

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

SCHEDULED MESSAGE DELIVERY
IN DELAY-TOLERANT NETWORKS

Csaba Kiss Kalló and Mauro Brunato

February 2004

Technical Report # DIT-04-014

.

Scheduled Message Delivery in Delay-Tolerant Networks

Csaba Kiss Kalló
Mauro Brunato

Università di Trento
Dipartimento di Informatica e Telecomunicazioni

Via Sommarive 14, Trento, Italy
[kkcsaba,brunato]@dit.unitn.it

Abstract

With the proliferation of mobile communications, new kinds of network architectures are being defined over the
existing static one. Delay-Tolerant Networks (DTN) come to fill in a gap in the existing networking technology: they
provide support for communication between peers when there is no end-to-end path available between them.

Message forwarding in DTNs can be handled in many ways. In this work the performance of a DTN is analyzed
in the case of scheduled message delivery, with particular consideration to the different message delivery delays and
to the usage of buffers that store a message during its propagation from its source to the destination.

We introduce the K2 heuristic algorithm for location-aware message delivery, based on the
�

-nearest-neighbors
technique, and compare simulation results with another basic message delivery technique, Message Forwarding with
Flooding (MFF).

The results of simulations on a simplified urban setting show that K2 reduces buffer usage while maintaining
delivery delays approximately unchanged when compared to MFF. Simulations also suggest that adding a DTN-like
message forwarding architecture with mobile access points to an existing fixed infrastructure can be an effective
way to improve wireless coverage for delay-tolerant end-user applications such as e-mail, message passing and news
broadcast.

Keywords: delay-tolerant networks, scheduled message delivery, simulation, heuristic algorithms

1 Introduction

Pervasive networking environments, with always-on wireless connectivity by means of portable computers, PDAs and

cellular phones, are becoming part of our everyday experience, at least in office environments. A trend towards the

everyday life has however begun. Low-bandwidth systems such as packet-oriented cellular connections (GPRS) have

been commercially available for years, and third generation cellular systems, oriented both to voice and data, are being

rapidly deployed and commercialized.

On the other hand, wireless LANs are starting to appear in many public places, such as stations and shopping malls.

As extensions of traditional local-area networks, WLANs are used to carry TCP/IP-like traffic, with the underlying

hypothesis that an end-to-end connection between peering devices is available.

A different paradigm, based on a family of store-and-forward techniques, is at the basis of Delay-Tolerant Net-

works (DTN). In this paper we propose and analyze through simulations some techniques devised to provide delay-

tolerant services, such as mail and messaging, to users that are not directly connected to a wireless LAN, by forwarding

information by means of mobile access points.

Simulations take into account a user-related parameter, namely the message latency, and an important network-

related parameter, the maximum size of the buffers in the mobile and fixed nodes of the network.

1

Static Network

Static Network
Static Network

AP2AP1

MAP1 MAP2

MN

TrackWireless linkWired link

Access point (AP) Mobile AP (MAP) Mobile node (MN)

(d) Delay−tolerant

(a) Nomadic
(b) Ad−hoc

(c) Hybrid or infrastructured ad−hoc

Figure 1: Wireless network architectures

This paper is structured as follows. In Section 2 the concept of DTN is introduced by examining relevant literature.

Section 3 defines the exact terms of the problem. In Section 4 our approach to the problem is described, together with

the proposed heuristic algorithms for scheduled delivery. Section 5 describes the implementation of our simulator

while in Section 6 some results of our simulations are reported and discussed.

2 Related Work

With the proliferation of mobile communications, new kinds of network architectures are being defined over the

existing static one [1]. The simplest architecture is called nomadic and consists of a traditional static network having

access points at its periphery that mobile wireless devices use to access the network, as shown in Figure 1.a. On the

other hand, the so-called ad hoc networks are exclusively formed by mobile components that connect to each other

through wireless links, as in Figure 1.b.

In a latter moment, from the combination of these two basic kind of mobile wireless netwok architectures a hybrid

or infrastructured ad hoc network has been defined [2, 3]. The difference between nomadic and hybrid networks is that

while in the former case only one-hop connections to the access points are allowed, in the latter architecture multihop

links toward the access points are also permitted (see Figure 1.c).

Due to mobility and to the reduced range of wireless networking technologies, some devices or groups of devices

may move away from the main networking area, thus partitioning the network in clusters. Devices in a cluster form an

isolated network segment, without access to the resources available in the other parts of the network and to potential

communication peers. To make inter-cluster communication possible, two main streams of approaches are available

in the literature. First, communication links between two clusters, or a cluster and the Internet, can be set up using

specialized gateways with enhanced radio capabilities and/or airborne relay nodes (e.g. airplanes, satellites), like in

the systems targeted by [4, 5]. In this architecture devices are partitioned in two or more layers that take advantage of

2

heterogeneous routing algorithms for managing communication. Thus, these networks form a hierarchical topology

with ad hoc clusters (i.e. partitions of ad hoc networks) at the lowest layer. Superior layers may also have the role of

translators, enabling different communication technologies to be present in the same network. Albeit this solution is

simple from a technical point of view, it is very expensive.

In the second approach, mobile nodes that are expected or scheduled to move among clusters contain a bundle

with the inter-cluster communication data. Routing in these networks is done on a store-and-forward basis, i.e. the

data is stored at every node on the route, until another node closer to the destination can overtake it. In these networks

an end-to-end path between source and destination is not required. This kind of communication paradigm implies

both data and device traffic. A communication system following such a model is called a Delay-Tolerant Network

(DTN) [6, 7]. Delay-tolerant network functionality is implemented in the so-called Bundle Layer, inserted on top of

the transport layer in the traditional networking protocol stacks. Such systems are addressed in [8, 9]. Projects like

the InterPlaNetary Internet [10], the Saami Network Connectivity [11] and others build their specific applications on

DTNs. An example for DTN architecture is presented in Figure 1.d, which shall be fully explained in Section 3.

Delay tolerant networks were introduced to solve several problems of traditional networking technologies. One of

the main issues to be mentioned here is that current technologies offer poor support, if any at all, for communication

between two network elements if no end-to-end path is available. Long propagation delays and high error rates make

proper functioning of the most common networking protocols (TCP, SCTP, UDP, IP, SNMP, RIP, BGP, ...) impossible,

since frequent retransmissions, expiration of the ����� s long TTL, links marked as non-operable, and so on, make them

abort all initiated communication channels [7]. The store-and-forward model of DTNs is able to overcome all these

problems.

3 Problem Formulation

In our work we investigate the performance of a DTN in an environment with many message forwarder nodes that

move periodically. We are mainly interested in the delays between the moment of sending and receiving a message

and the size of the different buffers on the route required for temporarily storing the message. On this purpose:

� we describe a possible application environment

� we define K2, a novel message handing mechanism

� we implement a simulator for the application that enables us to perform experiments with our message handing

mechanism

The central element of our application is the public transportation network of a city. The vehicles of such a network,

equipped with a gateway device, collect data bundles from mobile users they meet on their way on the streets of the

city and forward this data to the static data communication network when arriving in the range of a fixed gateway. On

the reverse direction, vehicles could transport data also from the infrastructure to mobile users, in the same manner.

Figure 1.d illustrates how a mobile node MN (e.g a wireless PDA owner walking on the street), within an ad hoc

cluster, places a query on a mobile access point MAP1 (installed, for instance, on a bus). After a while, MAP1 moves

close to the static access point AP1 (set up in a bus stop), and forwards the message of MN toward the destination

3

 ...
RESP_101

RESP_101

ACK_101
ACK_101

ACK_101

RESP_101

MSG_101

RESP_101

USER VEHICLES
1 2 3 ... n

INFRASTRUCT

MSG_101

Msg Ready

D5

D4

D3

D2

D1

Figure 2: Message flow between users and the infrastructure

of the data, e.g. an e-mail server. After the reception of the message the e-mail server elaborates a response and

multicasts it to AP1 and AP2. A short time after, MAP2 (another gateway-equipped bus), passes close to AP2 and

takes the message back to the area where MN placed its query on MNP1. When arriving in communication range with

MN, MNP2 hands the respose data, i.e. several email messages.

The installation of gateway devices on the vehicles of such a transportation network can provide network connec-

tivity also in places where the deployment of static access points is unprofitable. Indeed, the advantage of this network

architecture is its capability of expanding the coverage of a wireless network on a considerably bigger area than with

the same number of static gateways, at the same cost. The price payed for this is the intermittent connectivity of such

a network that implies longer response times that the mobile user will experiment in user-initiated transactions. The

length of these response delays is one of the issues that we investigate in this work. Since these delays lead to the

accumulation of data on both mobile and static gateways, we also want to obtain from our experiments a clear vision

upon the appropriate size of the buffers on these devices that can assure the proper functioning of the system.

The objective of this work is to optimize scheduled message delivery in DTNs without significant negative in-

fluence on the message delivery delays that users experiment. This issue is discussed in details in the subsequent

sections.

4 Approach

We focus our attention on the network segment dedicated to provide the connection between a mobile user and the

infrastructure. In other words, in this phase of our work we do not consider delays or networking issues such as routing

behind the static access points, i.e. in the static network, with the assumption that these times are usually much shorter

than the physical delivery time by vehicles. Our main concern is to move data between the mobile users and the access

points1.

The network performance is analyzed with respect to the mentioned parameters (i.e. forwarding delay and buffer

length) in each of the two message forwarding algorithms, MFF and K2, described in the following subsections. Both

algorithms follow the generic communication scheme presented in Figure 2, as explained next.

1Infrastructure, static network and the access points in the generic sense are used as synonyms in this work, if not specified otherwise.

4

Let us suppose that a mobile user wants to send a request to a server in the static network. After the request

has been issued on the user’s device, at the first opportunity, i.e. when a bus arrives in his communication range,

the message is sent to the bus with a unique identifier (MSG 101). The bus holds the message until a static access

point appears in range. At this moment MSG 101 is forwarded to the infrastructure and a response (RESP 101) is

generated by the appropriate server. This response is replicated and forwarded to a set of buses that pass next to a

static access point until a receipt acknowledgment (ACK 101) is received. A receipt acknowledgment is generated

by the bus that actually hands RESP 101 to the user, and it is sent to the infrastructure at the first opportunity. The

infrastructure informs all the buses about the acknowledgment, so that they can remove MSG 101 from their buffers.

After the reception of the acknowledgment the response message is removed from the infrastructure. A Time-To-Live

parameter can also be implemented to eliminate old messages from static and mobile access point buffers.

During this message exchange sequence we encounter at least five types of delays, indicated in Figure 2. The first

delay (D1) takes place between the moment when the user application sends the request and the one when a bus arrives

into the user’s communication range to overtake it. During this period the request message is stored in the bundle layer

[6] or a corresponding middleware buffer. During the second delay (D2) the message is in the vehicle buffer. This

delay lasts until the bus meets the first static access point. At this moment the messages arrive into the static network.

The round trip of the message between the static network boundary and the appropriate server, as well as the time

necessary for the server to elaborate a response for the request introduce a new delay. Discussion on this delay is not

in the scope of this work, and we shall assume that the response is nearly instantaneous when compared to the other

delays.

The consequent delay (D3) lays between the moment when the response arrived back from the server to the

access points and the one when the user receives the response. The delays after this moment are not sensed by the

user anymore. They are important from the system’s point of view, in particular when we want know how long the

already delivered messages occupy the system resources. There are two delay periods that we mention after this

moment. During the first one (D4) the infrastructure has not yet been informed that the response was delivered to the

user. Therefore in this period the infrastructure keeps propagating RESP 101 among the buses, therefore occupying

communication bandwidth and storage needlessly. Finally, in the last delay period (D5) the infrastructure propagates

short acknowledgment messages enabling the buses to free their buffers. Numeric values of these delays can be found

in Section 6.

Clearly, the mentioned delays have been introduced to take into account a complete query-response transaction

originated by the user towards a server in the static network. If a message is originated within the static network and

must be simply sent to the user (e.g., the user has a subscription to a news service) the total delivery time is just the

D3 delay, since nothing has been generated by the user.

From the above presentation of the delay types, it turns out that the most critical segment of the data flow in

our architecture is the one from the infrastructure to the mobile gateways. In fact, the number of message replicas

grows significantly on this segment. Over the physical constraints that inevitably impose long delays, the message

propagation policy on this segment also influences the round trip times of user messages. If the response message

is replicated on many mobile gateways, it is expected that the user will receive it earlier. However, high number of

replicas will have negative impact on our second parameter, the buffer occupancy, as well as on the communication

5

1. forall messages m in AP Queue In do
2. PushBufferOut(KNN(m))
3. forward list � KCC(m.id)
4. remove m from AP Queue In
5. forall messages m in each AP Queue Out do
6. if destination in range of AP then
7. hand m to destination
8. ap.PushAckQueue(m.id)
9. remove m from AP
10. else
11. for each bus b do
12. if (b in range of knn AP) and (b � forward list with m) then
13. b.PushBufferOut(m)

Figure 3: Pseudocode of the K2 algorithm

bandwidth. Therefore, a trade-off should be found that assures acceptable delays with reduced number of replicas.

After the generic description of message forwarding in the specified kind of DTN, next in this section we present

the particularities of two algorithms. In the first one the number of replicas is not limited by the system while in the

second algorithm an optimized approach is presented.

4.1 Message Forwarding with Flooding (MFF)

Message forwarding with flooding (MFF) is a simple but resource consuming technique. The main characteristic of

this technique is that the infrastructure does not make any attempt to reduce the number of replicas of RESP 101 that

it propagates in the DTN, but it simply forwards these messages to each mobile gateway passing in its radio proximity.

Every static access point will receive a replica of the message and, if no acknowledgment is received for a long enough

period of time, all the mobile gateways will have the message in their buffers. Thus, replicas of the message will be

stored also in the buffer of gateways that physically have no any possibility to deliver it to the destination. However,

the big advantage of MFF is that if a single opportunity exists for the message to be delivered to the destination, this

technique will not miss it.

4.2 The K2 Algorithm

In this subsection we define the K2 algorithm with the intention of improving the way resources are used when

forwarding data in a DTN with scheduled mobile gateways. In K2 we use the � -nearest neighbors (KNN) technique in

two different ways, hence the name of the algorithm.

The K2 algorithm is sketched in Figure 3. In order to reduce the number of replicas of the response message, the

algorithm reduces the set of gateways that will receive the message by using location information. On this purpose the

system will register and maintain the position information of the users. Notice that it is not required for the user device

to have location estimation capabilities, but it is the (mobile) access point that takes care of location information.

Naturally, if the user device has optional positioning capabilities, it may communicate that information to any gateway

within range, which will propagate that data on to the infrastructure.

The K2 algorithm will use this information to ham in a region in which the user waits for the response with a high

probability. In particular, it selects the � nearest static access points to the position found in the message, where �

6

is a parameter of the algorithm. The message will be copied only to the � selected access points (line 2), in contrast

with MFF, where the message is replicated on each static gateway. In the fortunate case in which the user is connected

to a static access point, the message is delivered immediately, bypassing the mobile gateways (lines 7–9). However,

if the user is not within the infrastructure’s reach, an additional algorithm is used for selecting the most appropriate

mobile gateways that the message should be replicated to (line 3). On this purpose we apply the � -Nearest-Neighbors

search for time instead of space and we call this variation � -closest connections (KCC). Indeed, with KCC we look for

the identity of the first � buses that will have in their radio proximity the position where a message’s destination was

last seen by the infrastructure (note that the parameters of the two searches, � and � , may not be equal). A further

requirement for a bus to be selected as a � -closest connection is that it must pass in the radio proximity of a � -nearest

static access point (i.e. one of the � nearest access points selected for that message) before passing by the mentioned

position. This constraint is necessary in order to assure that the bus will have the opportunity to overtake the message

in question from the infrastructure.

5 Simulation

To test our algorithm and study buffer lengths and message delivery delays we implemented a simulator for a city bus

scenario in C++. Next in this section this simulator is presented in details.

We start out by generating the elements of our scenario. In particular we generate the bus tracks on an area of

����������������� m � . Bus tracks consist of bus stop positions connected with straight lines. For each bus stop we assign

a time between 10s and 60s that the buses following that track will spend there. Further, we set the average speed of

�
	��
� m/s the buses will travel with on each segment between two bus stops. Finally, for each specific line we set the

frequency the buses will follow each other. This frequency varies between 10 and 30 minutes.

User tracks are generated in a similar manner with some differences. A random starting point is generated for

each user track, then new points are added close to the previous one that the user will reach with a walking speed

of ��	�� m/s. The angle formed by two consequent track segments is selected with care in order to simulate users

that follow straighter paths or others that move back and forth on a small area. During the simulation users generate

messages destined randomly to some other user or to the infrastructure that will answer them. Each user generates

messages according to the Poisson distribution, with different average frequency.

Figure 4 shows the setup of some experiments. On the left, bus tracks are reported along with user tracks and static

AP positions. On the right, a grayscale plot of coverage frequency is shown. White circles indicate full coverage,

darker regions are covered for less than 100% of the total simulation time. Note that the scale is nonlinear in order to

enhance the visibility of darker regions.

Our simulator starts out by loading the bus and user track data. From this data we first calculate the position of the

fixed access points by placing one access point every third bus stop on each line, avoiding superposition in stops that

are common to more lines. We also calculate the round duration, the time necessary for a bus to travel from one end

of a line to the other and back. From the round duration value and the bus frequency we calculate the number of buses

that will cycle on each line during the simulation.

Before users start to move on the map and send messages, buses are moved on their tracks for the duration of the

longest round trip time, so that a steady mode of operation is reached, with as many buses per track as needed.

7

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Bus track
User track

Access point

50%

 500

 1000

 1500

 2500

 3000

 0 1000 2000 3000 4000 5000

 2000

0%

100%

25%

 0

Figure 4: (Left) Bus lines and user tracks. (Right) corresponding time of coverage during the simulation. Note that
the greyscale is not linear.

When the bus system is fully deployed, the main part of the simulation, handling users and message exchange,

begins. The state of the system is evaluated every 0.5s of simulated time until the preset number of messages were

received and removed from all buffers, or until a preset simulation time expires. Each step of the simulation starts

by updating the locations of buses and users then user outgoing buffers are checked for newly generated messages.

If in the buffer of a user � some messages are found, the system checks whether � is connected to any mobile or

fixed access point, (M)AP for short. In case of available connection(s) all pending messages of � are forwarded to the

appropriate (M)AP, giving higher priority to fixed access points.

MAP buffers are also checked at each iteration. If a bus arrives in the range of an AP it will forward all the

messages it has in its incoming buffer (BQin) to the incoming buffer of the AP (APQin). In BQin there may be data or

acknowledgment messages. The latter have no payload, therefore they only occupy a small space in the buffer, while

messages containing user data are all of the same length. Acknowledgment message identifiers are stored at the APs,

in order to keep track of acknowledged messages, and then deleted from APQin. After the forwarding each bus will

delete from its BQout all the messages in the acknowledged message list of the infrastructure.

At this point messages are processed by the infrastructure and then forwarded or replied. Messages from the

infrastructure to the users are sent using the MFF or the K2 algorithm. Therefore, some messages will be handed

directly to the destination by the APs while others will be replicated on a number of MAPs. Messages from the

outgoing buffer of MAPs are handed to their destination when the respective user will be in range of the MAP. If this

never happens, then that message will remain in the (M)AP buffers until the end of the simulation. In a future version

of the simulator a time-to-live value may be attached to the packets enabling the automatic removal of old messages.

Further, with the modification of the K2 algorithm new attempts to deliver the message to its destination could be

triggered by a timeout or some other event. These issues are subject for future work.

A message is deleted from the BQout of a MAP when it is handed to its destination. At the same time a new

acknowledgment message is added to the BQin of the same MAP.

The infrastructure registers and maintains the location of each user that connects to the infrastructure. The K2

algorithm uses this information to select the � nearest access points and the � closest connections of a particular user.

8

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
3.52

Bus track
User track

Access point

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 5: (Left) Grid map example. (Right) Radial map example

6 Simulation results

To evaluate K2 and get an overall view about the buffer sizes and message delivery delays we performed simulations

with numerous different settings. The most important input parameters that we acted upon were the bus map (i.e. the

set of bus tracks), � (number of APs) and � (number of MAPs).

We built three bus maps. First, we designed an irregular map, referred as mesh, such that to cover approximately

the whole simulation area (Figure 4), trying to imitate the real bus network of a city. Later, for comparison purposes

and for evaluating the influence of the coverage on the buffers and delays, we generated two regular maps as well. In

the first one vertical and horizontal bus lines form a uniformly spaced (400m) grid (see Figure 5 left). On the other

hand, the second map consists of uniformly spaced (400m), concentric octagonal bus lines as well as seven radial

lines connecting the center to the angles of the heptagons (see Figure 5 right). This way we obtained a map (grid) with

uniform coverage and another one with better coverage in its center and poorer coverage at the margins . In all three

maps fixed access points were placed at every third bus stop.

Figure 6 traces the execution of a simulation run of the K2 algorithm and reports the number of messages stored

in each buffer type. During the run, 1000 messages among 15 users were sent, with the urban setting shown in Figure

4 with 9 bus lines. Note that the number of sent messages steadily increases according to the Poissonian distribution,

until the maximum of 1000. After this, no more messages are sent and the system stops when the last message is

deleted from the last buffer. The number of delivered messages closely follows the number of sent messages. The

other lines represent the number of messages stored in the various buffers involved in the delivery process. The queues

of the static access points are heavily used by the algorithm, since many replicas are stored. The other queues are

smaller. Note that the system reaches a “steady state” condition after a very short initial period of about 100s. This

is due to the fact that the buses make an initial round before our mesasurements start. Otherwise the transient state

would last about 1000s. After this initial period all experiments have shown statistical oscillations of buffer contents

with roughly the same average value.

For evaluating the performance of the K2 algorithm we performed seven experiments on each map, fixing ���
�

and setting ��� ���
�
������	 , and vice-versa. Selected simulation results are presented in Figure 7.

9

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000

N
u
m

b
e
r

o
f
m

e
ss

a
g
e
s

Time [seconds]

Sent messages

AP outgoing queue

Delivered messages

MAP outgoing queue

Figure 6: Trace of a simulation run

Before presenting the results in Figure 7 let us specify also the fixed settings of our simulations. During each

simulation there are 15 users moving on the map generating 1000 messages. Further, we have the following number

of access points generated on the different maps. On the 9 bus lines of the mesh map there are 49 APs and 24 MAPs.

On the grid map there are 21 lines with 57 MAPs and 64 APs while on radial the number of lines is 22 with 49 MAPs

and 42 APs. The range of the (M)APs is 200 in order to bridge in a high ratio the distances between the lines. Our

simulations with a range of 100m confirmed our expectations regarding much bigger buffers and delays.

Returning to Figure 7 we can see the evolution of the most interesting parameters of the simulations. Note that in

the diagrams on the left we set � � � while on the right we set � �
�
. Further, it is good to know in advance that the

average coverage of the system, computed with the Monte Carlo method, is 46.1%, 63.0% and 37.8% for the mesh,

grid and radial maps, respectively.

The biggest buffers of our system are the total outgoing queues of the APs and MAPs (i.e. APQout and BQout).

In Figure 7.a it can be seen that for a fixed number of MAPs, APQout increases as we increase the number of APs

without any sign of stabilization. This is due to the fact that messages destined to users out of all fixed AP ranges

will fill up the AP buffers. On contrary, when we fix � and gradually increase � the APQout will decrease down to a

certain value, making obvious the importance of MAPs.

On the other hand, BQout will grow in both cases (Figure 7.b). The reason why BQout increases with � is that if

the messages are available from more APs, more MAPs will receive it.

The other buffers of our system are smaller than the ones presented above but they offer scarce possibility for

reduction, therefore they are of secondary importance for us. Peak values of these queues obtained with the � �

algorithm with � =4 and � =4 on each of our three maps are presented in Table 1.

In general, user outgoing queue maximum usage is between �
� 	 � � � messages. The total MAP incoming queue is

� � � 	 � 	�� messages big, out of which
��� 	 � � � are small acknowledgments while the sum of all AP incoming queues

reaches peak values as small as ��� 	 ��� messages on the different maps.

Another set of simulations (not shown in the figure) show that using K2 instead of MFF can reduce (M)AP outgoing

10

a) AP outgoing queue

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9

A
P

 o
ut

go
in

g
qu

eu
e,

 C
=

4
[n

r
of

 m
es

sa
ge

s]

K

Mesh
Grid

Radial

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9

A
P

 o
ut

go
in

g
qu

eu
e,

 K
=

4
[n

r
of

 m
es

sa
ge

s]

C

Mesh
Grid

Radial

b) Mobile AP outgoing queue

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9B
us

 o
ut

go
in

g
qu

eu
e

le
ng

th
, C

=
4

[n
r

of
 m

es
sa

ge
s]

K

Mesh
Grid

Radial

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9B
us

 o
ut

go
in

g
qu

eu
e

le
ng

th
, K

=
4

[n
r

of
 m

es
sa

ge
s]

C

Mesh
Grid

Radial

c) D3 delays

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 D
3

de
la

ys
, C

=
4

[s
ec

on
ds

]

K

Mesh
Grid

Radial

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 D
3

de
la

ys
, K

=
4

[s
ec

on
ds

]

C

Mesh
Grid

Radial

d) Bus-delivered messages

200

250

300

350

400

450

500

550

600

650

700

1 2 3 4 5 6 7 8 9

N
um

be
r

of
 b

us
-d

el
iv

er
ed

 m
es

sa
ge

s,
 C

=
4

K

Mesh
Grid

Radial

200

250

300

350

400

450

500

550

600

650

700

1 2 3 4 5 6 7 8 9

N
um

be
r

of
 b

us
-d

el
iv

er
ed

 m
es

sa
ge

s,
 K

=
4

C

Mesh
Grid

Radial

Figure 7: Disseminated simulation results for different values of � and � : a) AP buffer occupancy; b) MAP buffer
occupancy; c) The most critical delay – D3; d) Number of messages delivered to destination by buses

11

Buffers Mesh Grid Radial
User outgoing 64 89 121
MAP incoming 109 106 183
Acknowlegments 74 77 119
AP incoming 29 52 53

Table 1: Peak values for secondary queue usage for � = � =4

buffers by approximately
� 	 	 times.

Among the five kind of delays we identified that the longest one, and hence the most important, is D3 (Figure 7.c).

Generally, D3 decreases as the number of (M)APs grows. The lower limit of D3 can be obtained by MFF since this

algorithm uses all the available (M)APs. The lowest D3 we obtained (67.85s) for the above presented settings (not

considering � and �) was for the mesh map. However, with only 6 MAPs and 4 APs the value of 67.93s can be

obtained, using K2. This shows that is useless to raise the number of (M)APs above a certain limit.

Regarding the other delays, D1 and D2 remain constant during all experiments with the same map. This is due to

the fact that messages are forwarded by the user to the first bus that passes in his range, while the bus will pass the

message to the first AP it reaches. D4 and D5 are very small with respect to D3. D4 does not depend on � or � but on

the distance between the MAP handing the message to the destination and the first AP it reaches thereafter. In change,

D5 decreases with � and � since the number of messages to be deleted from the buses grows with the two constants.

Sample average and peak values for these delays are shown in Table 2, where the � � algorithm was run with � = � =4

on our three different maps.

Delays Mesh Grid Radial
Avg Peak Avg Peak Avg Peak

D1 51.04 530.5 88.85 856.4 118.50 1175.8
D2 15.48 111.0 47.73 293.5 75.07 450.0
D3 74.58 1189.0 148.68 2193.0 308.12 2630.5
D4 10.41 109.0 32.07 391.0 83.18 622.5
D5 2.41 116.0 6.15 214.0 30.66 436.5

Table 2: Delays for � = � =4 (average/peak value)

Finally, Figure 7.d shows that the importance of mobile access points is bigger on maps where coverage is poor,

like in the case of the radial map. Indeed, this is the context for which Delay-Tolerant Networks are being designed.

7 Conclusion

In this work we presented a study on a particular DTN and we defined K2, a location-aware algorithm for scheduled

message delivery in these networks. Further, we presented our DTN simulator that we used for evaluating buffer

usage and message delivery delays while using our algorithm. We also categorized the delays in our system and after

identifying the most critical one we showed how it can be manipulated through the K2 algorithm. Finally, we obtained

that K2 can reduce buffer lengths approximately 7 times with respect to the basic MFF algorithm. Moreover, data on

messages that were actually delivered by mobile APs to the users show that a DTN approach can be effective for many

applications where extensive static coverage is unprofitable.

12

Although K2 produces good results when all users move with walking speed, if we diversify the moving speeds of

the users, some difficulties will show up when trying to set � and � to an optimal value. Therefore, to improve K2 in

the future we plan to extend it by a reactive scheme that will automatically set these parameters in concordance with

the user moving speeds.

References

[1] Cecilia Mascolo, Lucia Capra, and Wolfgang Emmerich. Middleware for mobile computing (a survey). In

Springer Verlang, editor, Proceedings of the International Conference of Networking, Lecture Notes in Computer

Science, May 2002.

[2] Anders Lindgren and Olov Schelén. Infrastructured ad hoc networks. In Proceedings of the International

Conference on Parallel Processing Workshops (ICPPW’02), Vancouver, B.C., Canada, August 2002.

[3] Matthew J. Miller, William D. List, and Nitin H. Vaidya. Hybrid network implementation to extend infrastructure

reach. Technical report, University of Illinois, January 2003.

[4] Mohiuddin Ahmed, Son Dao, and Randy Katz. Positioning range extension gateways in mobile ad hoc wire-

less networks to improve connectivity and throughput. In Proceedings of the IEEE Military Communications

Conference (MILCOM 2001), Washington, D.C., USA, October 2001.

[5] Kaixin Xu and Mario Gerla. A heterogeneous routing protocol based on a new stable clustering scheme. In

Proceedings of the IEEE Military Communications Conference (MILCOM 2002), Anaheim, CA, October 2002.

[6] Vinton Cerf, Scott Burleigh, Adrian Hook, Leigh Torgerson, Robert Durst, Keith Scott, Kevin Fall, and Howard

Weiss. Delay-tolerant network architecture. Internet draft, IETF, March 2003.

[7] Kevin Fall. A delay-tolerant network architecture for challenged internets. Technical Report IRB-TR-03-2003,

Intel Research, March 2003.

[8] Xiangchuan Chen and Amy L. Murphy. Enabling disconnected transitive communication in mobile ad hoc

networks. In Proceedings of the Workshop on Principles of Mobile Computing, colocated with PODC’01, pages

21–27, Newport, RI, USA, August 2001.

[9] Amin Vahdat and David Becker. Epidemic routing for partially-connected ad hoc networks. Technical Report

CS-2000-06, Duke University, 2000.

[10] Internet Society IPN SIG. Interplanetary network project, Accessed: July 2003. Project homepage:

http://www.ipnsig.org/.

[11] Avri Doria and Maria Uden. Providing connectivity to the saami nomadic community. In Proceedings of the 2nd

International Conference on Open Collaborative Design for Sustainable Innovation (DYD 02), Bangalore, India,

December 2002.

13

