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Abstract. The quest for designing secure and trusted software has led to refined
Software Engineering methodologies that rely on tools to support the design pro-
cess. Automated reasoning mechanisms for requirements and software verifica-
tion are by now a well-accepted part of the design process, and model driven
architectures support the automation of the refinement process. We claim that
we can further push the envelope towards the automatic exploration and selec-
tion among design alternatives and show that this is concretely possible for Se-
cure Tropos, a requirements engineering methodology that addresses security and
trust concerns. In Secure Tropos, a design consists of a network of actors (agents,
positions or roles) with delegation/permission dependencies among them. Ac-
cordingly, the generation of design alternatives can be accomplished by a planner
which is given as input a set of actors and goals and generates alternative multi-
agent plans to fulfill all given goals. We validate our claim with a case study using
a state-of-the-art planner.

1 Introduction

The design of secure and trusted software that meets stakeholder needs is an increas-
ingly hot issue in Software Engineering (SE). This quest has led to refined Requirements
Engineering (RE) and SE methodologies so that security concerns can be addressed dur-
ing the early stages of software development (e.g. Secure Tropos vs i*/Tropos, UMLsec
vs UML, etc.). Moreover, industrial software production processes have been tightened
to reduce the number of existing bugs in operational software systems through code
walkthroughs, security reviews etc. Further, the complexity of present software is such
that all methodologies come with tools for automation support.

The tricky question in such a setting is what kind of automation? Almost fifty years
ago the idea of actually deriving code directly from the specification (such as that advo-
cated in [22]) started a large programme for deductive program synthesis,1 that is still
� We thank Alfonso Gerevini and Alessandro Saetti for the support on the use of

LPG-td. This work was partly supported by the projects RBNE0195K5 FIRB-ASTRO,
RBAU01P5SS FIRB-SECURITY, 016004 IST-FP6-FET-IP-SENSORIA, 27587 IST-FP6-IP-
SERENITY, 27004 IST-FP6-STREP-S3MS, 2003-S116-00018 PAT-MOSTRO, 1710SR-B/P
PAT-STAMPS.

1 A system goal together with a set of axioms are specified in a formal specification language.
Then the system goal is proved from the axioms using a theorem prover. A program for achiev-
ing the goal is extracted from the proof of the theorem.

E. Dubois and K. Pohl (Eds.): CAiSE 2006, LNCS 4001, pp. 33–47, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



34 V. Bryl et al.

active now [5, 11, 25, 29]. However, proposed solutions are largely domain-specific, re-
quire considerable expertise on the part of their users, and in some cases do not actually
guarantee that the synthesized program will meet all requirements stated up front [11].

Another approach is to facilitate the work of the designer by supporting tedious
aspects of software development by automating the design refinement process. This ap-
proach underlies Model Driven Architectures (MDA) [27], which focuses on the (pos-
sibly automatic) transformation from one system model to another. Tools supporting
MDA exist and are used in the Rational Unified Process for software development in
UML. Yet, the state-of-the-art is still not satisfactory [30].

Such approaches only cover part of the work of the designer. We advocate that there
is another activity where the support of automation could be most beneficial [20]:

“Exploring alternative options is at the heart of the requirements and design
processes.”

Indeed, in most SE methodologies the designer has tools to report and verify the final
choices (be it goal models in KAOS, UML classes, or Java code), but not actually the
possibility of automatically exploring design alternatives (i.e. the potential choices that
the designer may adopt for the fulfillment of system actors’ objectives) and finding a
satisfactory one. Conceptually, this automatic selection of alternatives is done in de-
ductive program synthesis: theorem provers select appropriate axioms to establish the
system goal. Instead, we claim that the automatic selection of alternatives should and
indeed can be done during the very early stages of software development. After all,
the automatic generation of alternatives is most beneficial and effective during these
stages.

There are good reasons for this claim. Firstly, during early stages the design space is
large, and a good choice can have significant impact on the whole development project.
Supporting the selection of alternatives could lead to a more thorough analysis of bet-
ter quality designs with respect to security and trust. Secondly, requirements models
are by construction simpler and more abstract than implementation models (i.e. code).
Therefore, techniques for automated reasoning about alternatives at the early stages of
the development process may succeed where automated software synthesis failed.

Since our overall goal is to design a secure system we have singled out the Secure
Tropos methodology [16] as the target for our work. Its primitive concepts include
those of Tropos and i* [7], but also concepts that address security concerns, such as
ownership, permission and trust. Further, the framework already supports the designer
with automated reasoning tools for the verification of requirements as follows:

1. Graphical capture of the requirements for the organization and the system-to-be,
2. Formal verification of the functional and security requirements by

– completion of the model drawn by the designer with axioms (a process hidden
to the designer)

– checking the model for the satisfaction of formal properties corresponding to
specific security or design patterns

In this framework (as in many other similar RE and SE frameworks) the selection of the
alternatives is left to the designer. We will show that we can do better.
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Indeed, in Tropos (resp. Secure Tropos) requirements are conceived as networks of
functional dependencies (resp. delegation of execution) among actors (organizational/
human/software agents, positions and roles) for goals, tasks and resources. Every depen-
dency (resp. delegation of execution) also involves two actors, where one actor depends
on the other for the delivery of a resource, the fulfillment of a goal, or the execution of a
task. Intuitively, these can be seen as actions that the designer has ascribed to the mem-
bers of the organization and the system-to-be. As suggested by Gans et al. [14] the task
of designing such networks can then be framed as a planning problem for multi-agent
systems: selecting a suitable possible design corresponds to selecting a plan that satisfies
the prescribed or described goals of human or system actors. Secure Tropos adds to the
picture also the notion of delegation of permission and various notions of trust.

In this paper we show that it is possible to use an off-the-shelf planner to select
among the potential dependencies the actual ones that will constitute the final choice of
the requirements engineer. If a planner is already able to deliver good results then this
looks a promising avenue for transferring the technique to complex industry-level case
studies where a customized automated reasoning tool might be very handy. At the same
time, if the problem is not trivial, not all planners will be able to deliver and indeed this
turned out to be the case. The techniques we use are sufficiently powerful to cope with
security requirements as well as functional requirements, but we concentrate here on
their applicability to a security setting where an automated support for the selection of
potentially conflicting alternatives is more urgent. The application of the same planning
techniques to the overall software development phases can be found in [3].

In this work we have not focused on optimal designs: after all, human designers do
not aim for optimality in their designs. As noted by Herbert Simon in his lecture on a
“Science of Design” [31] what makes humans effective (in comparison to machines) is
their ability to identify a satisficing design as opposed to an optimal one.

Of course, we assume that the designer remains in the loop: designs generated by
the planner are suggestions to be refined, amended and approved by the designer. The
planner is a(nother) support tool intended to facilitate the design process.

The rest of the paper is structured as follows. Section 2 explains Secure Tropos
concepts and describes the requirements verification process. In Sections 3, 4 and 5 the
planning approach to the system design is introduced and explained, , while in Section 6
the implementation of our approach is presented. Finally, in Sections 7 and 8 a brief
overview of related work is presented and conclusions are drawn.

2 Secure Tropos

Secure Tropos [16] is a RE methodology for modeling and analyzing functional and
security requirements, extending the Tropos methodology [7]. This methodology is
tailored to describe both the system-to-be and its organizational environment starting
with early phases of the system development process. The main advantage of this ap-
proach is that one can capture not only the what or the how, but also the why a security
mechanism should be included in the system design. In particular, Secure Tropos deals
with business-level (as opposed to low-level) security requirements. The focus of such
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requirements includes, but is not limited to, how to build trust among different partners
in a virtual organization and trust management. Although their name does not mention
security, they are generally regarded as part of the overall security framework.

Secure Tropos uses the concepts of actor, goal, task, resource and social relations for
defining entitlements, capabilities and responsibilities of actors. An actor is an inten-
tional entity that performs actions to achieve goals. A goal represents an objective of
an actor. A task specifies a particular sequence of actions that should be executed for
satisfying a goal. A resource represents a physical or an informational entity.

Actors’ desires, entitlements, capabilities and responsibilities are defined through
social relations. In particular, Secure Tropos supports requesting, ownership, provision-
ing, trust, and delegation. Requesting identifies desires of actors. Ownership identifies
the legitimate owner of a goal, a task or a resource, that has full authority on access and
disposition of his possessions. Provisioning identifies actors who have the capabilities
to achieve a goal, execute a task or deliver a resource. We demonstrate the use of these
concepts through the design of a Medical IS for the payment of medical care.2

Example 1. The Health Care Authority (HCA) is the “owner” of the goal provide
medical care; that is, it is the only one that can decide who can provide it and through
what process. On the other hand, Patient wants this goal fulfilled. This goal can be
AND-decomposed into two subgoals: provisioning of medical care and payment for
medical care. The Healthcare Provider has the capability for the provisioning of
medical care, but it should wait for authorization from HCA before doing it.

Delegation of execution is used to model situations where an actor (the delegator) del-
egates the responsibilities to achieve a goal, execute a task, or delivery a resource to
another actor (the delegatee) since he does not have the capability to provide one of
above by himself. It corresponds to the actual choice of the design. Trust of execution
represents the belief of an actor (the trustor) that another actor (the trustee) has the ca-
pabilities to achieve a goal, execute a task or deliver a resource. Essentially, delegation
is an action due to a decision, whereas trust is a mental state driving such decision.
Tropos dependency can be defined in terms of trust and delegation [17]. Thus, a Tro-
pos model can be seen as a particular Secure Tropos model. In order to model both
functional and security requirements, Secure Tropos introduces also relations involving
permission. Delegation of permission is used when in the domain of analysis there is
a formal passage of authority (e.g. a signed piece of paper, a digital credential, etc.).
Essentially, this relation is used to model scenarios where an actor authorizes another
actor to achieve a goal, execute a task, or deliver a resource. It corresponds to the actual
choice of the design. Trust of permission represents the belief of an actor that another
actor will not misuse the goal, task or resource.

Example 2. The HCA must choose between different providers for the welfare man-
agement for executives of a public institution. Indeed, since they have a special private-
law contract, they can qualify for both the INPDAP and INPDAI3 welfare schemes. The

2 An extended description of the example is provided in [4].
3 INPDAP (Istituto Nazionale di Previdenza per i Dipendenti dell’Amministrazione Pubblica)

and INPDAI (Istituto Nazionale di Previdenza per i Dirigenti di Aziende Industriali) are two
Italian national welfare institutes.
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Fig. 1. Secure Tropos model

INPDAP scheme requires that the Patient partially pays for medical care (with a ticket)
and the main cost is directly covered by the HCA. On the contrary, the INPDAI scheme
requires that the Patient pays in advance the full cost of medical care and then gets
reimbursed. Once an institution has decided the payment scheme, this will be part
of the requirements to be passed onto the next stages of system development. Obvi-
ously, the choice of the alternative may have significant impacts on other parts of the
design.

Figure 1 summarizes Examples 1 and 2 in terms of a Secure Tropos model. In this
diagram, actors are represented as circles and goals as ovals. Labels O, P and R are
used for representing ownership, provisioning and requesting relations, respectively.
Finally, we represent trust of permission and trust of execution relationships as edges
respectively labelled Tp and Te.

Once a stage of the modeling phase is concluded, Secure Tropos provides mecha-
nisms for the verification of the model [16]. This means that the design process iterates
over the following steps:

– model the system;
– translate the model into a set of clauses (this is done automatically);
– verify whether appropriate design or security patterns are satisfied by the model.

Through this process, we can verify the compliance of the model with desirable
properties. For example, it can be checked whether the delegator trusts that the delegatee
will achieve a goal, execute a task or deliver a resource (trust of execution), or will use a
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goal, task or resource correctly (trust of permission). Other desirable properties involve
verifying whether an actor who requires a service, is confident that it will be delivered.
Furthermore, an owner may wish to delegate permissions to an actor only if the latter
actually does need the permission. For example, we want to avoid the possibility of
having alternate paths of permission delegations. Secure Tropos provides support for
identifying all these situations.

Secure Tropos has been used for modeling and analyzing real and comprehensive
case studies where we have identified vulnerabilities affecting the organizational struc-
ture of a bank and its IT system [24], and verified the compliance to the Italian legisla-
tion on Privacy and Data Protection by the University of Trento [23].

3 Design as Planning

So far the automated reasoning capabilities of Secure Tropos are only able to check that
subtle errors are not overlooked. This is rather unsatisfactory from the point of view
of the designer. Whereas he may have a good understanding of possible alternatives,
he may not be sure which is the most appropriate alternative for the case at hand. This
is particularly true for delegations of permission that need to comply with complex
privacy regulations (see [23]).

Example 3. Figures 2(a) and 2(c) present fragments of Figure 1, that point out the po-
tential choices of the design. The requirements engineer has identified trust relations
between the HCA and INPDAP and INPDAI. However, when passing the requirements
onto the next stage only one alternative has to be selected because that will be the sys-
tem that is chosen. Figures 2(b) and 2(d) present the actual choices corresponding to
the potential choices presented in Figures 2(a) and 2(c), respectively.

(a) Potential choices (b) Actual choice

(c) Potential choices (d) Actual choice

Fig. 2. Design Alternatives
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Here, we want to support the requirements engineer in the selection of the best alterna-
tive by changing the design process as follows:

– Requirements analysis phase
• Identify system actors along with their desires, capabilities and entitlements,

and possible ways of goal decomposition.
• Define trust relationships among actors both in terms of execution and

permission.
– Design phase

• The space of design alternatives is automatically explored to identify delega-
tion of execution/permission.

• Depending on the time/importance of the goal the designer may settle for sat-
isficing solutions [31] or ask for an optimal solution.

To support the designer in the process of selecting the best alternative we advocate a
planning approach which recently has proved to be applicable in the field of automatic
Web service composition [6].

The basic idea behind the planning approach is to automatically determine the course
of actions (i.e. a plan) needed to achieve a certain goal where an action is a transition
rule from one state of the system to another [34, 28]. Actions are described in terms
of preconditions and effects: if the precondition is true in the current state of the sys-
tem, then the action is performed. As consequence of the action, the system will be in
a new state where the effect of the action is true. Thus, once we have described the
initial state of the system, the goal that should be achieved (i.e. the desired final state
of the system), and the set of possible actions that actors can perform, the solution of
the planning problem is the (not necessarily optimal) sequence of actions that allows
the system to reach the desired state from the initial state.

In order to cast the design process as a planning problem, we need to address the
following question: which are the “actions” in a software design? When drawing the
Secure Tropos model, the designer assigns the execution of goals from one actor to
another, delegates permission and – last but not least – identifies appropriate goal re-
finements among selected alternatives. These are the actions to be used by the planner
in order to fulfill all initial actor goals.

4 Planning Domain

The planning approach requires a specification language to represent the planning do-
main and the states of the system. Different types of logics could be applied for this
purpose, e.g. first order logic is often used to describe the planning domain with con-
junctions of literals4 specifying the states of the system. We find this representation
particularly useful for modeling real case studies. Indeed, when considering security
requirements at enterprise level, one must be able to reason both at the class level (e.g.
the CEO, the CERT team member, the employee of the HR department) and at the
instance level (e.g. John Doe and Mark Doe playing those roles).

4 Let p be a predicate symbol with arity n, and t1, . . . , tn be its corresponding arguments.
p(t1, . . . , tn) is called an atom. The expression literal denotes an atom or its negation.
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Table 1. Primitive Predicates

Goal Properties
AND decompositionn(g : goal, g1 : goal, . . . , gn : goal)
OR decompositionn(g : goal, g1 : goal, . . . , gn : goal)
Actor Properties
provides(a : actor, g : goal)
requests(a : actor, g : goal)
owns(a : actor, g : goal)
Actor Relations
trustexe(a : actor, b : actor, g : goal)
trustper(a : actor, b : actor, g : goal)

Table 2. Actions

Basic Actions
DelegateExecution(a : actor, b : actor, g : goal)
DelegatePermission(a : actor, b : actor, g : goal)
Satisfy(a : actor, g : goal)
AND Refinen(a : actor, g : goal, g1 : goal, . . . , gn : goal)
OR Refinen(a : actor, g : goal, g1 : goal, . . . , gn : goal)
Absence of Trust
Negotiate(a : actor, b : actor, g : goal)
Contract(a : actor, b : actor, g : goal)
DelegateExecution under suspicion(a : actor, b : actor, g : goal)
Fulfill(a : actor, g : goal)
Evaluate(a : actor, g : goal)

The planning domain language should provide support for specifying:

– the initial state of the system,
– the goal of the planning problem,
– the actions that can be performed,
– the axioms of background theory.

Table 1 presents the predicates used to describe the initial state of the system in terms
of actor and goal properties, and social relations among actors. We use

– AND/OR decomposition to describe the possible decomposition of a goal;
– provides, requests and owns to indicate that an actor has the capabilities to

achieve a goal, desires the achievement of a goal, and is the legitimate owner of
a goal, respectively;

– trustexe and trustper to represent trust of execution and trust of permission rela-
tions, respectively.

The desired state of the system (or goal of the planning problem) is described through
the conjunction of predicates done derived from the requesting relation in the initial
state. Essentially, for each request(a,g) we need to derive done(g).

By contrast, an action represents an activity to accomplish a goal. We list them in
Table 2 and define them in terms of preconditions and effects as follows:

Satisfy. The satisfaction of goals is an essential action. Following the definition of goal
satisfaction given in [16], we say that an actor satisfies a goal only if the actor wants
and is able to achieve the goal, and – last but not least – he is entitled to achieve it.
The effect of this action is the fulfillment of the goal.
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DelegateExecution. An actor may not have enough capabilities to achieve assigned
goals by himself, and so he has to delegate their execution to other actors. We
represent this passage of responsibilities through action DelegateExecution. It is
performed only if the delegator requires the fulfillment of the goal and trusts that
the delegatee will achieve it. Its effect is that the delegator does not worry any
more about the fulfillment of this goal after delegating it since he has delegated its
execution to a trusted actor. Furthermore, the delegatee takes the responsibility for
the fulfillment of the goal and so it becomes a his own desire. Notice that we do not
care how the delegatee satisfies the goal (e.g. by his own capabilities or by further
delegation). It is up to the delegatee to decide it.

DelegatePermission. In the initial state of the system, only the owner of a goal is
entitled to achieve it. However, this does not mean that he wants it or has the ca-
pabilities to achieve it. On the contrary, in the system there may be some actors
that want that goal and others that can achieve it. Thus, the owner could decide to
authorize trusted actors to achieve the goal. The formal passage of authority takes
place when the owner issues a certificate that authorizes another actor to achieve
the goal. We represent the act of issuing a permission through action Delegate-
Permission which is performed only if the delegator has the permission on the
goal and trusts that the delegatee will not misuse the goal. The consequence of this
action is to grant rights (on the goal) to the delegatee, that, in turn, can re-delegate
them to other trusted actors.

AND/OR Refine. An important aspect of Secure Tropos is goal refinement. In partic-
ular, the framework supports two types of refinement: OR decomposition, which
suggests the list of alternative ways to satisfy the goal, and AND-decomposition,
which refines the goals into subgoals which all are to be satisfied in order to sat-
isfy the initial goal. We introduce actions AND Refine and OR Refine. Essentially,
AND Refine and OR Refine represent the action of refining a goal along a possible
decomposition. An actor refines a goal only if he actually need it. Thus, a precondi-
tion of AND Refine and OR Refine is that the actor requests the fulfillment of the
initial goal. A second precondition determines the way in which the goal is refined.
The effect of AND Refine and OR Refine is that the actor who refines the goal
focuses on the fulfillment of subgoals instead of the fulfillment of the initial goal.

In addition to actions we define axioms in the planning domain. These are rules that
hold in every state of the system and are used to complete the description of the current
state. They are used to propagate actors and goal properties along goal refinement: a
goal is satisfied if all its AND-subgoals or at least one of the OR-subgoals are satisfied.
Moreover, axioms are used to derive and propagate entitlements. Since the owner is
entitled to achieve his goals, execute his tasks and access his resources, we need to
propagate actors’ entitlements top-down along goal refinement.

5 Delegation and Contract

Many business and social studies have emphasized the key role played by trust as a
necessary condition for ensuring the success of organizations [9]. Trust is used to build
collaboration between humans and organizations since it is a necessary antecedent for
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cooperation [1]. However, common sense suggests that fully trusted domains are simply
idealizations. Actually, many domains require that actors who do not have the capabil-
ities to fulfill their objectives, must delegate the execution of their goals to other actors
even if they do not trust the delegatees. Accordingly, much work in recent years has
focused on the development of frameworks capable of coping with lack of trust, some-
times by introducing an explicit notion of distrust [14, 17].

The presence (or lack) of trust relations among system actors particularly influences
the strategies to achieve a goal [21]. In other words, the selection of actions to fulfill a
goal changes depending on the belief of the delegator about the possible behavior of the
delegatee. In particular, if the delegator trusts the delegatee, the first is confident that
the latter will fulfill the goal and so he does not need to verify the actions performed
by the delegatee. On the contrary, if the delegator does not trust the delegatee, the first
wants some form of control on the behavior of the latter.

Different solutions have been proposed to ensure for the delegator the fulfillment of
his objectives. A first batch of solutions comes from transaction cost economics and
contract theories that view a contract as a basis for trust [35]. This approach assumes that
a delegation must occur only in the presence of trust. This implies that the delegator and
the delegatee have to reach an agreement before delegating a service. Essentially, the idea
is to use a contract to define precisely what the delegatee should do and so establish trust
between the delegator and the delegatee. Other theories propose models where effective
performance may occur also in the absence of trust [12]. Essentially, they argue that
various control mechanisms can ensure the effective fulfillment of actors’s objectives.

In this paper we propose a solution for delegation of execution that borrows ideas
from both approaches. The case for delegation of permission is similar. The process
of delegating in the absence of trust is composed of two phases: establishing trust and
control. The establishing trust phase consists of a sequence of actions, namely Nego-
tiate and Contract. In Negotiate the parties negotiate the duties and responsibilities
accepted by each party after delegation. The postcondition is an informal agreement
representing the initial and informal decision of parties to enter into a partnership. Dur-
ing the execution of Contract the parties formalize the agreement established during
negotiation. The postcondition of Contract is a trust “under suspicion” relation be-
tween the delegator and the delegatee. Once the delegator has delegated the goal and
the delegatee has fulfilled the goal, the first wants to verify if the latter has really satis-
fied his objective. This control is performed using action Evaluation. Its postcondition
is the “real” fulfillment of the goal. To support this solution we have introduced some
additional actions (last part of Table 2) to distinguish the case in which the delegation
is based on trust from the case in which the delegator does not trust the delegatee.

Sometimes establishing new trust relations might be more convenient than extending
existing trust relations. A technical “side-effect” of our solution is that it is possible
to control the length of trusted delegation chains. Essentially, every action has a unit
cost. Therefore, refining an action into sub-actions corresponds to increasing the cost
associated with the action. In particular, refining the delegation action in absence of
trust guarantees that the framework first tries to delegate to trusted actors, but if the
delegation chain results too long the system can decide to establish a new trust relation
rather than to follow the entire trust chain.



Designing Security Requirements Models Through Planning 43

Need-to-know property of a design decision states that the owner of a goal, a task
or a resource wants that only the actors who need permission on its possession are
authorized to access it. Essentially, only the actor that achieves a goal, executes a task
or delivers a resource, and the actors that belong to the delegation of permission chain
from the owner to the provider should be entitled to access this goal, task or resource.
Thus, we want to obtain a plan where only the actions that contribute to reaching the
desired state occur, so that if any action is removed from the plan it no longer satisfies
the goal of the planning problem. This approach guarantees the absence of alternative
paths of permission delegations since a plan does not contain any redundant actions.

6 Using the Planner

In the last years many planners have been proposed (Table 3). In order to choose one of
them we have analyzed the following requirements:

1. The planner should produce solution that satisfy need-to-know property by
construction, that is, the planner should not produce redundant plans. Under non-
redundant plan we mean that, by deleting an arbitrary action of the plan, the result-
ing plan is no more a “valid” plan (i.e. it does not allow to reach the desired state
from the initial state).

2. The planner should use PDDL (Planning Domain Definition Language) [15], since
it is becoming the “standard” planning language and many research groups work
on its implementation. In particular, the planner should use PDDL 2.2 specifica-
tions [10], since this version support features, such as derived predicates, that are
essential for implementing our planning domain.

3. The planner should be available on both Linux and Windows platforms as our pre-
vious Secure Tropos reasoning tool works on both.

Table 4 presents a comparison among the planners we have considered with respect
to above requirements. Based on such requirements, we have chosen LPG-td, a fully

Table 3. Comparison among planners

Planner Release URL
DLVK 2005-02-23 http://www.dbai.tuwien.ac.at/proj/dlv/K/
IPP 4.1 2000-01-05 http://www.informatik.uni-freiburg.de/ koehler/ipp.html
CPT 1.0 2004-11-10 http://www.cril.univ-artois.fr/ vidal/cpt.en.html
SGPLAN 2004-06 http://manip.crhc.uiuc.edu/programs/SGPlan/index.html
SATPLAN 2004-10-19 http://www.cs.washington.edu/homes/kautz/satplan/
LPG-td 2004-06 http://zeus.ing.unibs.it/lpg/

Table 4. Comparison among planners

�������Requirement
Planner

DLVK IPP CPT SGPLAN SATPLAN LPG-td

1 X X X X X
2 X X X
3 X X X X
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(: action Satisfy
: parameters (?a − actor ?g − goal)
: precondition (and

(provides ?a ?g)
(requests ?a ?g)
(has per ?a ?g))

: effect (and
(done ?g)
not (requests ?a ?g)))

(a) Satisfy

(: action DelegatePermission
: parameters (?a ?b − actor ?g − goal)
: precondition (and

(trustper ?a ?b ?g)
(has per ?a ?g))

: effect (and
(has per ?b ?g)))

(b) DelegatePermission

Fig. 3. Actions’ Specification

DelegateExecution Pat HP ProvideMC
AND Refine HP ProvideMC ProvisioningMC PaymentMC
DelegatePermission HCA HP ProvisioningMC
Satisfy HP ProvisioningMC
DelegateExecution HP HCA PaymentMC
DelegateExecution HCA INPDAP PaymentMC
AND Refine INPDAP PaymentMC PaymentTicket PaymentHCA
DelegateExecution HCA INPDAP PaymentHCA
Satisfy HCA PaymentHCA
OR Refine INPDAP PaymentTicket PaymentTicketINPDAP PaymentTicketHP
DelegatePermission HCA INPDAP PaymentTicketINPDAP
Satisfy INPDAP PaymentTicketINPDAP

Fig. 4. The optimal solution

automated system for solving planning problems, supporting PDDL 2.2. Figure 3 shows
the specification of actions Satisfy and DelegatePermission in PDDL 2.2.

We have applied our approach to the Medical IS presented in Figure 1. The desired
state of the system is obviously one where the patient gets medical care. The PDDL 2.2
specification of the planning problem is given in [4].

Figure 4 shows the optimal solution (i.e. the plan composed of the fewer number of
actions than any other plan) proposed by LPG-td. However, this was not the first choice
of the planner. Before selecting this plan, the planner proposed other two sub-optimal
alternatives (see [4] for a discussion). It is interesting to see that the planner has first
provided a solution with INPDAP, then a solution with INPDAI, and then, finally, a
revised solution with INPDAP. A number of other experiments were conduced to test
the scalability of our approach. The results are reported in [4].

7 Related Work

In recent years many efforts have addressed the integration of security with the system
development process, in particular during early requirements analysis. In this setting,
many researchers have recognized trust as an important aspect of this process since
trust influences the specification of security and privacy policies. However, very few
requirements engineering methodologies introduce trust concerns during the system
development process. Yu et al. [36] model trust by using the concept of softgoal, i.e.
goal having no clear definition for deciding whether it is satisfied or not. However,
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this approach considers trust as a separate concept from security and does not provide a
complete framework to consider security and trust throughout the development process.
Haley et al. [18] propose to use trust assumptions, problem frames, and threat descrip-
tions to aid requirements engineers to define and analyze security requirements, and to
document the decisions made during the process.

Other approach focus on security requirements without taking into account trust as-
pect. van Lamsweerde et al introduce the notion of antigoals for representing the goals
of attackers [33]. McDermott et al. define abuse case model [26] to specify the interac-
tions among actors, whose the results are harmful to some actors. Similarly, Sindre et
al. define the concept of a misuse case [32], the inverse of a use case, which describes a
function that the system should block.

Model Driven Architecture (MDA) approach [27], proposed by Object Management
Group, is a framework for defining software design methodologies. Its central focus
is on the model transformation, for instance from the platform-independent model of
the system to platform-specific models used for implementation purposes. Models are
usually described in UML, and the transformation is performed in accordance with the
set of rules, called mapping. Transformation could be manual, or automatic, or mixed.
Among the proposals on automating a software design process the one of Gamma et
al. on design patterns [13] has been widely accepted. A design pattern is a solution
(commonly observed from practice) to the certain problem in the certain context, so
it may be thought as a problem-context-solution triple. Several design patterns can be
combined to form a solution. Notice that it is still the designer who makes the key
decision on what pattern to apply to the given situation.

The field of AI planning have been making advances during the last decades, and
has found a number of applications (robotics, process planning, autonomous agents,
Web services, etc.). There two basic approaches to the solution of planning problems
[34]. One is graph-based planning algorithms [2] in which a compact structure called
a Planning Graph is constructed and analyzed. While in the other approach [19] the
planning problem is transformed into a SAT problem and a SAT solver is used. An
application of the planning approach to requirements engineering is proposed by Gans
et al. [14]. Essentially, they propose to map trust, confidence and distrust described in
terms of i* models [36] to delegation patterns in a workflow model. Their approach
is inspired by and implemented in ConGolog [8], a logic-based planning language.
In this setting, tasks are implemented as ConGolog procedures where preconditions
correspond to conditionals and interrupts. Also monitors are mapped into ConGolog
procedures. They run concurrently to the other agent tasks waiting for some events
such as task completion and certificate expiration. However, their focus is on modeling
and reasoning about trust in social networks, rather than on secure design.

8 Conclusions

We have shown that in our extended Secure Tropos framework it is possible to automat-
ically support the designer of secure and trusted systems also in the automatic selection
of design alternatives. Our enhanced methodology allows one to:
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1. Capture through a graphical notation of the requirements for the organization and
the system-to-be.

2. Verify the correctness and consistency of functional and security requirements by
– completion of the model drawn by the designer with axioms (a process hidden

to the designer),
– checking the model for the satisfaction of formal properties corresponding to

specific security or design patterns.
3. Automatically select alternative solutions for the fulfillment of functional and se-

curity requirements by
– transformation of the model drawn by the designer into a planning problem (a

process hidden to the designer),
– automatic identification of an alternative satisficing the goals of the various

actors by means of planner.

In this paper we show that this is possible with the use of an off-the-shelf planner
to generate possible designs for not trivial security requirements. Of course, we assume
that the designer remains in the design loop, so the designs generated by the planner
are seen as suggestions to be refined, amended and approved by the designer. In other
words, the planner is a(nother) support tool intended to facilitate the design process.

Our future work includes extending the application of this idea to other phases of the
design and towards progressively larger industrial case studies to see how far can we go
without using specialized solvers.
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