
Proceedings of Networking 2002 — Lecture Notes in Computer Science, Springer-Verlag1

Load Balancing in WDM Networks through
Adaptive Routing Table Changes

Mauro Brunato∗† Roberto Battiti∗ Elio Salvadori∗

March 5, 2002

Abstract

In this paper we develop a Load Balancing algorithm for IP-based Optical Net-
works. The considered networks are based on a routing protocol where the next
hop at a given node depends only on the destination of the communication. Our
algorithm (RSNE- Reverse Subtree Neighborhood Exploration) performs at each
iteration a basic change of a single entry in a routing table in order to minimize the
disruption of the network.

We study the performance of our algorithm in realistic networks under static
and dynamic traffic scenarios. Simulation results show a rapid reduction of the
congestion for static networks and a performance of the incremental scheme while
tracking a changing traffic matrix comparable to the complete reoptimization of
the traffic.

Keywords: WDM, load balancing, local search, dynamic traffic.

1 Introduction

Wavelength Division Multiplexing (WDM) and Generalized Multi Protocol Label Switch-
ing (G-MPLS) have been proposed to support the growing bandwidth demand caused
by the exponential Internet growth and to permit suitable traffic engineering. In WDM
networks, a wavelength is assigned to each connection in such a way that all traffic is
handled in the optical domain, without any electrical processing on transmission [1].
The established lightpaths form the virtual or logical topology, opposed to the network
physical topology composed of nodes (Optical Cross-Connects - OXCs) and fibers.

Current advances in optical communication technology are rapidly leading to flex-
ible, highly configurable optical networks. The near future will see a migration from
the current static wavelength-based control and operation to more dynamic IP-oriented
routing and resource management schemes. Future optical networks designs should
probably be based on fast circuit switching, in which end-to-end optical pipes are dy-
namically created and torn down by means of signaling protocols and fast resource
allocation algorithms [5].

IP modifications are being proposed to take QoS requirements into account and
to integrate the IP protocol within the optical layer. At the same time, a generalized
version of Multi-protocol Label Switching (G-MPLS) is currently being developed to

∗Universit̀a di Trento, Dipartimento di Informatica e Telecomunicazioni, via Sommarive 14, I-38050
Pant̀e di Povo (TN), Italy; email:battiti|brunato|salvador@science.unitn.it

†Corresponding Author.

enable fast switching of various type of connections, including lightpaths. As soon as
protocol modifications can ensure different QoS levels at the IP level, more and more
statically allocated traffic can be transmitted on the dynamic portion of the network
leading to an all optical and fully dynamic G-MPLS controlled optical cloud [12]. In
this scenario it is necessary to study the impact of routing mechanisms typical to the IP
world.

The basic motivation behind Load Balancing in computer networks is to reduce the
congestion in the network. Congestion is related to delays in packet switching net-
works, and therefore reducing congestion implies better quality of service guarantees.
In networks based on circuit switching (see for example the G-MLPS protocol), re-
ducing congestion implies that a certain number of spare wavelengths are available on
every link to accommodate future connection requests or to maintain the capability to
react to faults in restoration schemes. In addition, reducing congestion means reducing
the maximum traffic load on the electronic routers connected to the fibers.

Load balancing leads to the problem of creating virtual connections by considering
both routing and wavelength assignment. The routing problem has its origin at the
beginning of networking research (see [9] for a review of previous approaches to the
problem). In particular adaptive routing, which incorporates network state information
into the routing decision, is considered in [8] in the context of all-optical networks,
while previous work on state-dependent routing with trunk reservation in traditional
telecommunications networks is considered in [7]. It is also known that flow deviation
methods [2], although computationally demanding, can be used to find the optimal
routing that minimizes the maximum link load for a given network topology.

Because global changes of the logical topology and/or routing scheme can be dis-
ruptive to the network, we consider algorithms that are based on a sequence of small
steps (i.e., on local search from a given configuration). In [4] “branch exchange”
sequences are considered in order to reach an optimal logical configuration in small
steps, upper and lower bounds for minimum congestion routing are studied in [13],
where variable depth local search and simulated annealing strategies are also proposed.
Strategies based on small changes at regular intervals are proposed in [9].

Our technological context is that of dynamic lightpath establishment in wavelength-
routed networks reviewed in [14]. We therefore assume a mechanism to assign re-
sources to connection requests, that must be able to select routes, assign wavelengths
and configure the appropriate logical switches, see also [3] for integrated IP and wave-
length routing and [6] for a blocking analysis in the context ofdestination initiated
reservation.

This paper describes a preliminary investigation on protocols that consider IP-like
routing strategies, where the next hop at a given node is decided only by the destina-
tion of the communication. In particular, we consider a basic change in the network
that affects a single entry in the routing table of one node. In the context of all-optical
networks this is relevant for optical packet switching networks, or for circuit switching
networks (e.g. based on G-MPLS) where the optical cross-connects allow arbitrary
wavelength conversion. The focus of this work is to study basic mechanisms in a sim-
plified context. We plan to extend the work in the future by considering more general
routing mechanisms (label switched paths in G-MPLS) and limited or no wavelength
conversion.

Let us introduce the terminology that shall be used throughout this work. Arouting
table is an array, associated to each node of the network, containing next-hop infor-
mation required for routing. Thetraffic patternis available as anN × N matrix (N
being the number of nodes in the network)T = (tij) wheretij denotes the number

2

of lightpaths (or the number of traffic load units) required from nodei to nodej. We
assume that the entriestij are non-negative integers andtii = 0 for all i. Given a traffic
pattern and a routing table on each node, the sum of the number of lightpaths passing
through each link is called thevirtual load of the link. Finally, the maximum virtual
load along a path is called thecongestionof the path. The maximum virtual load on
the whole network is called thecongestionof the network.

The Load Balancing problem is defined as follows.

LOAD BALANCING — Given a physical network with the link costs and
the traffic requirements between every source-destination pair (number of
lightpaths required), find a routing of the lightpaths for the network with
least congestion.

In the following sections, first we introduce the Reverse Subtree Neighborhood
Exploration (RSNE) algorithm in Sect. 2 and then discuss the implementation of an
incremental version (I-RSNE) in Sect. 3. Finally Sect. 4 analyses simulation results,
by considering both the static and the dynamic traffic cases.

2 Local Search for the Load Balancing Problem

In this paper we propose a new scheme based on a simple Local Search heuristic, the
Reverse Subtree Neighborhood Exploration(RSNE). The basic idea behind this scheme
is the following: start by setting a shortest path routing, then — iteratively — try to
minimize the congestion of the network by rerouting part of the traffic passing through
the most congested link in the network. Rerouting is not necessarily performed at the
ingress node of the congested link, as all nodes lying on routes that pass through the
congested link (theupstream nodes) shall be considered by the algorithm for a possible
change of their routing tables.

Refer to Fig. 1 for the following explanation. Consider the simplified hypothesis of
a network with a unique most congested link as depicted in the upper part of the figure:
we can identify the congested link with its endpoints (cFrom, cTo). In this special case
there are six lightpaths crossing that link, three of them coming from nodesrca, one
coming fromsrcb and two fromsrcc. Three lightpaths are directed to destination node
dest1, all others todest2.

A first approach to reduce the load on the congested link is to consider one of the
destination nodes (e.g.dest2) and reroute part of the load addressed to it from the con-
gested link to some other neighbornbi of cFrom, provided that the new route does not
end up in a cycle and that the congested link is avoided. This move is achieved by mod-
ifying only one single entry of thecFrom routing table (see it on the upper right side
of Fig. 1), e.g. fromcTo to nb2. In this example, three lightpaths are removed from
the congested link(cFrom, cTo) and are rerouted through the link(cFrom, nb2). All
destinations and all neighbors ofcFrom are considered before choosing the actual
routing table entry to change and its new value. This allows to choose the best option.
Actually, we found (as pointed out in Sect. 4) that even if the best possible move in-
creases the congestion there is still reason to choose it, because further improvement
could arise in the following steps. The algorithm stops when a predetermined number
of iterations has been performed, or when all possible moves end up with a nonconsis-
tent routing table (one causing loops or disconnected node pairs). The approach just
described is calledReduced Neighborhood Exploration(RNE); we call it reducedto
put it in contrast with the following extension.

3

dest

src a

dest
1 2

src b

src c

cTo

cFrom

1 2 Ndest 1 dest 2

cFrsrc c

src
1c

src c

dest

src a

dest1 2

nb
1

nb
2

src b

src c

cTo

cFrom

re-routing

1 2 Ndest 1 dest 2

cTo cTo

cTo nb
2

cFrom

cFrom

RNE:

re-routing

RSNE:

src
2c

nb
1c

nb
2c

nb
2c

nb
1

nb
2

Figure 1:Restricted Neighborhood Exploration(RNE) andReverse Subtree Neighbor-
hood Exploration(RSNE).

4

1. rTable← shortestPathRouting(network)
2. <congestion,congestedLinkSet>← calculateLoad(network,traffic,rTable)
3. repeat
4. bestCandidateLoad← +∞
5. candidateMoveSet← ∅
6. for each link <cFrom,cTo> ∈ congestedLinkSet
7. for eachdestination nodedestsuch thatrTable[cFrom][dest]=cTo
8. for eachnodesrc∈ routingTree(dest,cFrom)
9. removePartialLoad (src, dest)
10. for eachneighbor nodenb∈ neighborhood(src)
11. vl← virtual load on the candidate path fromnb to dest
12. if (vl = bestCandidateLoad)
13. candidateMoveSet← candidateMoveSet∪ {< src,dest,nb>}
14. else if(vl < bestCandidateLoad)
15. bestCandidateLoad← vl
16. candidateMoveSet← {< src,dest,nb>}
17. restorePartialLoad (src, dest)
18. if (candidateMoveSet6= ∅)
19. <src,dest,nb>← pickRandomElement (candidateMoveSet)
20. rTable[src][dest]← nb
21. <congestion,congestedLinkSet>← calculateLoad(network,traffic,rTable)
22. else exit
23. until MAXITER iterations have been performed

Figure 2: the Local SearchRSNEalgorithm

Consider now the lower part of Fig. 1, which reproduces a larger portion of the
same graph. To reroute part of the load addressed to, e.g.,dest2 and crossing the
congested link(cFrom, cTo) the search may be extended to all upstream nodes whose
routes todest2 cross the congested link. The routing is destination-driven, therefore
one can always identify the tree composed of all the links lying on lightpaths to a
specified destinationdesti. It is straightforward to get the subtree rooted incFrom and
composed of all the links lying on lightpaths to nodedest2: in Fig. 1 it is identified by
nodessrcb, srcc, srcc1, srcc2. In this case, taking into consideration one of the nodes
composing this subtree (e.g.srcc), we could try to reroute part of the load on the most
congested link towards some of the downstreamsrcc’s neighbors nodesnbci, while
avoiding cycles and the use of the congested link. This local move is realized again
modifying one single entry of the node’s routing table (see it on the lower right side of
Fig. 1, e.g. fromcFrom to nbc2). In this case, only two lightpaths are removed from
(cFrom, cTo) by sending them through an alternate path todest2. Even though the
improvement is smaller than in the previous case, where only the neighbors ofcFrom
were considered, we shall see in Sect. 4 that, by allowing such fine-grain variations,
this more general scheme achieves much better results. Again, all possible moves are
considered before choosing a routing table change. This implies scanning all possible
destination nodes having(cFrom, cTo) in their routing tree and, for each destination
node, all neighbors of every upstream node ofcFrom. Even congestion increases are
accepted, if no improving option is found. This technique is calledReverse Subtree
Neighborhood Exploration(RSNE).

Fig. 2 shows an outline of our Local Search algorithm used for the Load Balancing
problem: the initialization section (lines 1–2) starts by generating the routing tables

5

through the application of the Shortest Path Routing algorithm to the specific network.
By using the functioncalculateLoadwe initially calculate the load on each link of the
network, the initial value ofcongestion(from which the local search algorithm starts
its search of the minimum) and the set of congested links.

The rest of the algorithm is a loop (lines 3-23) containing the local search algorithm.
The functions, variables and data structures used throughout this block have the

following meaning:

• The setcandidateMoveSetcontains all candidate routing table changes. Its ele-
ments are triplets whose components are the node whose table must be changed,
the index of the entry and the value that replaces the one already present.

• The functionroutingTree(d,r) returns the subtree that contains the nodes whose
communications directed to destinationd pass through noder.

• The functionshortestPathRouting(network) calculates the shortest path tree for
each destination node and returns the corresponding routing table as a matrix.

• The vectorrTable[n] is the routing table of noden, whosei-th entryrTable[n][i]
is the next-hop node index for lightpaths passing through noden and with desti-
nationi.

• Finally, the functioncalculateLoad(network,traffic,rTable) returns the network
congestion given the network topology, the traffic pattern and the current rout-
ing scheme. The function also returns the set of links having maximum loads
(congestedLinkSet).

ThecandidateMoveSetis empty at the beginning of each iteration. The local search
algorithm (lines 3–23) consists of two parts. First, a set of alternative paths for some
of the lightpaths passing through the most congested link is found (lines 6–17); in the
second part (lines 18–22) a candidate is chosen and the corresponding routing table
change is applied.

The first part (lines 6–17) includes the core of our proposal. The algorithm con-
siders each congested link incongestedLinkSet(loop at lines 6-17). Then it iterates
through all the routes using that link, identified by its endpoints (cFrom,cTo). Two
nested loops are used: the first (line 7) scans the routing table of nodecFrom looking
for all destination nodesdestusing that link; the second (line 8) scans all nodessrc
whose lightpaths directed todestrun throughcFrom. These nodes identify the subtree
rooted incFromof the routing tree having destinationdest.

For each (src,dest) pair whose lightpaths go through the link (cFrom,cTo), the al-
gorithm tries to reroute the lightpaths by altering the routing table insrc. The corre-
sponding load is temporarily removed from the current route (line 9), then an iteration
through all neighborsnb of src calculates the maximum load that would be caused by
rerouting the lightpath, provided that the new route does not end up in a cycle and that
the congested edge is avoided. The best alternate paths, in terms of maximum load,
are collected intocandidateMoveSet. In particular, the current minimum is stored in
bestCandidateLoad. If the load obtained after this traffic re-routing is equal tobestCan-
didateLoad, then the re-route is added to the candidate set (lines 12-13); if it is smaller,
the candidate set is re-initialized to the current re-route and its load is stored as the
new best value (lines 14-16). At the end of the alternate paths search, the partial load
associated to the path originating insrc and terminating indestis reallocated (line 17)
in order to allow the search of new paths with different initial nodessrc (line 8).

6

In the second part of theRSNEalgorithm, if the resulting setcandidateMoveSet
is not empty then one random element is selected from it (line 19), and the routing
table of the network is updated (line 20). Finally, a new value ofcongestionand the
corresponding set of most loaded linkscongestedLinkSetis calculated again in order to
start a new search of alternate paths through the network.

Note that the local search algorithm continues looking for better values ofconges-
tion until the set of candidate re-routescandidateMoveSetis empty (line 22), or until a
given number of iterations MAXITER has been performed (line 23).

From this algorithm we can easily obtain theRNEversion: in this scheme, node
cFrom is the only candidate for routing table modifications. This corresponds to the
elimination of the loop structure on line 8, which scans thecFrom-rooted subtree, by
settingsrcequal tocFrom. The rationale forRNEis to avoid a large tree exploration and
to keep modifications as near as possible to the congested link. In fact, while rerouting
at cFrom removes a whole bundle of lightpaths from the link, doing the same at some
upstream node in the tree may cause a smaller reduction of the load. On the other hand,
simulations in Sect. 4 show that, unless very few iterations are allowed before halting,
performance ofRNEis significantly worse thanRSNE.

3 Incremental Implementation on Dynamically Evolv-
ing Traffic

Local search heuristics can be seen as stepwise refinements of an initial solution by
slight modifications of the system configuration. In our case, theRSNEalgorithm starts
from a shortest path routing scheme and changes at every step a routing table entry of
a single node in the matrix. By performing many such changes, the system reaches a
minimal congestion configuration.

This iterative scheme suits in a very appropriate way to a dynamic environment
where traffic requirements evolve with time. In particular, if changes in the traffic ma-
trix are reasonably smooth1 even a small number of steps of theRSNEalgorithm in
Fig. 2 is sufficient to keep the system in a suitable state as the traffic matrix changes.
Of course, only lines 2-23 must be executed, because we don’t want to restart from
scratch by calculating the shortest path routing tables. Moreover, a very low number of
iterations of the outer loop (lines 3-23) must be performed at each step, i.e. MAXITER
must be small (1 to 5 should suffice) to avoid excessive traffic disruption. In the follow-
ing, we shall refer to the incremental algorithm asIncrementalRSNEwith k iterations
per step:I-RSNE (k).

The simulations discussed in Sect. 4 show that even a single iteration of the algo-
rithm yields good results under a fairly generic traffic model. The number of iterations
of the algorithm is equal to the number of routing table entry modifications in the sys-
tems; thus, a very limited number of routing table entries must be modified as traffic
evolves in order to keep congestion at low levels.

A similar approach has been proposed in [11], where branch-exchange methods are
proposed for a local search heuristic; however, the type of local modification is quite
different from our proposal.

1The assumption is reasonable even though IP traffic is known to be bursty: in fact, traffic requirements
are given as an average over a certain amount of time, with some marginal capacity left to accommodate
traffic peaks.

7

 700

 750

 800

 850

 900

 950

 1000

 0 10 20 30 40 50

N
et

w
or

k
co

ng
es

tio
n

Time

RNE
RSNE

Figure 3: Comparison betweenRSNEandRNEalgorithms.

4 Simulation Results

4.1 Static Traffic

To test the proposed algorithms we performed two sets of tests, static and dynamic.
The first, using a static traffic matrix, explores the convergence speed of theRSNEand
RNEalgorithms.

Fig. 3 plots the evolution of the congestion value for a 50-iteration run of theRNE
andRSNEalgorithms with the same initial conditions; here the 14-node NSFNET back-
bone topology is used [10], while the traffic is randomly generated: every nondiagonal
entry of the traffic matrix is a uniform value between 10 and 100. It turns out that the
more completeRSNEalgorithm outperforms its simplest version, although it some-
times achieves better results in the initial phase, probably because the algorithm is
forced to move larger portions of load from edge to edge, achieving temporary better
results but ending up with a complex, non-improvable routing scheme. Note that the
congestion does not increase in a monotonic way: the algorithms do not halt when no
improvement is possible, and the move leading to the smallest increase is chosen. This
allows the system to escape local minima positioned in some shallow attraction basin.
In many cases, this causes oscillation to take place once the minimum is achieved.

In the simulation shown here the maximum hop length corresponding to the lowest
congestion configuration is 4. The corresponding value for the shortest path routing
scheme is 3. The average hop length increases from 2.14 (shortest path) to 2.2 (RNE)
and 2.21 (RSNE).

8

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100

N
et

w
or

k
co

ng
es

tio
n

Time

Shortest path, RMS in 50 runs
I-RSNE(1)
I-RSNE(3)

Static RSNE, 100 iterations

Figure 4: Comparison in terms of congestion: shortest path,RSNEandI-RSNE (k).

4.2 Dynamic Traffic

To investigate the behavior of the incremental versionI-RSNE (k) with a dynamically
evolving traffic pattern, we considered another topology, the 24-node regional network
presented in [15].

To generate dynamic traffic we followed a model similar to that described in [9].
Given two positive integersN and∆, we consider a sequence ofN∆ + 1 traffic ma-
trices(T 0, T 1, . . . , TN∆) where matrixT k∆, k = 0, 1, . . . , N is random and indepen-
dently generated. For each of these matrices a random maximum value between 10
and 100 is generated, and each entry of the matrix is calculated as a random number
between 10 and this maximum. The random maximum value has been introduced to
take into account the variability of internet traffic in the mid term. All other matrices
are linear interpolations of the immediately adjacent random matrices. In other words,
given h = 0, . . . ,∆ − 1 andk = 0, . . . , N − 1, entryT k∆+h

ij of matrix T k∆+h is
computed as follows:

T k∆+h
ij = round

[(
1− h

∆

)
T k∆

ij +
h

∆
T

(k+1)∆
ij

]
.

Fig. 4 describes the behavior of the proposed algorithms in the dynamic traffic case
by comparing their congestion values. The upper plot represents the results achieved
by the shortest path routing; for every traffic matrix, 50 different shortest path configu-
rations were computed (with a random tie-breaking scheme), and the graph represents
theµ± σ interval, whereµ is the average andσ is the corresponding root mean square
value. In fact, a large variability in the congestion (up to 35%) has been observed
depending on random choices.

9

 2.75

 2.8

 2.85

 2.9

 2.95

 3

 3.05

 3.1

 3.15

 3.2

 3.25

 0 100 200 300 400 500 600 700 800 900 1000

H
op

s

Time

Shortest path
I-RSNE(1)
I-RSNE(3)

Static RSNE, 100 iterations

Figure 5: Comparison in terms of average hop length: shortest path,RSNEand I-
RSNE(k).

Note that allRSNEandI-RSNE results are almost equivalent, well under the short-
est path values. The only difference can be seen in the initial transient, when the in-
cremental versions begin to differ from the pure shortest path configuration. This is a
very important feature of the algorithm, becauseI-RSNE (1) requires the modification
of a single entry of the routing table of a single node for each change in the traffic
conditions. TheRSNEand I-RSNE algorithms achieve results that are 8% to 12%
better than the shortest path minimum over all the 50 runs, and up to 32% better than
the average shortest path result.

If Fig. 4 is assumed to represent the traffic evolution during a day of real time, then
a single change every fifteen minutes (in order to obtain about 100 changes per day) is
sufficient to keep congestion at a local minimum, well below the shortest path routing.

Fig. 5 shows a comparison among the same algorithms in terms of average hop
length, calculated as the mean value of hop distances (in the given routing scheme)
between every node pair in the graph. The average hop length of shortest path routing,
represented by the continuous bottom line, is obviously constant, and by definition it is
the minimum (its value is 2.77).

The other plots, in particular the one representing the behavior of the offlineRSNE
algorithm, are particularly irregular when compared to those in Fig. 4; this is partly due
to the narrower timescale, but it also depends on the fact that routing table changes are
aimed at load reduction, and therefore hop lengths may vary from step to step. Note
also that theI-RSNE outcomes are smoother, because adjacent results are strongly
correlated, while theRSNEprocedure performs a complete restart at every time step.

Fig. 5 highlights the main drawback of the incremental schemesI-RSNE (k): the
shortest path configuration is never reimplemented, as was the case withRSNE, so the

10

average hop length is slightly growing in time.
While RSNEis constantly above the shortest path value by about 2%, theI-RSNE

schemes tend to accumulate longer paths, getting to a 7% increase after 1000 time steps.
Note that the difference grows in time. To overcome the problem a simple modification
consists of restarting from a shortest path configuration every time the average (or the
maximum) hop length trespasses a given threshold.

5 Conclusions

The paper proposed and motivated a heuristic technique for load balancing in IP-based
optical networks (RSNE) built on simple modifications of routing tables. Some vari-
ations were introduced to reach lower algorithmic complexity (RNE) and to obtain a
faster, incremental evaluation in the case of dynamically evolving traffic (I-RSNE).

Comparisons between the new techniques and the shortest path routing scheme,
both in terms of network congestion and length of the resulting routes, show that the
proposed algorithms are effective to reduce congestion, and outperform shortest path
routing by up to 32%. The resulting increase in hop length is limited to a small amount
(up to 7% in the worst case considered in the paper).

TheRSNEalgorithm explores all possible improvements before taking a step. Fur-
ther investigation will determine how the quality of the solutions deteriorates if a ran-
domized approach is followed in order to distribute the algorithm.

Acknowledgments

We would like to thank Imrich Chlamtac and Jason Jue of the University of Texas at
Dallas, for their interesting and fruitful discussions with the authors about the subject
of this work, and the anonymous referees for their precious comments.

References

[1] I. Chlamtac, A. Ganz, and G. Karmi. Lightpath communications: A novel ap-
proach to high bandwidth optical WANs.IEEE Transactions on Communications,
40(7):1171–1182, 1992.

[2] L. Fratta, M. Gerla, and L. Kleinrock. The flow deviation method: An approach
to store-and-forward communication network design.Networks, 3:97–133, 1973.

[3] M. Kodialam and T. V. Lakshman. Integrated dynamic IP and wavelength routing
in IP over WDM networks. InProceedings of IEEE INFOCOM 2001, pages
358–366, 2001.

[4] J. Labourdette and A. Acampora. Logically rearrangeable multihop lightwave
networks.IEEE Transactions on Communications, 39:1223–1230, August 1991.

[5] Emilio Leonardi, Marco Mellia, and Marco Ajmone Marsan. Algortihms for
the topology design in WDM all-optical networks.Optical Networks Magazine,
1(1):35–46, January 2000.

11

[6] K. Lu, G. Xiao, and I. Chlamtac. Blocking analysis of dynamic lightpath es-
tablishment in wavelength-routed networks. InProceedings of ICC2002, 2002.
submitted.

[7] D. Mitra, R. Gibbens, and B. Huang. State-dependent routing on symmetric
loss networks with trunk reservations.IEEE Transactions on Communications,
41(2):400–411, 1993.

[8] Ahmed Mokhtar and Murat Azizŏglu. Adaptive wavelength routing in all-optical
networks.IEEE/ACM Transactions on Networking, 6(2):197–206, April 1998.

[9] Aradhana Narula-Tam and Eytan Modiano. Dynamic load balancing in WDM
packet networks with and without wavelength constraints.IEEE Journal of Se-
lected Areas in Communications, 18(10):1972–1979, oct 2000.

[10] R. Ramaswami and K. N. Sivarajan. Design of logical topologies for wavelength-
routed optical networks. InProceedings of IEEE INFOCOM 1995, 1995.

[11] Jadranka Skorin-Kapov and Jean-François Labourdette. On minimum congestion
routing in rearrangeable multihop lightwave networks.Journal of Heuristics,
1:129–145, 1995.

[12] C. Xin, Y. Ye, T.S. Wang, and S. Dixit. On an IP-centric control plane.IEEE
Communications Magazine, 39(9):88–93, 2001.

[13] Bülent Yener and Terrance E. Boult. A study of upper and lower bounds for min-
imum congestion routing in lightwave networks. InProceedings of INFOCOM
1994, pages 138–149, 1994.

[14] H. Zang, J.P. Jue, L. Sahasrabuddhe, R. Ramamurthy, and B. Mukherjee. Dy-
namic lightpath establishment in wavelength routed networks.IEEE Communi-
cations Magazine, 39(9):100–108, 2001.

[15] Zhensheng Zhang and Anthony S. Acampora. A heuristic wavelength assignment
algorithm for multihop WDM networks with wavelength routing and wavelength
re-use.IEEE/ACM Transactions on Networking, 3(3):281–288, June 1995.

12

