2ϵ0 data, are used to estimate the systematic errors
and compare them with the tolerances. If the test fails again,
the field is evolved with ϵ00 ¼ ð1=2Þϵ0, and so on. This
ensures that

δĒð2ϵÞ
j ≤ eerr; δQ̄2;ð2ϵÞ ≤ q2err;

δQ̄4;ð2ϵÞ ≤ q4err: ð4:5Þ

The parameters eerr, q2err and q4err are chosen as a
function of the target statistical error on the corresponding

FIG. 1 (color online). History plot of the systematic error
δQ2;ð2ϵÞ at t≃ t0 for the first 2000 configurations of D4. The red
line indicates the bound q2err ¼ 0.0005 of the systematic error
enforced on all configurations.
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observables. If we set the upper limit for the systematic
error to be roughly 10 times smaller than the statistical one,
this condition is readily translated into a limit for eerr,
q2err and q4err, see Table I for the values chosen for
each lattice. The Eqs. (4.5) put bounds on the systematic
errors for the coarser evolution, but the data evolved with
the finer step size ϵ are actually those used in the final
analysis. This choice is rather conservative in our case,
being the actual error more than 1 order of magnitude
smaller. For the quantity Et the actual error turns out to be
more than two orders of magnitude smaller with respect to
the bound in Eq. (4.5), see Fig. 8 in Appendix B. We have,
therefore, chosen larger values for eerr with respect to
one given by the bound in Eq. (4.5).

C. Autocorrelation times

To measure the autocorrelation time of the various
observables, we perform a dedicated run for each lattice
fB1;…; B4g where the gauge field configurations are
separated by a single iteration of the update algorithm.
Each series is replicated 36 times to increase statistical
accuracy. The integrated autocorrelation times τint of the
observables E,Q,Q2, andQ4, estimated as in Ref. [31], are
reported in Table II and shown in Fig. 2. In the range of β
values considered, Q has the largest autocorrelation time
which increases rapidly toward the continuum limit [32].
To ensure that the measurements in the main runs are
statistically independent, we have spaced them by nit
sweeps of the lattice, see Table I.

V. PHYSICS RESULTS

A first analysis of the data reveals the effectiveness of the
gradient flow in splitting the field space of the lattice theory
into different topological sectors. In Fig. 3 we plot the
histograms of the topological charge Q measured at differ-
ent flow times on the lattice D4. In the plot on the top-left
corner, the topological charge distribution at t ¼ 0 is a
smooth function over noninteger values. By increasing the
flow time, the configurations with charge close to integers
become more and more probable. The spikes in the bottom-
right plot turn out to be slightly shifted towards zero with
respect to the integer values due to discretization effects.
On the other lattices similar histograms are obtained.

A. Scale setting

The reference flow time t0 is defined through the implicit
equation [12]

t2hEtijt¼t0 ¼ 0.3: ð5:1Þ

In the region of interest t2hEti grows approximatively as a
linear function of t. Since we have computed hEti at flow
times spaced by finite steps, we have solved equation (5.1)
by interpolating linearly the two data points closest to t0.
The results are reported in Table III, with the systematic
error due to the interpolation being negligible. By compar-
ing the values of t0=a2 obtained on the lattices
fA1;…; F1g, finite-size effects are not visible at the level
of 0.1 per mille in the statistical precision for L ≥ 1.4 fm.
We thus fix the lattice spacing at all values of β from t0=a2

determined on the lattices fD1;…; D4g.
In Table III the values of t0=r20, where r0 is the Sommer

scale computed in [33], are also reported. As shown in
Fig. 4, discretization effects in this ratio are indeed
negligible with respect to the statistical errors dominated
by the 0.3%–0.6% error on r0=a. By extrapolating the
results linearly in a2=t0, we obtain in the continuum limit

ffiffiffiffiffiffi
8t0

p
=r0 ¼ 0.941ð7Þ; ð5:2Þ

which corresponds to t0=r20 ¼ 0.1108ð17Þ. To express t0 in
physical units, we supplement the theory with quenched
quarks. The value of FKr0 ¼ 0.293ð7Þ from Ref. [34]
together with FK ¼ 109.6 MeV leads to5

TABLE II. Integrated autocorrelation times of the various
observables in units of a single sweep of the update algorithm.
They have been measured on dedicated runs made of 36 series of
1000 sweeps each.

Lattice Nconf t=a2 τEint τQint τQ
2

int τQ
4

int

B1a 36 × 1000 3.36 7.0(5) 9.1(7) 5.2(3) 4.39(25)
B2a 36 × 1000 4.64 7.9(6) 17.4(18) 7.9(6) 6.3(4)
B3a 36 × 1000 6.08 12.4(11) 30(4) 12.4(11) 9.2(7)
B4a 36 × 1000 7.68 17.2(18) 73(13) 31(4) 22.1(25)

FIG. 2 (color online). The integrated autocorrelation times τint
of the primary observables as a function of ða2=t0Þ−1=2.

5Note that we use an updated determination for the physical
value of FK with respect to Ref. [34]. The change on FKr0
induced by the new tuning of the strange quark mass is negligible
with respect to the statistical error quoted.
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t0 ¼ ð0.176ð4Þ fmÞ2; ð5:3Þ

the error being dominated by the one on FKr0.

B. Topological susceptibility

The full set of results for the topological charge
moments and cumulants are given in Table IV. They

are computed6 at the reference flow time t0 by linearly
interpolating the numerical data as described in the
previous section.
In Fig. 5 we show the values of the topological

susceptibility χ ¼ hQ2i=V from the lattices fA1;…; F1g

TABLE III. Results for the reference flow time t0=a2 and the
ratio t0=r20. The error on the latter is dominated by the 0.3%–0.6%
relative error on r0=a quoted in [33].

Lattice t0=a2 t0=r20

A1 2.995(4) 0.1195(9)
B1 2.7984(9) 0.1117(9)
C1 2.7908(5) 0.1114(9)
D1 2.7889(3) 0.1113(9)
E1 2.78892(23) 0.1113(9)
F1 2.78867(16) 0.1113(9)

Lattice t0=a2 t0=r20

B2 3.7960(12) 0.1114(9)
B3 4.8855(15) 0.1113(10)
B4 6.2191(20) 0.1115(11)
D2 3.7825(8) 0.1110(9)
D3 4.8722(11) 0.1110(10)
D4 6.1957(14) 0.1111(11)

FIG. 4 (color online). Continuum limit extrapolation offfiffiffiffiffiffi
8t0

p
=r0 computed on the lattices fD1;…; D4g. The errors are

dominated by the 0.3%–0.6% relative error on r0=a quoted
in [33].

FIG. 3 (color online). Histograms of the topological charge distribution measured on the lattice D4 at different flow times.

6Unless explicitly indicated, the gradient flow time at which
the topological quantities are computed throughout this and the
next sections is t ¼ t0.
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as a function of the linear extension of the lattice. For
L ≥ 1.4 fm, finite-size effects turn out to be below our
target statistical error of approximatively 0.5%. The con-
tinuum value of t20χ can thus be obtained by extrapolating

the results from the lattices fD1;…; D4g, see left plot of
Fig. 6. The Symanzik effective theory analysis predicts
discretization errors to start at Oða2Þ, and indeed the
four data points are compatible with a linear behavior in
a2. A linear fit of all of them gives as intercept t20χ ¼
6.75ð4Þ × 10−4 with a significance of χ2=dof ¼ 1.26. A
quadratic fit gives t20χ ¼ 6.49ð18Þ × 10−4 with χ2=dof ¼
0.38, and with a coefficient of the quadratic term compat-
ible with zero within the statistical errors. By restricting the
linear fit to the three points at the finer lattice spacings, we
obtain

t20χ ¼ 6.67ð7Þ × 10−4; ð5:4Þ

with χ2=dof ¼ 0.88, which is our best result for this
quantity. It is 5 times more precise than the determination
which uses the Neuberger’s definition of the topological
charge [14].
The cumulants of the topological charge are expected

to be t-independent in the continuum limit. In the right
plot of Fig. 6 we show the topological susceptibility
computed at various flow times normalized to its value at
t0. The data points have statistical errors which range
from 0.1 to 1 per mille due to the correlation between the
numerator and the denominator. At finite lattice spacing
discretization effects are clearly visible, and they depend
on t. When each set of data is extrapolated to the
continuum limit with a quadratic function in a2=t0, the
intercepts are all compatible with 1 within the statistical
errors which, depending on t, range from 0.5 to 5
per mille. We can also compare our result in Eq. (5.4)
with the one obtained almost ten years ago with the
Neuberger’s definition of the topological charge [14]. If
we use Eqs. (5.2) and (5.4), we obtain

r40χ ¼ 0.0544ð18Þ; ð5:5ÞFIG. 5 (color online). Values of a4χ as a function of L for the
series fA1;…; F1g.

FIG. 6 (color online). Right: the dimensionless quantity t20χ as a function of a2=t0, and its extrapolation to the continuum limit. Left:
the ratio χt=χ (errors are smaller than symbols) as a function of a2=t0 for several values of t, and its extrapolation to the continuum limit.

TABLE IV. Results for the various topological observables
measured at flow time t0 on all lattices simulated.

Lattice hQ2i hQ4i hQ4ic R

A1 0.701(6) 1.75(4) 0.273(20) 0.39(3)
B1 1.617(6) 8.15(7) 0.30(4) 0.187(24)
C1 2.244(6) 15.50(10) 0.40(5) 0.177(23)
D1 3.028(6) 28.14(14) 0.63(7) 0.209(23)
E1 3.982(6) 48.38(18) 0.81(9) 0.202(23)
F1 5.167(6) 80.90(22) 0.81(11) 0.157(22)
B2 1.699(7) 9.07(9) 0.41(5) 0.24(3)
D2 3.686(14) 41.6(4) 0.83(19) 0.22(5)
B3 1.750(7) 9.58(9) 0.39(5) 0.22(3)
D3 3.523(13) 37.8(3) 0.56(17) 0.16(5)
B4 1.741(7) 9.44(9) 0.35(5) 0.20(3)
D4 3.266(12) 32.7(3) 0.68(15) 0.21(5)
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which differs by less than 1.5 standard deviations7 from
the result in Eq. (11) of Ref. [14]. It is interesting to note
that after ten years from the first computation of χ in the
continuum limit [14], we moved from an unsolved
problem to a universality test at the per mille level.8

By using the result in Eq. (5.3), the value of χ in physical
units is given by9

χ ¼ ð180.5ð5Þð43Þ MeVÞ4; ð5:6Þ

where the first error is statistical from Eq. (5.4), while the
second is the one from the uncertainty in the scale in
Eq. (5.3). If we use the physical value of t0 determined in
QCD with Nf ¼ 2 and Nf ¼ 2þ 1 flavours [37,38], we
obtain a value of χ in physical units which differs (down-
wards) by 10%–20% per linear dimension. This is the size
of the ambiguity which is expected when results of the
Yang-Mills theory are expressed in physical units.

C. The ratio R

The values of R ¼ hQ4ic=hQ2i from the lattices
fA1;…; F1g are shown in the left plot of Fig. 7 as a
function of L. Since our target statistical error is approx-
imatively 10%, a linear extension of L ≥ 1.2 fm is enough
for finite-size effects to be within errors. Given the increase
with L8 of the computational cost of R, we have chosen to
determine its continuum limit by extrapolating the data
from the lattices fB1;…; B4g, see left plot of Fig. 7. Also in
this case the Symanzik effective theory analysis predicts
discretization errors to start at Oða2Þ, and indeed the four

data points are compatible with a linear behavior in a2. A fit
to a constant of all of them gives R ¼ 0.210ð13Þ with a
significance of χ2=dof ¼ 0.83. A linear fit in a2=t0 gives

R ¼ 0.233ð45Þ; ð5:7Þ

which is our best result for this quantity. The significance of
the fit is χ2=dof ¼ 1.1, and the slope is compatible
with zero.
The value in Eq. (5.7) is compatible with the one

obtained with the Neuberger’s definition in Ref. [27], albeit
with an error 2.5 times smaller. It is also relevant to note
that a systematic study of finite-size effects was not carried
out in Ref. [27], and finite-size effects were estimated and
added to the final error.

VI. CONCLUSIONS

The θ dependence of the vacuum energy, or equivalently
the functional form of the topological charge distribution, is
a distinctive feature of the ensemble of gauge configura-
tions that dominate the path integral of a Yang-Mills theory.
The value of R ¼ 0.233ð45Þ in Eq. (5.7) rules out the θ
behavior predicted by the dilute instanton gas model. Its
large distance from 1 implies that, in the ensemble of gauge
configurations that dominate the path integral, the fluctua-
tions of the topological charge are of quantum nonpertur-
bative nature. The large Nc expansion does not provide a
sharp prediction for R. Its small value, however, is
compatible with being a quantity suppressed as 1=N2

c in
the limit of large number of colorsNc. The value of R found
here is related via the Witten-Veneziano mechanism to the
leading anomalous contribution to the η0 − η0 elastic scat-
tering amplitude in QCD. It is one of the low-energy
constants which enter the effective theory of QCD when its
Green functions are expanded simultaneously in powers of
momenta, quark masses and 1=Nc.

FIG. 7 (color online). Left: values of R at flow time t0 versus L for the series fA1;…; F1g. Right: the quantity R as a function of a2=t0
and its extrapolation to the continuum limit; the dotted blue line is the dilute instanton gas model prediction R ¼ 1.

7This value takes into account the fact that the same deter-
mination of r0 is used in the two computations.

8A first test of universality for χ was already presented in
Ref. [35] with statistical errors more than 1 order of magnitude
larger than those obtained here. Results with similar large
statistical errors were recently obtained in Ref. [36].

9Note that in Ref. [14], FK ¼ 113.1 MeV was used to set the
scale in physical units.
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The Yang-Mills gradient flow is an extremely powerful
tool for studying the topological properties of the theory. It
provides a reference scale and a sensible definition of the
topological charge which are cheap to be computed
numerically. With a modest numerical effort by today
standards, it allowed us to compute the dimensionless ratio
t20χ ¼ 6.67ð7Þ × 10−4 with a relative error of roughly 1% in
the continuum limit, i.e. 5 times smaller than the one of the
previous reference computation with the Neuberger’s
definition. The Yang-Mills gradient flow is clearly an
interesting tool to study the topological properties of the
Yang-Mills vacuum as a function of Nc.
As proven in this paper, in the continuum limit the

cumulants of topological charge defined by the Yang-Mills
gradient flow coincide with those of the universal definition
appearing in the chiral Ward identities. This in turn implies
that this definition of the topological charge is the correct
one for studying the θ dependence of the vacuum of QCD at
zero and nonzero temperature. If computed in thermal (full)
QCD, its cumulants can be directly related, for instance, to
the axion dynamics without further renormalization.
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APPENDIX A: DEFINITION AND CONVENTIONS

The Lie algebra of the SU(3) group may be identified
with the linear space of all hermitian traceless 3 × 3
matrices. In the basis Ta, a ¼ 1…8, with

tr½Ta� ¼ 0; Ta† ¼ Ta; ðA1Þ

the elements of the algebra are linear combinations of them
with real coefficients. The structure constants fabc in the
commutator relation

½Ta; Tb� ¼ ifabcTc ðA2Þ

are real and totally antisymmetric in the indices if the
normalization condition

tr½TaTb� ¼ 1

2
δab ðA3Þ

is imposed.

For the SU(3) Yang-Mills theory the standard Wilson
plaquette action is given by

S½U� ¼ β

2
a4
X
x

X
μ;ν

�
1 −

1

3
RetrfUμνðxÞg

�
; ðA4Þ

where the trace is over the color index, β ¼ 6=g20 with g0 the
bare coupling constant, a is the lattice spacing, and the
plaquette is defined as a function of the gauge links UμðxÞ
as

UμνðxÞ ¼ UμðxÞUνðxþ aμ̂ÞU†
μðxþ aν̂ÞU†

νðxÞ; ðA5Þ

with μ; ν ¼ 0;…; 3, μ̂ is the unit vector along the direction
μ and x is the spacetime coordinate.
The Neuberger-Dirac operator is defined as [1]

D ¼ 1

ā
f1þ γ5signðHÞg;

H ¼ γ5ðaDw − 1 − sÞ; ā ¼ a
1þ s

; ðA6Þ

where s is a real parameter in the range jsj < 1, and Dw is
the Wilson-Dirac operator. It is defined as

Dw ¼ 1

2
fγμð∇�

μ þ∇μÞ − a∇�
μ∇μg; ðA7Þ

where

∇μfðxÞ ¼
1

a
fUμðxÞfðxþ aμ̂Þ − fðxÞg; ðA8Þ

∇�
μfðxÞ ¼

1

a
ffðxÞ −U†

μðx − aμ̂Þfðx − aμ̂Þg ðA9Þ

are the gauge-covariant forward and backward difference
operators. The Neuberger-Dirac operator satisfies the GW
relation

γ5DþDγ5 ¼ āDγ5D: ðA10Þ

The link differential operators acting on functions fðUÞ of
the gauge field are

∂a
x;μfðUÞ ¼ d

ds
fðe−isXUÞjs¼0;

XνðyÞ ¼
�
Ta if ðy; νÞ ¼ ðx; μÞ
0 otherwise

: ðA11Þ

While these depend on the choice of the generators Ta, the
combination

NON-GAUSSIANITIES IN THE TOPOLOGICAL CHARGE … PHYSICAL REVIEW D 92, 074502 (2015)

074502-11



∂x;μfðUÞ ¼ Ta∂a
x;μfðUÞ ðA12Þ

can be shown to be basis-independent.

APPENDIX B: RUNGE-KUTTA-MUNTHE-KAAS
INTEGRATORS

Consider an ordinary differential equation,

_y ¼ fðyÞy; yð0Þ ¼ y0; ðB1Þ

where y ∈ G for some Lie group G and fðyÞ∶ G → g, with
g being the Lie algebra of G. Runge-Kutta-Munthe-Kaas
methods [28–30] are structure-preserving Runge-Kutta
methods designed to integrate numerically these equations
on the group manifold, for a general introduction see
Ref. [39]. The starting point is to write the solution of
(B1) as

yðtÞ ¼ exp fvðtÞgyð0Þ; ðB2Þ

and then solve the ordinary differential equation

_v ¼ dexp−1v ffðyÞg; vð0Þ ¼ 0; ðB3Þ

where dexp−1v has the series expansion

dexp−1v ¼
X∞
k¼0

Bk

k!
adnv ¼ 1þ 1

2
½v; ·� þ 1

12
½v; ½v; ·�� þ…;

ðB4Þ

with Bk being the Bernoulli numbers and adv ¼ ½v; ·� the
adjoint action. Since vðtÞ takes values in the Lie algebra,
the differential equation (B3) can be numerically integrated
using an ordinary RK method. No extra conditions are
needed, and any RK method of a given order can be used as
a base for a RKMK method of the same order. The only
complication is given by the operator d exp−1v , which can be
substituted with its series expansion in Eq. (B4) suitably
truncated according to the order of the method. The RKMK
method of qth order with s stages is given by

for i ¼ 1; 2;…; s∶

ui ¼
Xs
j¼1

ai;j ~kj

ki ¼ hffexpðuiÞy0g
~ki ¼ dexpinvðui; ki; qÞ

v ¼
Xs
j¼1

bj ~kj

y1 ¼ expfvgy0; ðB5Þ

where dexpinvðu; v; qÞ is the truncated series,

dexpinvðu; v; qÞ ¼
Xq−1
k¼0

Bk

k!
adku; ðB6Þ

and ai;j, bi are the coefficients of the qth-order s-stages RK
method. The fourth-order RKMK method that we imple-
mented is obtained starting from the very common fourth-
order 4-stages RK method with coefficients, arranged in a
Butcher tableau,

0
1
2

1
2

1
2

0 1
2

1 0 0 1

1
6

1
3

1
3

1
6

; ðB7Þ

introduced by Kutta himself. At first sight this method
entails the computation of six different commutators of ki
structures. However, it is possible to reduce the number of
independent commutators needed to only two. As
explained in Ref. [40], this is due to the fact that, whereas
the ki are in general OðhÞ, some combinations of them are
higher order in h and so the corresponding commutators
can be neglected. The resulting integration algorithm is

u1 ¼ 0; ki ¼ hffexpðuiÞy0g

u2 ¼
1

2
k1;

u3 ¼
1

2
k2 þ

1

8
½k1; k2�;

u4 ¼ k3;

v ¼ 1

6
k1 þ

1

3
k2 þ

1

3
k3 þ

1

6
k4 −

1

12
½k1; k4�;

y1 ¼ expðvÞy0: ðB8Þ

Alternative RKmethods for integrating (B1) are given by
the Crouch-Grossman integrators [41,42]. They are a
special case of so-called commutator-free Lie group meth-
ods [43]. The third-order algorithm described in Ref. [12]
belongs to this class. The conditions which the coefficients
need to satisfy, order by order, are computable up to
arbitrary order [44]. They are given by the order conditions
for a classical RKmethod, plus specific extra conditions. At
fourth order, however, we did not find a coefficient scheme
with the useful properties of the Lüscher’s integrator in
terms of exponential reusing.

1. Application to the Yang-Mills gradient flow

The Yang-Mills gradient flow equation (3.1) can be
written as an ordinary first-order autonomous differential
equation,

_VðtÞ ¼ Z½VðtÞ�VðtÞ; Vð0Þ ¼ V0; ðB9Þ
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where

Z½VðtÞ� ¼ −g20f∂x;μS½VðtÞ�g; ðB10Þ

and the link differential operators are defined in Eq. (A11).
The fourth-order RKMK method in (B8) reads

W1 ¼ VðtÞ; Zi ¼ ϵZ½Wi�;

W2 ¼ exp

�
1

2
Z1

�
VðtÞ;

W3 ¼ exp

�
1

2
Z2 þ

1

8
½Z1; Z2�

�
VðtÞ;

W4 ¼ expfZ3gVðtÞ;

Vðtþ a2ϵÞ ¼ exp

�
1

6
Z1 þ

1

3
Z2 þ

1

3
Z3 þ

1

6
Z4

−
1

12
½Z1; Z4�

�
VðtÞ: ðB11Þ

This method computes 4 times the force field Z½Wi� and 4
times the Lie group exponential. The commutators are
economically implemented exploiting structure constants
of g. Each iteration needs space in memory for one
auxiliary gauge field and three Zi fields. Gauge fields
are stored in memory with a full 3 × 3 complex matrix,
which has 18 real components, for each link. A Zi field is
an element of suð3Þ, which is an eight-dimensional linear
space, for each link. Thus, the method (B11) requires space
for ð18þ 3 × 8Þ × 4V floating point numbers. Each expo-
nential of a g-valued combination of Z½Wi� reduce to 4V

suð3Þ matrices exponentials, which can be computed
economically exploiting the Cayley-Hamilton theorem as
described in [45].
In the left plot of Fig. 8 the RKMK method is compared

to lower-order Runge-Kutta methods, such as the third-
order method rk3 found in [12]. The comparison is done
averaging over 100 configurations at β ¼ 5.96 on a 124

lattice evolved at t ¼ 3.2a2. The rk4mk algorithm scales
correctly as a fourth-order method. However, the prefactor
appears to be larger, thus the new method is more precise
with respect to rk3 in Ref. [12] for ϵ≲ 0.1.
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