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Abstract. The analysis of business requirements and the specification
of business processes are fundamental for the development of informa-
tion systems. The first part of this paper presents B-Tropos as a way to
combine business goals and requirements to the business process model.
B-Tropos enhances a well-known agent-oriented early requirements engi-
neering framework with declarative business process-oriented constructs,
inspired by the DecSerFlow and ConDec languages. In the second part of
the paper, we show a mapping of B-Tropos onto SCIFF, a computational
logic-based framework, for properties and conformance verification.

1 Introduction

This work proposes an integration of different techniques for information systems
engineering, with the aim to reconcile requirements elicitation with declarative
specification, prototyping and analysis, inside a single unified framework.

In tackling the requirements elicitation part, we take an agent-oriented per-
spective. Modeling and analyzing requirements of IT systems in terms of agents
and their goals is an increasingly popular approach [16] which helps understand-
ing the organizational setting in which a system will operate, as well as modeling
the stakeholders’ strategic interests, and finally documenting the rationale be-
hind the introduction of the system and the design choices made. Following
system requirements elicitation one must define a corresponding business pro-
cess. An very important issue that must be addressed at this stage is how to
link the “strategic” business goals and requirements with the business process
model [19]. Many problems arise from organizational theory and strategic man-
agement perspectives due to limits on particular resources (e.g., cost, time, etc.).
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Business strategies have a fundamental impact on the structure of enterprises
leading to efficiency in coordination and cooperation within economic activities.

Tropos [9] is an agent-oriented software engineering methodology which uses
the concepts of agent and goal from the early phases of the system development.
Tropos has a number of interesting features which made it become very popular.
However, a drawback of many methodologies like Tropos is that they do not
clearly define how to move from a requirements model on to a business process
model. For example, Tropos does not allow to model temporal and data con-
straints between tasks assigned to agents: which means that when developing
the business process, the Tropos model does not have enough information to de-
fine a temporal ordering between activities. Likewise, start and completion times,
triggering events, deadlines, and many other aspects not necessarily related with
the temporal dimension are essential elements in the description of a business
process model, but they are not in the Tropos models. How to enhance Tropos
with information that can be used automatically in the generation of a business
model is one of the aspects that we address in this work. We extend Tropos with
declarative business process-oriented constructs, inspired by two recent graph-
ical languages: DecSerFlow [2] and ConDec [1]. We enhance the characteristic
goal-oriented approach of Tropos agents by introducing a high-level reactive,
process-oriented dimension. We refer to the extended framework as to B-Tropos.
Furthermore, we show how both these complementary aspects could be mapped
onto the SCIFF language [7], which sits at the basis of a computational logic-
based framework for the specification and verification of interaction protocols in
an open multi-agent setting. In the presentation of this work we elaborate on the
issue of time (ordering, deadlines, etc.) because it is an essential part of business
process modeling, and because it is easy to explain by intuitive examples. How-
ever, B-Tropos is not only a temporal extension of Tropos, but it covers also the
treatment of conditions on process input/output data and other constraints.

The marriage of B-Tropos with SCIFF sets a link between specification, pro-
totyping and analysis: in fact, SCIFF specifications can be used to implement
and animate logic-based agents [4], as well as to perform different verification
tasks, such as properties verification [5] and conformance verification of a given
execution trace [7]. Prototyping (animation) and analysis (properties and confor-
mance verification) constitute an important added value that can make B-Tropos
appealing to a large set of potential users. Early requirements engineers and pro-
cess engineers will be able to test their models directly and get an immediate
picture of the system being developed. Engineers testing the properties of the
models will not have to resort to ad-hoc, error-prone translations of high-level
models into other languages, such as those used to feed specifications into model
checkers, since B-Tropos can directly generate SCIFF programs. Managers who
need to monitor the correct behavior of a running system will have a SCIFF spec-
ification of the system being automatically generated by the B-Tropos model,
and based on such a specification they will be able to automatically check the
compliance of the system using the SOCS-SI runtime and offline checking facil-
ities [6].



In this work, we focus on specific aspects of this global vision. We define
B-Tropos and the mapping of SCIFF, with an emphasis on temporal reasoning
aspects. To make the discussion more concrete, the proposed approach is applied
to modeling and analyzing an intra-enterprise organizational model, focusing on
the coordination of economic activities among different units of an enterprise
collaborating to produce a specific product. The organizational model is taken
from the case study studied within FIRB National TOCAI.IT project3.

The structure of the paper is as follows. Section 2 briefly presents the Tropos
methodology. Section 3 describes B-Tropos. The SCIFF framework is presented
in Section 4, whereas Section 5 defines the mapping of B-Tropos concepts to
SCIFF specifications. The paper ends with the overview of related work and
conclusive remarks in Section 6.

2 The Tropos Methodology

Tropos [9] is an agent-oriented software engineering methodology tailored to de-
scribe and analyze socio-technical systems along the whole development process
from requirements analysis up to implementation. One of its main advantages is
the importance given to early requirements analysis. This allows one to capture
why a piece of software is developed, behind what or how is done.

The methodology is founded on models that use the concepts of actors (i.e.,
agents and roles), goals, tasks, resources, and social dependencies for defining
the obligations of actors to other actors. An actor is an active entity that has
strategic goals and performs actions to achieve them. A goal represents a strate-
gic interest of an actor. A task represents a particular course of actions that
produces a desired effect. A resource represents a physical or an informational
entity without intentionality. A dependency between two actors indicates that
one actor depends on another in order to achieve some goal, execute some task,
or deliver some resource. The former actor is called the depender, while the latter
is called the dependee. The object around which the dependency centers, which
is goal, task or resource, is called the dependum. In the graphical representa-
tion, actors are represented as circles; goals, tasks and resources are respectively
represented as ovals, hexagons and rectangles; and dependencies have the form
depender → dependum → dependee.

From a methodological perspective, Tropos is based on the idea of building a
model of the system that is incrementally refined and extended. Specifically, goal
analysis consists of refining goals and eliciting new social relationships among
actors. Goal analysis is conducted from the perspective of single actors using
three reasoning techniques: means-end analysis, AND/OR decomposition, and
contribution analysis. Means-end analysis aims at identifying tasks to be exe-
cuted in order to achieve a goal. Means-end relations are graphically represented
as arrows without any label on them. AND/OR decomposition combines AND
and OR refinements of a root goal or a root task into subparts. In essence,

3 FIRB-TOCAI RBNE05BFRK – http://www.dis.uniroma1.it/˜tocai/



Fig. 1. Product Development Process in Tropos

AND-decomposition is used to define the process for achieving a goal or a task,
whereas OR-decomposition defines alternatives for achieving a goal or executing
a task. Contribution analysis identifies the impact of goals and tasks over the
achievement of other goals and tasks. This impact can be positive or negative
and is graphically represented as edges labeled with “+” and “−”, respectively.

Example 1. Fig. 1 presents the Tropos diagram representing a product develop-
ment process. In this scenario, different divisions of a company have to cooperate
in order to produce a specific product. The Customer Care division is responsible
for deploying products to customers, which refines it into subgoals manufacture
product, for which it depends on the Manufacturing division, and present product,
for which it depends on the Sales division. In turn, Manufacturing decomposes
the appointed goal into subgoals define solution for product, for which it de-
pends on the Research & Development (R&D) division, and make product that
it achieves through task execute production line. To achieve goal define solution
for product, R&D has to achieve goals provide solution, which it achieves through
tasks design solution, evaluate solution, and deploy solution, which it achieves
through task define production plan. The evaluation of the solution is performed



in terms of costs and available resources. R&D executes task assess costs, which
consists of calculate bill of quantities and evaluate bill of quantities, to evaluate
costs, and depends on the Warehouse for evaluate available resources. The Ware-
house either queries the databases to find available resources or asks the Purchases
division to buy resources from external Supplier. Purchases searches in company’s
databases for possible Suppliers and selects the one who provides the best offer.

3 Towards declarative process-oriented annotations

How business processes can be obtained from requirements analysis is an ur-
gent issue for the development of a system. Unfortunately, Tropos is not able
to cope with this issue mainly due to the lack of temporal constructs. In this
section we discuss how Tropos can be extended in order to deal with high-level
process-oriented aspects. The proposed extensions intend to support designers
in defining durations, absolute time, and data-based decision constraints of goals
and tasks as well as declaratively specifying relations between them. These ex-
tensions are based on the DecSerFlow [2] and ConDec [1] graphical languages
for the declarative representation of service flows and flexible business processes.
The enhanced Tropos is called B-Tropos.

3.1 Some definitions

For the sake of clarity, we now give some informal definitions, which will be used
to describe the Tropos extensions introduced in this section.

Definition 1 (Time interval). A time interval is a definite length of time
marked off by two (non negative) instants (Tmin and Tmax), which could be con-
sidered both in an exclusive or inclusive manner. As usually, we use parentheses
( (. . .) ) to indicate exclusion and square brackets ( [. . .] ) to indicate inclusion.

Definition 2 (Relative time interval). A time interval is relative if initial
instant and final instant are defined in function of another instant. Given a time
interval TI marked off by Tmin and Tmax and a time instant T , two relative time
intervals could be defined w.r.t. T

– TI+T to denote the time interval marked off by T + Tmin and T + Tmax;
– TI−T to denote the time interval marked off by T − Tmax and T − Tmin.

For example, [10, 15)+T1 ≡ [T1 + 10, T1 + 15) and (0, 7]−T2 ≡ [T2 − 7, T2).

Definition 3 (Absolute time constraint). An absolute time constraint is a
unary constraint of the form T OP Date, where T is a time variable, Date
is a date and OP ∈ {at, after, after or at, before, before or at} (with their
intuitive meaning).

Definition 4 (Data-based decision). A data-based decision formalizes a data-
driven choice in terms of a CLP [17] constraint or Prolog predicate.

Definition 5 (Condition). A condition is a conjunction of data-based deci-
sions and absolute time constraints.
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Fig. 2. Extended notation for tasks and goals

3.2 Tasks/Goals extension

In order to support the modeling and analysis of process-oriented aspects of
systems, we have annotated goals and tasks with temporal information such as
start and completion time (the notation is shown in Fig. 2). Each task/goal can
also be described in terms of its allowed duration (D in Fig. 2). This allows one to
constrain, for instance, the completion time to the start one: completion time ∈
D+source time. Additionally, absolute temporal constraints can be used to define
start and completion times of goals and tasks. Tasks can also be specified in
terms of their input and output. Finally, goals and tasks can be annotated with
a fulfillment condition, which defines when they are successfully executed.

3.3 Process-oriented constraints

To refine a requirements model into a high-level and declarative process-oriented
view, we have introduced different connections between goals and tasks, namely
relation, weak relation, and negation (see Table 1). These connections allow de-
signers to specify partial orderings between tasks under both temporal and data
constraints. To make the framework more flexible, connections are not directly
linked to tasks but to their start and completion time. A small circle is used to
denote the connection source, which determines when the triggering condition
is satisfied (co-existence and succession connections associate the circle to both
end-points, since they are bi-directional).

Relation and negation connections are based on DecSerFlow [2] and ConDec
[1] template formulas, extended with constraints on execution times (e.g., dead-
lines) and data-based and absolute time constraints. Conditions can be specified
on both start and completion time and are delimited by curly braces (see {c},
{r} and {cri} in Table 1); the source condition is a triggering condition, whereas
the target condition represents a restriction on time and/or data.

The intended meaning of a responded presence relation is: if the source hap-
pens s.t. c is satisfied, then the target should happen and satisfy r. The co-
existence relation applies the responded presence relation in both directions, by
imposing that the two involved tasks, when satisfying cr1 and cr2, should co-exist
(namely either none or both are executed). Other relation connections extend the
responded presence relation by specifying a temporal ordering between source
and target events; optionally, a relative time interval (denoted with Tb in Table



relation weak relation negation

responded
presence

co-existence 1 2 1 2 1 2
response

T b T b T b
precedence

T b T b T b
succession

T b1 2 1 2T b 1 2T b
Table 1. Tropos extensions to capture process-oriented constraints (grouped negation
connections share the same intended meaning, as described in [2]).

(a) A during B (b) A meets B

Fig. 3. Representation of two simple Allen’s intervals in B-Tropos

1) could be attached to these connections, bounding when the target is expected
to happen w.r.t. the time at which the source happened.4

In particular, the response relation constrains the target to happen after
the source. If Tb is specified, the minimum and maximum time are respectively
treated as a delay and a deadline, i.e. the target should occur between the min-
imum and the maximum time after the source (target time ∈ T+source time

b ).
The precedence relation is opposite to response relation, in the sense that it con-
strains the target to happen before the source. A succession relation is used to
mutually specify that two tasks are the response and precedence of each other.
By mixing different relation connections, we can express complex temporal de-
pendencies and orderings, such as Allen’s intervals [8] (see Fig. 3). For example,
Allen’s meets relation is formalized by imposing that A’s completion should be
equal to B’s start (see Fig. 3(b)).

As in DecSerFlow and ConDec, we assume an open approach. Therefore, we
have to explicitly specify not only what is expected, but also what is forbid-
den. These “negative” dependencies are represented by negation connections,
the counter-part of relation connections. For example, the negation co-existence
between two task states that when one task is executed, the other task shall
never be executed, either before or after the source.

Summarizing, through relation and negation connections designers can add
a horizontal declarative and high level process-oriented dimension to the verti-

4 If Tb is not specified, the default interval is (0,∞).



(a) Response relation (b) Weak response relation

Fig. 4. Integrating process-oriented and goal-directed dimensions in B-Tropos
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Fig. 5. Process-oriented extensions applied on a fragment of Fig. 1

cal goal-directed decomposition of goals and tasks. It is worth noting that, in
presence of OR decompositions, adding connections may affect the semantics of
the requirements model. The decomposition of task A in Fig. 4(a) shows that its
subtask C can be satisfied by satisfying D or E. On the contrary, the response
relation between B’s completion and D’s start makes D mandatory (B has to be
performed because of the AND-decomposition, hence D is expected to be per-
formed after B). This kind of interaction is not always desirable. Therefore, we
have introduced weak relation connections that relax relation connections. Their
intended meaning is: whenever both the source and the target happen, then the
target must satisfy the connection semantics and the corresponding restriction.
The main difference between relations and weak relations is that in weak re-
lations the execution is constrained a posteriori, after both source and target
have happened. Differently from Fig. 4(a), in Fig. 4(b) the response constraint
between B and D should be satisfied only if D is executed.

Finally, B-Tropos permits to constrain non-leaf tasks, leading to the possi-
bility of expressing some process-oriented patterns [3]. For instance, a relation
connection whose source is the completion of a task, which is AND-decomposed
into two subtasks, triggers when both subtasks have been executed. Therefore,
the connection resembles the concept of a synchronizing merge on the leaf tasks.

To show how process-oriented constraints could be added to a Tropos model,
we extend a fragment of the diagram represented in Fig. 1; the result is shown
in Fig. 5. The first extension concerns the decomposition of task assess costs:
the bill of quantities can be evaluated only after having been calculated. Such a



constraint could be modeled in B-Tropos by (1) indicating that the calculation
produces a bill of quantities, whereas the evaluation takes a bill as an input, and
(2) attaching a response relation connection between the completion of task cal-
culate bill of quantities and the start of task evaluate bill of quantities. The second
extension has the purpose of better detailing task find resources in Warehouse,
namely representing that (1) task duration is at least of 10 time units, (2) the
task produces as an output a datum (called Found), which describes whether or
not resources have been found in the Warehouse, and (3) the task is considered
fulfilled only if resources have been actually found, i.e., Found is equal to yes.

4 SCIFF

SCIFF [7] is a formal framework based on abductive logic programming [18],
developed in the context of the SOCS project5 for specifying and verifying inter-
action protocols in an open multi-agent setting. SCIFF introduces the concept
of event as an atomic observable and relevant occurrence triggered at execution
time. The designer has the possibility to decide what has to be considered as an
event; this generality allows him to decide how to model the target domain at
the desired abstraction level, and to exploit SCIFF for representing any evolving
process where activities are performed and information is exchanged.

We distinguish between the description of an event, and the fact that an event
has happened. Happened events are represented as atoms H(Ev, T ), where Ev
is a term and T is an integer, representing the discrete time point at which the
event happened. The set of all the events happened during a protocol execution
constitutes its log (or execution trace). Furthermore, the SCIFF language sup-
ports the concept of expectation as first-class object, pushing the user to think
of an evolving process in terms of reactive rules of the form “if A happened, then
B is expected to happen”. Expectations about events come with form E(Ev, T )
where Ev and T are variables, eventually grounded to a particular term/value.

The binding between happened events and expectations is given by means of
Social Integrity Constraints (ICs). They are forward rules, of the form Body →
Head, where Body can contain literals and (conjunctions of happened and ex-
pected) events and Head can contain (disjunctions of) conjunctions of expecta-
tions. CLP constraints and Prolog predicates can be used to impose relations
or restrictions on any of the variables, for instance, on time (e.g., by expressing
orderings or deadlines). Intuitively, IC allows the designer to define how an in-
teraction should evolve, given some previous situation represented in terms of
happened events; the static knowledge of the target domain is instead formalized
inside the SCIFF Knowledge Base. Here we find pieces of knowledge of the inter-
action model as well as the global organizational goal and/or objectives of single
participants. Indeed, SCIFF considers interaction as goal-directed, i.e., envis-
ages environments in which each actor, as well as the overall organization, could

5 SOcieties of heterogeneous ComputeeS, EU-IST-2001-32530 (home page
http://lia.deis.unibo.it/research/SOCS/).



have some objective only achievable through interaction; by adopting such a vi-
sion, the same interaction protocol could be seamlessly exploited for achieving
different strategic goals. This knowledge is expressed in the form of clauses (i.e.,
a logic program); a clause body may contain expectations about the behavior
of participants, defined literals, and constraints, while their heads are atoms. As
advocated in [13], this vision reconciles in a unique framework forward reactive
reasoning with backward, goal-oriented deliberative reasoning.

In SCIFF an interaction model is interpreted in terms of an Abductive Logic
Program (ALP) [18]. In general, an ALP is a triple 〈P,A, IC〉, where P is a logic
program, A is a set of predicates named abducibles, and IC is a set of Integrity
Constraints. Roughly speaking, the role of P is to define predicates, the role of A
is to fill-in the parts of P that are unknown, and the role of IC is to control the
way elements of A are hypothesized, or “abducted”. Reasoning in abductive logic
programming is usually goal-directed, and accounts to finding a set of abducted
hypotheses ∆ built from predicates in A such that P ∪ ∆ |= G (being G a
goal) and P ∪ ∆ |= IC. The idea underlying SCIFF is to adopt abduction to
dynamically generate the expectations and to perform the conformance checking
between expectations and happened events (to ensure that they are following the
interaction model). Expectations are defined as abducibles: the framework makes
hypotheses about how participants should behave. Conformance is verified by
trying to confirm the hypothesized expectations: a concrete running interaction is
evaluated as conformant if it fulfills the specification. Operationally, expectations
are generated and verified by the SCIFF proof procedure,6 a transition system
which has been proved sound and complete w.r.t. the declarative semantics [7].
The proof procedure is embedded within SOCS-SI,7 a JAVA-based tool capable
of accepting different event-sources (or previously collected execution traces) and
checking if the actual behavior is conformant w.r.t. a given SCIFF specification.

5 Mapping B-Tropos concepts to the SCIFF framework

In this section we present the mapping of B-Tropos concepts into SCIFF speci-
fications, briefly describing how the obtained formalization is used to implement
the skeleton of logic-based agents.

Table 2 summarizes the formalization of the goal-oriented part of B-Tropos
in SCIFF. This part represents the static knowledge of the application domain,
so it is modeled inside the SCIFF knowledge base. Two fundamental concepts
are goal achievement and task execution. These concepts are modeled in SCIFF
by considering the actor who is trying to achieve the goal or executing the task
and the involved start and completion times; such times should satisfy both
duration and absolute time constraints eventually associated to the goal/task.
In some cases the designer may prefer to keep the model at an abstract level, so
goals can be neither refined nor associated to tasks. Abduction allows us to face
such a lack of information by reasoning on goal achievement in a hypothetical
6 Available at http://lia.deis.unibo.it/research/sciff/.
7 Available at http://www.lia.deis.unibo.it/research/socs si/socs si.shtml.



Goal

D1 2 achieve(X, G, Ti, Tf )←achieved(X, A, Ti, Tf ),

Tf ∈ D+Ti , ac1, ac2, . . . .

Task 1 2
execute(X, A, Ti, Tf )←E(event(start, X, A), T i),

E(event(compl, X, A), T f),

fulfillment condition,

Tf ∈ D+Ti , ac1, ac2, . . . .

AND
decomposi-
tion

achieve(X, G, Ti, Tf )←
achieve(X, G1, Ti1, Tf1), . . . , achieve(X, Gn, Tin, Tfn),

Ti = min{Ti1, . . . , Tin}, Tf = max{Tf1, . . . , Tfn}.
execute(X, A, Ti, Tf )←

execute(X, A1, Ti1, Tf1), . . . , execute(X, An, Tin, Tfn),

Ti = min{Ti1, . . . , Tin}, Tf = max{Tf1, . . . , Tfn}.

OR decom-
position

achieve(X, G, Ti, Tf )←achieve(X, G1, Ti, Tf ).

. . .

achieve(X, G, Ti, Tf )←achieve(X, Gn, Ti, Tf ).
execute(X, A, Ti, Tf )←execute(X, A1, Ti, Tf ).

. . .

execute(X, A, Ti, Tf )←execute(X, An, Ti, Tf ).

Means-end achieve(X, G, Ti, Tf )← execute(X, A, Ti, Tf ).

Positive
contribu-
tion

achieve(X, G1, Ti, Tf )← achieve(X, G2, Ti, Tf ).

Negative
contribu-
tion

achieve(X, G1, Ti, Tf ), achieve(X, G2, Ti, Tf )→⊥

Goal De-
pendency

achieve(X, G, Ti, Tf )←E(delegate(X, Y, G, Tf ), Ti).

Task De-
pendency

execute(X, A, Ti, Tf )←E(delegate(X, Y, A, Tf ), Ti).

Table 2. Mapping of the goal-oriented proactive part of B-Tropos in SCIFF.

way. In particular, we have introduced a new abducible called achieved to
hypothesize that the actor has actually reached the goal. Task execution mainly
differs from goal achievement in that task start and completion events are verified
by a fulfillment condition and appear in the execution trace. Tropos relations
are then formalized in SCIFF as rules on the basis of these concepts.

– AND/OR-decompositions and means-end are trivially translated to SCIFF.
– Positive contributions are implemented with a clause specifying that the

target is achieved if the contribution source is achieved.



Response

T b hap(event(Ev, A, X), T1) ∧ c

→exp(event(Ev, A, X), T2) ∧ r ∧ T2 ∈ T+T1
b .

Weak Re-
sponse

T b hap(event(Ev, A, X), T1) ∧ c

∧hap(event(Ev, A, X), T2)→ r ∧ T2 ∈ T+T1
b .

Negation
Response

T b hap(event(Ev, A, X), T1) ∧ c

∧hap(event(Ev, A, X), T2) ∧ r ∧ T2 ∈ T+T1
b →⊥ .

Table 3. Mapping of B-Tropos response connections in SCIFF.

– Negative contributions are implemented as denials, by imposing that achiev-
ing both the involved goals leads to inconsistency.

– In goal and task dependencies, it is expected that the depender will commu-
nicate to the dependee that he/she requires the goal to be achieved inside
a certain time interval. The communication of this kind of delegation is ex-
plicit (i.e. observable), so it can be directly mapped to a SCIFF expectation
about depender’s behavior.

The reactive part of B-Tropos encompasses both the reaction to a request
for achieving a goal and process-oriented constraints. As already pointed out,
process-oriented constraints are inspired by DecSerFlow/ConDec template for-
mulas, for which a preliminary mapping to SCIFF has been already established
[12]. Connections belonging to the same family (i.e. relations, weak relations and
negations) are translated to very similar ICs: the only main difference is the way
in which time is constrained, to reflect the connection semantics. An example is
given in Table 3, where response connections have been formalized; they specify
in a straightforward way the informal description given in Section 3.

Predicates hap and exp respectively represent the happening and the expec-
tation of a complex or simple event (remember indeed that also non-leaf tasks
could be constrained). Since the start and completion of leaf tasks are considered
as observable events, then for a leaf-task A (Ev ∈ {start, completion}):

hap(event(Ev, A, X), T )← H(event(Ev, A, X), T ).

exp(event(Ev, A, X), T )← E(event(Ev, A, X), T ).

Complex events recursively follow the AND/OR decomposition philosophy:

– the start/completion of an OR-decomposed task happen (resp. is expected
to happen) when one of its (sub)tasks start/completion happens (resp. is
expected to happen);

– the start of an AND-decomposed task happens (resp. is expected to happen)
when its first (sub)task is started (resp. expected to started);

– the completion of an AND-decomposed task happens (resp. is expected to
happen) when its last (sub)task is completed (expected to be completed).

To model the reaction to a request for achieving a goal G, we simply assume
that when a dependee Y receives from depender X a request for achieving goal



Table 5.1 Formalization of the B-Tropos model fragment shown in Fig. 5

KBr&d : achieve(r&d, eval solution, Ti, Tf )←achieve(r&d, eval costs, Ti1, Tf1),

achieve(r&d, eval resources, Ti2, Tf2),

min(Ti, [Ti1, Ti2]), max(Tf , [Tf1, Tf2]).

achieve(r&d, eval costs, Ti, Tf )←execute(r&d, assess costs, Ti, Tf ).

execute(r&d, assess costs, Ti, Tf )←execute(r&d, calc bill, Ti1, Tf1),

execute(r&d, eval bill, Ti2, Tf2),

min(Ti, [Ti1, Ti2]), max(Tf , [Tf1, Tf2]).

execute(r&d, calc bill, Ti, Tf )←E(event(start, r&d, calc bill), Ti),

E(event(compl, r&d, calc bill, [CBill]), Tf ), Tf > Ti.

execute(r&d, eval bill, Ti, Tf )←E(event(start, r&d, eval bill, [EBill]), Ti),

E(event(compl, r&d, eval bill), Tf ), Tf > Ti.

achieve(r&d, eval resources, Ti, Tf )←E(delegate(r&d, wh, eval resources, Tf ), Ti).

KBwh : achieve(wh, eval resources, Ti, Tf )←execute(wh, find resources, Ti, Tf ).

execute(wh, find resources, Ti, Tf )←execute(wh, find in wh, Ti, Tf ).

execute(wh, find resources, Ti, Tf )←execute(wh, buy, Ti, Tf ).

execute(wh, find resources, Ti, Tf )←E(event(start, wh, find in wh), Ti),

E(event(compl, wh, find in wh, Found), Tf ),

Tf ≥ Ti + 10, Found = yes.

execute(wh, buy, Ti, Tf )←E(event(start, wh, buy), Ti),

E(event(compl, wh, buy), Tf ), Tf > Ti.

ICsr&d : H(event(compl, r&d, calc bill, [CBill]), T1)→E(event(start, r&d, eval bill, [EBill]), T2)

∧ T2 > T1, EBill = CBill.

ICswh : H(delegate(r&d, wh, eval resources, Tf ), Ti)→achieve(wh, eval resources, Ti, Tf ).

G, then Y should react by assuming the commitment of actually achieving G:

H(delegate(X, Y, G, Tf ), Td)→ achieve(Y, G, Ti, Tf ) ∧ Ti > Td.

Table 5.1 shows the SCIFF formalization corresponding to the B-Tropos
diagram of Fig. 5. Here Research & Development and Warehouse are respectively
represented as r&d and wh, and symbol = is used to denote unification.

The provided formalization could be used to directly implement the skeleton
of logic-based agents, as for example the ones described in [4]. Such agents follow
the Kowalsky-Sadri cycle for intelligent agents, by realizing the think phase
with the SCIFF proof-procedure and the observe and act phases in JADE. The
proof-procedure embedded into SCIFF-agents is equipped with the possibility
to transform expectations about the agent itself into happened events, and with
a selection rule for choosing a behavior when more different choices are available.

In particular, each actor represented in a B-Tropos model could be mapped
into a SCIFF-agent whose deliberative pro-active part (formalized in the agent’s
knowledge base) is driven by the goal/task decomposition of its root goal, and
whose reactive behavior (formalized as a set of ICs) is determined by the dele-
gation mechanism and the process-oriented constraints. The agent that wants to



achieve the global goal (e.g., Customer Care in Fig. 1) starts by decomposing it,
whereas other actors wait until an incoming request from a depender is observed;
in this case, the delegation reactive rule of the agent is triggered, and the agent
tries to achieve its root goal. The root goal is decomposed until finally one or
more expectations are generated. Such expectations could be either requests or
start/completions of tasks, and thus are transformed to happened events, i.e.
actions performed by the agent.

Table 5.1 shows how the formalized SCIFF specification is assigned to the
two agents under study, i.e., the Warehouse and R&D unit. To have an intuition
about how the two agents act and interact, let us consider the case in which the
R&D unit should achieve its top goal (because it has received the corresponding
delegation from the Manufacturing division). The unit will decompose the goal
obtaining, at last, the following set of expectations about itself:8

E(event(start, r&d, calc bill), Tscb), . . . ,

E(event(compl, r&d, calc bill, [Bill]), Tccb), Tccb > Tscb,

E(event(start, r&d, eval bill, [Bill]), Tseb), Tseb > Tccb,

E(event(compl, r&d, eval bill), Tceb), Tceb > Tseb,

E(delegate(r&d, wh, eval resources, Tcer), Tser).

This set of expectations could be read as an execution plan, consisting of two
concurrent parts: (1) a sequence about start/completion of leaf tasks, ordered by
the response relation which constrains the bill calculation and evaluation; (2) the
delegation of resources evaluation, which should be communicated to the Ware-
house. In particular, when the expectation about the delegation is transformed
to a happened event by the R&D agent, the Warehouse agent is committed to
achieve the delegated goal inside the time interval (Tser, Tcer).

Besides the implementation of logic-based agents, SCIFF can also be used
to perform different kinds of verification, namely performance verification and
conformance verification. Performance verification is devoted to prove that stake-
holders can achieve their strategic goals in a given time. Such a verification can
also be used to evaluate different design alternatives in terms of system perfor-
mances. Conformance verification [7] is related to the auditing measures that
can be adopted for monitoring the activities performed by actors within the sys-
tem. The idea underlying conformance verification is to analyze system logs and
compare them with the design of the system. This allows system administrators
to understand whether or not stakeholders have achieved their goals and, if it
is not the case, predict future actions. For the lack of space, we do not discuss
here the details of these kinds of verification.

6 Discussion

In this work we proposed to integrate different techniques for information sys-
tems engineering, with the aim to reconcile requirements elicitation with spec-
8 By imposing, through a special integrity constraint, that two different expectations

about the same event should be fulfilled by one happened event.



ification, prototyping and analysis, inside a single unified framework. We have
presented B-Tropos: an extension of Tropos with declarative process-oriented
constraints, and its mapping into the SCIFF language. We have mainly focused
on the modeling and mapping of aspects related to task and goal ordering and
other time-related issues, by using connections inspired by DecSerFlow and Con-
Dec languages. Augmenting a Tropos model with such constraints has the effect
that both the proactive agents behavior and the reactive, process-oriented one
could be captured within the same diagram.

The mapping of B-Tropos onto SCIFF makes it possible to directly imple-
ment logic-based agents starting from the enhanced Tropos model, as well as to
perform different kinds of verification, namely to check if the model satisfies a
given property and to monitor if the execution trace of a real system is actually
compliant with the model.

Before concluding with an overview of our intended future research direc-
tions, let us briefly mention related work. We would like to stress that, while
the literature on single aspects of the framework is huge (many pointers can
be found on the papers describing Tropos, SCIFF, and DecSerFlow/CondDec),
not much work has been done at the intersection of these domains. Several for-
mal frameworks have been developed to support the Tropos methodology. For
instance, Giorgini et al. [15] proposed a formal framework based on logic pro-
gramming for the analysis of security requirements. However, the framework
does not take into account temporal aspects of the system. In [10] a planning
approach has been proposed to analyze and evaluate design alternatives. Though
this framework explores the space of alternatives and determines a (sub-)optimal
plan, that is, a sequence of actions, to achieve the goals of stakeholders, it does
not permit to define temporal constraints among tasks. Fuxman et al. [14] pro-
posed Formal Tropos that extends Tropos with annotations that characterize
the temporal evolution of the system, describing for instance how the network of
relationships evolves over time. Formal Tropos provides a temporal logic-based
specification language for representing Tropos concepts together with temporal
constructs, which are verified using a model-checking technique such as the one
implemented in NuSMV. This framework has been used to verify the consistency
of the requirements model [14] as well as business processes against business re-
quirements and strategic goal model [19]. However, Formal Tropos does not
support abduction so that it is not able to generate expectations and perform
conformance checking between expectations and happened events. Finally, we
mention work by Cares et al [11], who propose a way to extend Tropos to be
able to implement agents in Prolog starting from Tropos models.

The work presented here is a first step towards the integration of a business
process in the requirements model. The next step will be the generation of ex-
ecutable business process specifications (such as BPEL) from B-Tropos models.
Moreover, we intend to investigate in depth the formal properties of our proposed
mapping and to study how to better exploit the underlying SCIFF constraint
solver by introducing more complex scheduling and resource constraints in order
to capture more details of business requirements and agent interactions.
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