
An Implemented Prototype of Bluetooth-based
Multi-Agent System

Volha Bryl
Department of Information

and Communication Technology
University of Trento,

via Sommarive 14,
38050 Povo (TN), Italy

Email: volha.bryl@unitn.it

Paolo Giorgini
Department of Information

and Communication Technology
University of Trento,

via Sommarive 14,
38050 Povo (TN), Italy

Email: paolo.giorgini@dit.unitn.it

Stefano Fante
ArsLogica Lab,

IT Laboratories BIC,
Viale Trento, 117,

38017 Mezzolombardo (TN), Italy
Email: stefano.fante@arslogica.it

Abstract— People tend to form social networks within specific
geographical areas. This is motivated by the fact that the
geographical locality corresponds generally to common interests
and opportunities offered by the people active in the area
(e.g. students of a university could be interested to buy or
sell textbooks adopted for a specific course, to share notes,
or just to meet together to play basketball). Cellular phones
and more in general mobile devices are currently widely used
and represent a big opportunity to support social communities.
We present an application of multi-agent systems accessible via
mobile devices (cellular phones and PDAs), where Bluetooth
technology has been adopted to reflect users locality. We illustrate
an implemented prototype of the proposed architecture and we
discuss the opportunities offered by the system.

I. I NTRODUCTION

Being widespread and ubiquitous, cellular phones are re-
cently used not only as the means of traditional communica-
tion. They are also supposed to satisfy the information needs of
their users, e.g. to support information search and filtering or
electronic data exchange. Users equipped with mobile devices,
such as cellular phones or PDAs, can form so called mobile
virtual communities [1], which make possible the collaboration
and the information exchange between their geographically
distributed members. Such communities are inherently open,
new users can join and existing ones can leave anytime. Our
aim is to build a general architecture for open distributed
systems that can facilitate the interaction and the collaboration
among members of co-localized groups of users via their
mobile devices.

We adopted Bluetooth [2] technology to connect mobile
devices to servers where virtual communities based on multi-
agent systems are formed and allow users to interact with
one another. Bluetooth is a cheap and a widely used wire-
less communication technology that can connect Bluetooth-
enabled devices located in a range of 100 meters.

A number of multi-agent applications to mobile devices
environments have been proposed in literature. [3] presents a
multi-agent system named KORE where a personal electronic
museum guide provides to visitors (with Java-enabled mobile
devices) information about artistic objects they are currently
looking at. Information is filtered and adapted to the user

profile. Bluetooth technology is used to detect the user posi-
tion. In [4] MobiAgent is proposed, an agent-based framework
that allows users to access various types of services (from
Web search to remote applications control) directly using their
cellular phones or PDAs. Once the user sends the request
for a specific service an agent starts to work on her behalf
on a centralized server. The user can disconnect from the
network and the agent will continue to work for her. When
the request has been processed, the user is informed via Short
Message Service and she can decide to reconnect the network
to download the results. MIA information system [5] is another
example that provides personalized and localized information
to users via mobile devices.

What is still missing in the above architectures is the
interaction and the collaboration between the members of
the virtual community. Just few proposals in the literature
introduce domain-specific collaborative environments where
interacting and collaborative agents act on the behalf of their
users. For instance, [6] describes a context-aware multi-agent
system for agenda management where scheduling agents can
execute on PCs or PDAs and assist their users in building the
meeting agenda by negotiating with the other agents. ADOMO
[7] is an agent-based system where agents running on mobile
devices sell the space on the device’s screen to commercial
agents for their advertisements. Agents on behalf of their users
negotiate and establish contracts with neighbors via Bluetooth.

There exist a number of multi-agent platforms that can be
used on mobile devices. Taking into account the limited com-
putational and memory resources, it could be very problematic
to run a multi-agent platform on such mobile devices as
cellular phones. A possible solution is either to avoid running
multi-agent platform on mobile devices, as for example in
[7], or to use portal multi-agent platforms [8] where agents
are executed not on the device itself but on the external host.

In this paper we present a general architecture based on
this last option. The architecture proposes independent servers
where multi-agent platforms can be installed and where agents
can act on behalf of their users. Each server proposes one
or more specific services related to the geographical area in
which it is located (e.g. a server inside the university could



offer the service of selling and buying text books, renting an
apartment, etc.) and users can contact their personal agents
using their Bluetooth mobile phones. The main advantage of
the proposed framework with respect to the above described
architectures is that the system is domain independent (it does
not depend on the specific services offered by the servers) and
independent from the multi-agent technology adopted (we can
use different technologies on each server).

The paper is organized as follows. Section II describes a
motivating example of our system. The general architecture of
the system is introduced in Section III, while Section IV pro-
vides some architectural details and describe the implemented
prototype. Section V concludes the paper and provides some
future work directions.

II. M OTIVATING EXAMPLE

Let’s consider three places in a town: university, railway
station and bar. People staying for some time in one of
these places may have some common interests and needs. For
instance, students at the university might want to buy or to sell
secondhand textbooks, to find a roommate, or to form study
groups. People at the bar could be interested in the latest sport
news (especially in Italian bars), or they could just be looking
for someone to chat with. Passengers waiting at the railway
station may want to know some details about the trip they
are going to have — what cities their train goes through, or
what the weather is like at the destination point. They may
want also to find someone with common interests to chat with
during the trip.

Let’s suppose also that people cannot or do not want to
spend their time on examining announcements on the bulletin
boards, or questioning people around them, or searching for
the information office. They would prefer to enter the requests
they have into their mobile phones and wait for the list of
available proposals.

To support interests and needs of such groups of co-
localized users a server is placed at each of the three meeting
points. Servers can provide a certain number of services to
people equipped with mobile phones or pocket computers
(hereinafter referred as users). A user can have access to the
services when she is close enough (depending on her Bluetooth
device) to one of the three servers — at the bar, in the waiting
room of the station, or at the main hall of the university.

Let’s suppose that among the available services we have the
following ones. University server can be used for buying and
selling used books, or for looking for a roommate. At the bar
sport news service is available, as well as the service which
helps to find interesting people around. Railway station server
gives a possibility to get information about trips (including
touristic information).

Users interaction and collaboration is the base for the
satisfaction of their needs. To sell a secondhand textbook,
one should find a buyer and agree on the price. To find
someone in the bar to chat with, one should look for the
person with similar interests. Each server recreates the group
of co-localized human users in a virtual community of personal

Fig. 1. Users, Servers, Virtual Communities of Personal Agents

agents (Figure 1) able to interact and collaborate with one
another. Users formulate their requests and forward them to
their personal agents.

Personal agents interacting with the other available agents
(they may also negotiate, not just interact, as in the case of
selling or buying books) produce results that will be sent back
to the users. The main idea is to have a distributed system
composed of a number of open virtual communities that evolve
and act autonomously on the behalf of human communities.

III. SYSTEM ARCHITECTURE

In this section we describe the general architecture of the
system. We start from the requirements and then we illustrate
the various sub-components and their interaction.

A. System Requirements

We can summarize the requirements of the whole system in
the following objectives.

• Allow the user to express her interests and choose the
services she wants to access.

• Provide access to the requested services when the mobile
device and the appropriate server are co-localized (i.e. the
Bluetooth connection is feasible).

• Allow the user to retrieve pending results. Results should
be accessible both in the case the user is still in the
Bluetooth range and in the case she is out of the range.

B. System Components

The architecture of the system includes four main types of
components: mobile device, PC, server and services database.

The PC component provides an interface for the user’s
registration to the system, for getting and choosing available
services, and building requests for the chosen services. Also
the pending results can be retrieved via PC. The mobile device
is used to send the user’s requests to the servers and to get
back the results. Each server within the system provides a list
of predefined services. The server runs a multi-agent platform
with personal agents representing single users, a database
where results are archived, and an interface responsible for
establishing connections with mobile devices and PCs, and for



Fig. 2. Interaction of System Components

redirecting the users’ requests to the corresponding personal
agents. The services database, accessible via Web, contains
information about all the servers and their properties, such as
name, location, etc. The database provides also a description
of available services on each server.

Figure 2 illustrates the general architecture of the system
and the interaction among its components. Connection be-
tween the mobile device and the PC, and between the mobile
device and the server is established via Bluetooth wireless
communication technology.

C. Getting Access to the Services

In the following we describe how the process of getting
access to the services is organized (Figure 3).

The software running on the PC allows the user to search
and discover the servers and services registered to the services
database. The user selects one or more services and provides
information (i.e. requests) related to the use of such services.
For example, using the service ”Buy/sell secondhand books”,
the user could request to ”Sell the copy ofThinking in
Java by Bruce Eckel, printed in 1995, for the price not less
than 20 euros”. All the user’s requests are stored in the
configuration file, which is downloaded onto the mobile device
via Bluetooth.

When the user with her mobile device approaches one of
the servers, the software on the device establishes a connection
with the server and sends the requests related to the available
services. The requests are built on the base of the configuration
file of the mobile device. In other words, the mobile device
checks in the configuration file if the user is interested in the
services provided by the server and then builds and sends the
requests to the server. The mobile device stores the server’s
address to keep track of the contacted servers. It stores the
address even if there are no relevant services on the server.
This allows later the user to check the list of all visited servers
and associated services, and decide to update her preferences
including new servers/services in the configuration file.

D. Retrieving Pending Results

We describe now how the process of retrieving the pending
results is organized (Figure 4).

The user has basically two options to get back the results
of her requests. The first one is to receive them directly on
her mobile device. However, this is not always possible. The

Fig. 3. Getting Access to Services

user could leave the Bluetooth area or the mobile device may
not have enough memory or computational power to manage
the answers (e.g. in the case the answers are a number of big
files). Thus the second option is to get back the results later
when the connection with the server they were requested from
is finished.

Pending results can be retrieved both from the mobile device
and from the PC. In the first case the mobile device has to
be configured to get the pending results and has to be in the
Bluetooth range of some server. For example, a student is
going to spend a whole hour in the main hall of the university
waiting for the next lecture, namely she will have enough time
to download the results of her requests sent in the morning
to the railway station server (where she bought her train
ticket before going to the university). She switches on the
option ”get pending results” on her mobile phone, and waits
for results. The mobile device sends to the university server
the list of addresses of the servers the user has visited. The
server establishes a connection with each server in the list, and
sends the information that identifies the mobile device (e.g. its
Bluetooth address) as a request for the pending results. The
obtained information is sent back to the mobile device.

In the second case the user receives pending results through
the PC. The student goes back home and runs the PC software
that collects all the pending results obtained from the visited
servers. The list of the visited servers and their addresses is
transferred from the mobile device to the PC.

E. Agent Platform

Each server runs a multi-agent platform, where agents
correspond to mobile devices and receive and process requests
obtained from the users. We basically have a one-to-one
association between agents and mobile devices (users). An
agent is identified by the unique Bluetooth address of the
corresponding mobile device. The same device can have many
personal agents within different platforms of different servers.

When the server receives the request from the mobile
device, it checks if there exists the personal agent of this



Fig. 4. Retrieving Pending Results

device within the platform. If not, new personal agent is
created. Personal agent communicates and collaborates with
other agents in order to find ”a partner” which will satisfy its
request. Interaction protocols and collaboration mechanisms
are domain (services) dependent.

IV. I MPLEMENTATION ISSUES

In this section we present the details of the implemented
prototype. Basically, the system is a first implementation of the
architecture presented in Section II and focuses on a number
of servers spread around the university campus (faculties,
libraries, departments, etc.). Each server offers only the service
for selling and buying books. We are currently working on
a number of other services including services available on
servers located outside of the university campus (e.g. train
station, museums and places close to touristic attractions).

A. On-line registration and services selection

To start working with the system, the user has to register.
She can fill the on-line registration form where she needs to put
her personal info such as name, birth date, e-mail, Bluetooth
address and phone number of her mobile device, and password.
The registration, basically, allows the system to identify the
user and the mobile device she is going to use. Password
is used to access the information about servers and related
services and to upload/update the user information (e.g. the
user can decide to use different mobile device or just to change
her data such as telephone number or e-mail address). All this
information is stored in the services database. Registered users
obtain the rights to download the software for the PC and the
mobile device components (which are two jar files), and the
XML file containing all available servers with corresponding
services.

After the registration (or login), the user can start selecting
services to use. Using the Java GUI interface shown in Figure
5, she can explore all the available services using filtering
criteria such as server location (e.g. we can have servers lo-
cated in different cities or in different places in the same city),

Fig. 5. Request Input Form

Fig. 6. Configuration File

type or category of the service (e.g. buy/sell books, exchange
courses’ notes, or meet people), and keywords (e.g. books,
course, etc.). The list of the selected services is managed by
the PC component that allows the user to customize these
services with the specific requests (e.g. title of the book to
buy or to sell, the desired price, minimal or maximal price).

The list of services (with related servers’ addresses) are
stored in a XML configuration file, which is uploaded via
Bluetooth in the mobile device. Figure 6 shows an example
for the ”sell/buy books” service.

B. Accessing the services

To access the services, the user needs to run the Bluetooth
application in her mobile device. The application is written in
Java and uses JSR-82 [9], which is Bluetooth API for Java.
The application starts a continuous search for the Bluetooth-
enabled devices in its neighborhood, and whenever it finds a
server with the services specified in the configuration file, the
mobile device sends the user’s requests to the server. Figure
7 shows the protocol we use for the interaction among the
different components.



Fig. 7. Getting Access to Services

A specific communication module on the server is respon-
sible for managing the interaction with the mobile device.
It receives the list of requests from the mobile device and
checks whether in the platform (running in the server) already
exists a personal agent assigned to that mobile device (the
Bluetooth address is used to map the mobile device with the
personal agent). If there is no personal agent for the user,
the communication module connects to the central services
database and verify whether the user is registered to the
system. Only in case of a positive answer, it creates a new
agent and assigns it to the mobile device (user). Then, the
communication module forwards all the user’s requests to the
personal agent.

Now, the personal agent starts the interaction with the
other agents on the platform trying to satisfy all the user’s
requests. In our example the personal agent receives one or
more requests for buying and/or selling books (with specified
title, desired price, maximum and minimum prices, etc.). If
the agent reaches an agreement with another agent about their
users’ requests, it can decide either to send the results back
to the user or store them locally in the server database. This
depends on the retrieval modality that the user has defined in
the configuration file.

C. Results retrieval

Whenever a new connection between a server and a mobile
device is established, the communication module sends to the
mobile device the IP-address of the server. The mobile device
stores the IP addresses of all the visited servers in an XML list
(Figure 8-a), that is used later to retrieve all pending results.
The format of the results produced by the personal agent is
shown in Figure 8-b. It may contain the request identifier, the
contacts (e.g. phone number) of the user interested to buy or
sell the book, the actual agreed price, etc.

As discussed in Section III, the user has three different
modalities to retrieve results: get the results immediately, get
pending results using the mobile device, and get pending
results using the PC. Each of these modalities has to be defined

Fig. 8. XML Formats. (a) List of IP Addresses of Visited Servers. (b) List
of the Responses

Fig. 9. Pending Results from the Mobile Device.

in advance by the user and can be changed at runtime by means
of the mobile device application.

Choosing the first option, the user can receive the results
immediately in her mobile device. Of course, she can receive
the results if and only if she is still at a Bluetooth distance from
the server. The communication module checks the availability
of the mobile device and sends to it the results obtained from
the corresponding personal agent.

Figure 9 shows the interaction protocol of retrieving the
pending results via mobile device. Consider for example the
situation in which a user is near to the server of the central
library. After the connection has been established, the mobile
device sends the list of IP-addresses of all previously visited
servers (e.g. faculty servers, departments servers, etc.) to the
library server. The communication module of the server sends
then the Bluetooth address of the mobile device to all listed
servers. In turn, the communication module of each server
extracts from the internal database all the stored results related
to the user and sends them to the requester server. All the
results are collected by the communication module and finally
sent to the mobile device. If the mobile device is no longer
connected to the server (e.g. the user has left the library), the
retrieval process will fail and the results will be cancelled (they
are still available on the original servers).

Figure 10 shows the interaction protocol of retrieving the
pending results via PC. The user connects her mobile device to



Fig. 10. Pending Results from PC

the PC via Bluetooth and sends the list of all visited servers to
the PC component. Now, the user can decide either to retrieve
the results from all the servers or she can just select some of
them. An interface on the PC allows the user to connect to
the servers and then view or download the pending results.

D. Agents interaction

As we said in this first prototype we implemented just
one kind of service, namely the ”buy/sell books” service.
The multi-agent system has been implemented in JADE (Java
Agent DEvelopment framework) [10]. The interaction mech-
anism is very simple. The point here is that we do not pay
particular attention to the multi-agent interaction since we are
mainly focused on the design and the implementation of the
whole infrastructure.

Figure 11 presents the implemented interaction protocol
used by the agents in the case of the ”buy/sell books” service.
Buyer’s personal agent broadcasts the request of looking for
a specific book (information about title, desired price, etc. are
specified in the message). If in the platform there is another
agent that is selling the requested book, it responds to the
buyer with the price it wants for the book. If the price is
greater than the maximum price specified by the buyer, the
interaction continues with a discount request from the buyer
agent. The seller responds either with the discounted price or
with the initial proposed price (in case it does not want to
give the discount). If this price is less than maximum price
for the buyer, it accepts the deal. After that, the buyer and
seller personal agents exchange their users’ data, form the
agreed proposals and send them to the server’s database. The
proposals are than forwarded either to mobile device, or to the
PC as described in Section IV-C.

We tested the system using Nokia 6260 cellular phones and
PC/Server equipped with Tecom Bluetooth adapter. Bluetooth
communication has been implemented using Blue Cove [11]
which is an open source implementation of the JSR-82 Blue-
tooth API for Java.

Fig. 11. Agent Interaction

V. CONCLUSIONS

In this paper we have presented an implemented prototype
where multi-agent systems and Bluetooth wireless commu-
nication technology are combined together to support co-
localized communities of users. We have discussed the general
architecture of the system and we have presented using the buy
and sell books example some implementation issues related to
the prototype we have built.

A lot of work has to be done to make the system working
in a real-life environments, including the implementation of
various multi-agent systems able to provide different kinds of
services. We are currently working with ArsLogica s.r.l. in the
development of a real scenario where to apply the system.

ACKNOWLEDGEMENT

We thank ArsLogica s.r.l. for the collaboration and the
support to this project. This research also is partially supported
by COFIN Project ”Integration between learning and peer-
to-peer distributed architectures for web search (2003091149
004)”.

REFERENCES

[1] A. Rakotonirainy, S. W. Loke, and A. Zaslavsky, “Multi-agent support
for open mobile virtual communities.” inProceedings of the Interna-
tional Conference on Artificial Intelligence (IC-AI 2000) (Vol I), Las
Vegas, Nevada, USA, 2000, pp. 127–133.

[2] The official Bluetooth website — http://www.bluetooth.com/.
[3] M. Bombara, D. Calı̀, and C. Santoro, “Kore: A multi-agent system to

assist museum visitors.” inProceedings of the Workshop on Objects and
Agents (WOA2003), Cagliari, Italy, 2003, pp. 175–178.

[4] L. Vasiu and Q. H. Mahmoud, “Mobile agents in wireless devices.”
Computer, vol. 37, no. 2, pp. 104–105, February 2004.

[5] MIA project — http://www.uni-koblenz.de/∼bthomas/MIAHTML.
[6] O. Bucur, P. Beaune, and O. Boissier, “Representing context in an agent

architecture for context-based decision making.” inProceedings of the
Workshop on Context Representation and Reasoning (CRR’05), Paris,
France, 2005.

[7] C. Carabelea and M. Berger, “Agent negotiation in ad-hoc networks.”
in Proceedings of the Ambient Intelligence Workshop at AAMAS’05
Conference, Utrecht, The Netherlands, 2005, pp. 5–16.

[8] C. Carabelea and O. Boissier, “Multi-agent platforms on smart devices
: Dream or reality?” inProceedings of the Smart Objects Conference
(SOC03), Grenoble, France, 2003, pp. 126–129.

[9] JSR-82: Java APIs for Bluetooth —
http://www.jcp.org/en/jsr/detail?id=82.

[10] Java Agent DEvelopment Framework website — http://jade.tilab.com/.
[11] Blue Cove project — http://sourceforge.net/projects/bluecove/.


