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Abstract

In the past five years Bluetooth scatternets were one of the most promising wireless networking tech-
nologies for ad hoc networking. In such networks, mobility together with the fact that wireless network
nodes may change their communication peers in time, generate permanently changing traffic flows. Thus,
forming an optimal scatternet for a given traffic pattern may be not enough, rather a scatternet that best
supports traffic flows as they vary in time is required.

In this paper we study the optimization of scatternets through the reduction of communication path
lengths. After demonstrating analytically that there is a strong relationship between the communication
path length on one hand and throughput and power consumption on the other hand, we propose a novel
heuristic algorithm suite capable of dynamically adapting the network topology to the existing traffic
connections between the scatternet nodes. The periodic adaptation of the scatternet topology to the traffic
connections enables the routing algorithms to identify shorter paths between communicating network nodes,
thus allowing for more efficient communications. We evaluate our approach through simulations, in the
presence of dynamic traffic flows and mobility.

I. Introduction

Bluetooth is a short-range wireless network technology that supports ad hoc networking. In the
Bluetooth technology a maximum of 8 nodes, out of a total of 256 devices, can actively communicate
in a star-shaped cluster, called piconet. Within a piconet, the cluster head is called master while
the other nodes are called slaves. Piconets interconnected through so-called bridge nodes form a
scatternet. Bridges are nodes participating in more than one piconet on a time sharing basis. We call
slave&bridges those nodes that have slave role in all of the piconets they participate in, while nodes
having both, slave and master roles in different piconets are master&bridges.

The latest Bluetooth Specification (v.1.2 [3]) introduces the concept of scatternet formation, but it
does not define it in detail. Several scatternet formation algorithms however have been proposed in
the literature. The work in [8] suggests the usage of the low power modes specified by the Bluetooth
technology to enable up to 256 nodes to be part of the same piconet. Since only 8 nodes can actively
communicate in a piconet, this approach implies that the master would continuously have to put



and call back the nodes into/from low power modes, thus leading to a significant waste of radio
resources. In [20], [18], [13], as well as in [8], algorithms for creating tree-shaped scatternets are
proposed. Although tree network structures greatly simplify traffic routing, they also have important
drawbacks: network partitions may arise as nodes move, source-destination paths may be quite long,
the root node may become a bottleneck. These facts suggest that tree-like topologies can operate
efficiently under specific scenarios but cannot be considered for general-purpose scatternets.

Mesh-shaped scatternets do not have the limitations of the tree-shaped networks, but they require
a more complex routing scheme. However, simulation results show that in general scenarios mesh-
shaped scatternets perform better than their tree-shaped counterparts [8]. In the mesh-shaped arena,
some early protocol proposals [16], [11] required the nodes to be all in radio range, which simplifies
node discovery and piconet formation. Later some solutions [19], [17], [2], [14] were defined to avoid
the above shortcomings and operate well under general scenarios, providing high throughput and a
balanced number of nodes per piconet. Despite these good characteristics, we can still identify some
weaknesses. In particular, in [2] more than 7 slaves can be included in a piconet. The problem is
solved in [17] and [14], however the protocol in [17] requires the nodes to know their geographic
position.

Despite the wide range of solutions proposed for optimal toplogy formation, the performance
of scatternets over time is still challenged by the dynamic behavior of the nodes, since the vary-
ing communication needs of the users, node mobility, and channel conditions reshape the network
topology in an unpredictable way. As an example, think of scatternets operating in interfering
industrial environments with machinery that autonomously or semi-autonomously accomplishes its
tasks. Components of such an automated environment include static as well as mobile robots, sensors
of various type and human supervisors. All these components need to be networked for exchanging
the data necessary for accomplishing their tasks. Raw data used for the tasks, progress reports and
control data are all examples for information that need to be exchanged among the components.
Also, each node may have multiple communication peers sustaining random data traffic sessions with
them, sequentially and/or in parallel. To achieve high performance, a scatternet topology should be
continuously maintained so that the current traffic flows can be supported in an optimal way.

One of the factors that has a major impact on scatternet performance is the length of the com-
munications paths. Intuitively, if a packet has to pass through many hops from its source to the
destination, it occupies the communication bandwidth on more links and make the nodes consume
more energy than in the case of shorter paths. To demonstrate the correctness of this intuition, in this
paper first we provide an analytical model for estimating the throughput and power consumption on
the communication paths of a scatternet, based on [9]. Then we devise an algorithm suite that enables
the reduction of the path length (or hop count) on all traffic connections in the scatternet. These
algorithms take advantage of a local search strategy to find a network topology that can support the
current traffic connections with a lower number of hops between the communicating nodes. Finally,
the original contribution of this paper lies in the evaluation of the impact of the hop reductions on
the throughput and power consumption through simulations, in the presence of node mobility and
varying traffic connections.

The remainder of this paper is organized as follows. In Section II we present our scatternet model
and use it for providing a formal definition of our scatternet optimization problem. In Section III
we calculate analytically the usable bandwidth on the links of the scatternet and use the results
in Section IV to determine an analytical relationship between the hop count on the one hand, and
throughput and power consumption on the other hand. In Section V we present and evaluate our
algorithm suite that we use to reduce the hop count on communication paths, while in Section VI
we evaluate the impact of these algorithms on the scatternet performance in the presence of mobility
and changing traffic flows between the nodes.



II. Scatternet Modeling

To provide a formal definition for our optimization objectives, we devise the following scatternet
model.

Let N be the set of nodes in the scatternet, M the set of masters, and S the set of all slaves.
Notice that only pure masters are not elements of S and S

⋂

M 6= ∅ if there are master&bridge
nodes in the scatternet. We denote with C the set of traffic connections in the scatternet.
R = {rsd

ij }, the routing matrix, stores the path between each source-destination pair (s, d) ∈ C; we
have

rsd
ij =

{

1 if connection (s, d) is routed on arc (i, j),
0 otherwise.

T = {tsd} is the traffic matrix with tsd ∈ [0, 1] indicating the intensity of the data flow on the
connection (s, d). tsd = 0 means that there is no traffic flow between the nodes s and d.
H = {hsd}, the hop matrix, contains the minimum number of hops between any connection (s, d) ∈

C.
P = {pij} is the radio proximity matrix with

pij =

{

1 if nodes i and j are in-range,
0 otherwise.

The link matrix L = {lij} is defined as

lij =

{

1 if i is master of j, ∀i, j ∈ N ; i 6= j
0 otherwise.

The link matrix indicates the master-slave connections in the scatternet. Link matrix properties are
explained below.

1) A master has on its row one entry equal to 1 for each of its slaves.
2) A pure slave has one entry equal to 1 on its column corresponding to its master.
3) A slave&bridge has on its column exactly one entry equal to 1 for each of its masters.
4) A master&bridge node has one entry equal to 1 for each of its slaves on its row and for each of

its masters on its column.
5) A free node – node not belonging to any piconet – has all 0s on both its row and column.
We define function F as

F =
∑

(s,d)∈C

tsdhsd. (1)

F is the sum of the number of hops weighted with the traffic intensity between all source-destination
pairs in the scatternet.

Our objective is to solve the following optimization problem,

P : min
H

F (2)

subject to the following constraints [1].

• A piconet must contain one master and up to 7 slaves,

N
∑

j=1

lkj ≤ 7,∀ k ∈M (3)

• There can exist a master-slave relationship between two nodes if and only if they are in radio
proximity of each other,

lij ≤ pij,∀ i, j ∈ N (4)



• If i is master of j, then j cannot be master of i,

lij + lji ≤ 1,∀ i, j ∈ N ; i 6= j (5)

• Traffic between source s and destination d can be routed through edge (i, j) only if i and j
communicate, i.e., either i is assigned to j, or j is assigned to i,

rsd
ij ≤ lij + lji ∀ (s, d) ∈ C,∀ i, j ∈ N (6)

• All traffic between two nodes is routed through a minimum length paths, with no loops. The
selected path may not necessarily be the same in both directions, if more than one minimum
length paths exist,

hsd = hds ∀ (s, d) ∈ C (7)
∑

i,j∈N

rsd
ij = hsd ∀ (s, d) ∈ C (8)

• Standard constraints used for routing should also be considered.

III. Communication Capacity

To determine an analytic relationship between hop count, throughput and power consumption in a
scatternet we need to take into account two fundamental issues: the Bluetooth packet types and link
scheduling.

Bluetooth data communication takes place through Asynchronous Connectionless Links (ACL)
using time slots of 625 µs. Data packets may use 1, 3 or 5 slots and they may be Forward Error
Coded (FEC). FEC packets are called DM1, DM3 and DM5, enabling the correction of single-bit
errors in each codeword of 15 bits, while the non-error coded ones are named DH1, DH3 and DH5
(with the digits indicating the number of slots used). The useful maximum payload of these packets
is 136, 968 and 1816 bits for DM packets and 216, 1464 and 2712 bits for DH packets, respectively.
Packets with larger payloads can achieve higher throughput in error-free environments (i.e., with
high link quality); however, if a bit gets corrupted, the whole packet has to be retransmitted. DM
packets have smaller payloads than DH packets, but their content is error checked, in contrast with
DH packets.

Link scheduling refers to the allocation of time slots to a bridge node. A bridge node can be
present in one piconet at a time, thus it has to switch continuously between its piconets for being
reachable by each of its masters and to relay traffic efficiently. Since we aim at analyzing the scatternet
throughput, link scheduling is of fundamental importance. Next we present the analytical model of
the link scheduling algorithm that we use in our work.

In our approach each piconet is assigned an overall traffic capacity of 1 (hence, the traffic rate of a
pure master is equal to 1, too). This capacity is divided among all slaves in the piconet according to
the expressions (9)–(18) that account for the case where we have a pure master and a master&bridge,
respectively. For a pure master, we can simply write:

p(pm) = 1, (9)

where p(pm) denotes the communication capacity allocated to the piconet of pure master pm.
Since master&bridge nodes have to switch between different piconets, we assume that each piconet

switching takes two slots, 625 µs long each. We denote the communication capacity of a node wasted
for one piconet switching by σ. On average, a node spends in each of its piconets about 40ms, as
proposed in [15]. The capacity dedicated to the piconets of a master&bridge node mb is given by,

p(mb) =
1

NrM(mb) + 1
− σ, (10)



where p(mb) is the communication capacity allocated to the masters of a master&bridge mb as well
as its own piconet; NrM(mb) + 1 is the total number of mb’s piconets. Note that the fact that mb
is a master&bridge implies that (10) holds only when NrM(mb) ≥ 1.

To share the communication capacity among the nodes within a piconet, a simple solution is to
allocate the same amount of bandwidth for each master-slave link. The problem with this approach is
that it allocates the same amount of bandwidth to all nodes, including bridge nodes that can dedicate
less of their communication capacity to a particular master since they have to take part in multiple
piconets.

To fix the above problem, we define α, the availability factor of a node with respect to a piconet
(hereinafter simply availability factor), as the ratio of the piconet allocated bandwidth for the node
to the node available communication capacity for that piconet. Taking advantage of the availability
factor, we observe the following properties. A node is said to be underloaded with respect to a
particular piconet if it can dedicate more bandwidth to that piconet than the amount of bandwidth
that the piconet can allocate to the node, i.e., α < 1. Clearly, if α ≥ 1 then the corresponding node
is overloaded. Whether a node playing a certain role in the scatternet is underloaded or overloaded
can be evaluated as follows.

• Pure slave (ps): a ps is connected to its master only, hence α < 1 except for a piconet made of
two nodes (which is an insignificant case from the scatternet point of view).

• Pure master (pm): since the pm dedicates all of its bandwidth to its piconet, we always have
α = 1.

• Slave&bridge (sb): initially the available communication capacity of a sb is uniformly shared
among its masters. However, its masters can allocate to the sb an arbitrary amount of bandwidth
in each of its piconets. In this case α may be either smaller or greater than 1 and, hence,
slave&bridges may be either underloaded or overloaded.

• Master&bridge (mb): a mb manages the whole bandwidth available for its piconet. Therefore,
the availability factor of a mb with respect to its own piconet is α = 1.
Note that the availability factor of the mb with respect to the piconets of its masters can be
calculated similarly to the sb case. Thus, in the latter case mb nodes may be either underloaded
or overloaded.

Based on the above considerations, we can write the number of underloaded nodes in the piconet
of the generic master m (NrUN(m)) as the sum of the pure slaves (NrPS(m)) and the underloaded
bridges (NrUB(m)),

NrUN(m) = NrPS(m) + NrUB(m) (11)

Then we can calculate the number of overloaded slaves (NrOS(m)) as,

NrOS(m) = NrS(m)−NrUN(m) (12)

where NrS(m) is the number of slaves of m. Given the number of underloaded and overloaded nodes
in a piconet, we can define the link capacities (c) in each piconet as follows. For overloaded links
(α ≥ 1) from masters to slave&bridges we have:

co
sb =

1

NrM(sb)
− σ (13)

For overloaded links (α ≥ 1) from masters to master&bridges we have the same expression as in (10),
since master&bridges allocate the same communication capacity for both their masters and piconet:

co
mb = p(mb) =

1

NrM(mb) + 1
− σ (14)



The capacity of a pure master or master&bridge m that is not used by overloaded links is uniformly
redistributed among the underloaded links in its piconet, similarly to the max-min fair technique [12],
[7]. For each of such masters m, the obtained capacity fraction after the redistribution is stored in
the vector ρm = {ρm

i |i = 0, NrUN(m)}. The fraction of the unallocated capacity that is still not
used by the links after the redistribution is stored in ρm

0 . Note that if the unallocated capacity can be
fully redistributed among the links, then ρm

0 = 0. Equation (15) captures the redistributed capacity
of an underloaded link, connecting any type of master m to any type of slave s,

cu
s (m) =



p(m)−

NrOS(m)
∑

i=1

co
i



 · ρm
s (15)

where
∑NrOS(m)

i=1 co
i gives the aggregate communication capacity allocated for all overloaded slaves of

master m. Notice that p(m) should be expressed as in (9) or (10) for pure masters or master&bridges,
respectively. In (15) we subtract from the total communication capacity of the piconet the bandwidth
allocated for the overloaded nodes (obtaining the total unallocated capacity of m), then we multiply
it by the capacity fraction corresponding to the underloaded link connecting master m to its slave s.

Before terminating the capacity allocation, each node compares its own communication capacity of
1 to the total amount of bandwidth received from other nodes. If the received aggregate bandwidth is
smaller than 1, then the node has some residual unallocated capacity. Each node having unallocated
capacity tries to allocate it to its neighbors. For each node n, the capacity fraction obtained after
this reallocation is stored in the vector δn = {δn

i |i = 0, NrN(n)}, where NrN(n) is the number of
neighbors of node n with unallocated capacities. After several iterations of this latter phase, each
node n will have allocated as much as possible of its residual capacity of δn. The updated formulae
for (13)–(15) are reported below.

co
sb = 1

NrM(sb)
− σ + δn

sb (16)

co
mb = p(mb) = 1

NrM(mb)+1
− σ + δn

mb (17)

cu
s (m) = (p(m)−

∑NrOS(m)
i=1 co

i ) · ρ
m
s + δn

s (18)

IV. Throughput and Power Estimation

Taking advantage of the packet types and link scheduling model presented in Section III, here
we present how the overall scatternet throughput and power consumption can be calculated, also
showing the dependence of these performance metrics on the length of the communication paths.

Based on the notation introduced in Section II and the results presented in Section III, we can
calculate the maximum usable bandwidth, fij, of a radio link lij, as follows:

fij =







co
sb, αij ≥ 1, i is master, j is slave&bridge,

co
mb, αij ≥ 1, i is master, j is master&bridge,

cu
p(m), αij < 1, i = m is master, j is any slave

where αij is the availability factor of node j with respect to the piconet of master i.
The maximum usable bandwidth of a link (fij) is shared by the traffic connections crossing that

specific link as shown in (19). In (19) we denote by (s, d) ⊃ (i, j) all connections (s, d) crossing link
(i, j) and by bsd

ij the bandwidth portion allocated to the particular connection (s, d) on link lij. To
compute the bsd

ij values, we use the max-min fair bandwidth allocation algorithm.

fij =
∑

(s,d)⊃(i,j)

bsd
ij (19)



Let us denote by Bij = {bsd
ij |(s, d) ∈ C} the vector of bandwidth portions allocated to each

connection (s, d) on link lij. We can write the throughput of a traffic connection, (s, d) ∈ C, as

θsd = C · min
(i,j)∈(s,d)

(bsd
ij · qij) (20)

where C is the maximum capacity of a Bluetooth radio link, specific for each DH and DM packet
type, min(i,j)∈(s,d)(b

sd
ij · qij) denotes the smallest bandwidth portion on the links used by a connection

(s, d) (i.e., the bottleneck), while qij is the packet success rate (PSR) of link lij. PSR can be obtained
from the packet error rate (PER), as in (21), while PER can be calculated as a function of the bit
error rate (BER), using (22) for the DH and DM packet types [4]. In these formulae we denoted by
s the size of packets in bits.

q = 1− PER (21)

PER =

{

1− (1−BER)s (DH packets)

1− ((1−BER)15 + 15BER(1−BER)14)s/15 (DM packets)
(22)

The BER can be obtained from the link quality (LQ) value with some vendor-specific formula. How-
ever, [3] states that LQ values should be normalized to the range [0, 255] and defines the Get Link Quality
system function call that can be used to obtain these values. In our calculus we use the following
CSR (Cambridge Silicon Radio) model:

BER = (255− LQ)/40000, 215 ≤ LQ ≤ 255
BER = 32 · (255− LQ)/40000, 105 < LQ ≤ 215
BER = 256 · (255− LQ)/40000, 0 ≤ LQ ≤ 105

Finally, the aggregate throughput over all traffic connections (i.e., scatternet throughput) can be
calculated as:

θa =
∑

(s,d)∈C

θsd = C ·
∑

(s,d)∈C

min
(i,j)∈(s,d)

(bsd
ij · qij) (23)

Having obtained the expression of the scatternet throughput, we now demonstrate the relation
between θa and the hop count (h). Notice that h can be calculated as the sum of the elements of the
bandwidth portion vector on all links:

h =
∑

(i,j)∈E

|Bij| (24)

, where E is the set of all radio links set up in the network. According to (24), each unitary hop count
reduction implies that one bandwidth portion of the involved link is released. If the link capacity was
not fully utilized before the hop reduction, then the network throughput remains unchanged (however,
the power consumption decreases, as we will see later in this section). Instead, if the link capacity was
fully utilized, then after the hop reduction the bandwidth used by the old connection is distributed
among the remaining ones. In other words, the bandwidth portions bsd

ij increase on the involved link.
This implies that all connections having their bottleneck on the considered link are allocated new
bandwidth, i.e., the minimum bsd

ij value grows. From (23), it can be seen that this growth has direct
positive impact on the aggregate throughput θa, and clearly shows why lower scatternet hop counts
can produce higher network throughput.

The second metric of interest for our analysis is the power consumption. We denote with Pt and Pr

the power consumption, respectively, for transmitting and receiving data at the full capacity of a radio



link. Data is transmitted and received by all nodes along a path, i.e., all data bits are transmitted
and received as many times as the number of hops along the path. Thus, the power consumption of
a traffic connection, (s, d) ∈ C, can be expressed as

P sd = (Pt + Pr) · hsd · min
(i,j)∈(s,d)

(bsd
ij ) (25)

Notice that the factor min(i,j)∈(s,d)(b
sd
ij ) in (25) adapts the power consumption to the bandwidth of

the bottleneck link along the path.
The aggregate power consumption through all connections, Pa, is given by:

Pa =
∑

(s,d)∈C

P sd = (Pt + Pr) ·
∑

(s,d)∈C

hsd · min
(i,j)∈(s,d)

(bsd
ij ) (26)

The dependence of the power consumption on the hop count is evident since hsd appears explicitly
in (25) and (26).

A. Results

For the throughput and power consumption evaluation, we implemented our model in C++.
We performed experiments with 50 scatternets over which we averaged the obtained results. Each
scatternet includes 100 randomly positioned nodes, with communication range of 10 m. The nodes
are scattered on a 66x66 m2 area so that a connected scatternet can be formed with high probability.
For every scatternet, we generate 15 to 50 random bidirectional traffic connections. The number and
length of the connections are fixed for each particular experiment. We perform experiments varying
the length of connections from 1 to 10 hops as well as modifying the link quality value in the range
of [215, 255]. The lower bound of 215 corresponds to the maximum bit error rate of 0.1% allowed by
the Bluetooth Specification at the distance of 10 m with no obstacles. Finally, we set Pr = 150 mW
and Pt = 170 mW, which represent the average values of power consumption computed considering
different Bluetooth chips, such as CSR and Oki.

Figure 1.a) presents the average throughput on 15, 25 and 50 bidirectional traffic connections. In
this figure we show one of the main objectives of our work, i.e., the throughput decreases with the
increasing number of hops. The results show the maximum achievable average throughputs, since we
use the two largest packet types, (i.e., DH5 and DM5) and the link quality is set to 255 (i.e., no
packet loss). Clearly, the highest average throughput per connection is achieved with 15 connections
and using DH5 packets, since in this case more bandwidth can be allocated to each connection.

Figure 1.b shows the dependence of the throughput on the link quality. In this experiment the
number of bidirectional connections is fixed to 50 and we use DH5 packets only. However, the
connection length is different on each curve. As expected, the throughput increases with the link
quality and shorter connections are less affected by the link quality, while the longer ones have a very
low throughput.

Figure 2 presents the average power consumption on 15, 25 and 50 bidirectional connections. The
packet type in this case has no importance since power is consumed at the same extent by both useful
payload bits and error coding bits. We can observe that in the plot initially the power consumption
decreases, then it starts increasing again. This is because the shorter the connections the higher
the throughput, and the higher the power consumption. In other words, power consumption is high
because more traffic is transmitted and not because it is less efficiently used. However, as the number
of hops further increases and the throughput goes down, the real trend of power consumption shows
up. It can also be seen that the highest amount of power is consumed when we have 15 connections,
since in this case the throughput is higher (this, on turn, makes the power consumption increase
faster).



a) Throughput versus path length b) Throughput versus link quality
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Fig. 1. Estimated throughput evolution as a function of path length (a) and link quality (b)
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Finally, the power consumption does not depend on the link quality since power is consumed at the
same extent for transmissions and retransmissions, because the connections are fully loaded. In case
of underloaded connections a relationship between the power consumption and link quality could be
observed. However, in our work we opted for heavily loaded connections, since throughput and power
consumption issues are more critical in such circumstances.

V. Reducing the Hop Count

We observed that the scatternet throughput and power consumption are in close relation with
the communication path lengths. We now present a technique for finding an optimized network
topology that can support communications with shorter paths. (More details about these algorithms
are available in [10].)

To find an optimized network topology, we first generate a connected and totally functional scat-
ternet by using the algorithm in [2]. After the scatternet formation, based on the nodes’ weights, we
choose one of the masters, the so-called optimizer, to coordinate the optimization procedure. The
optimizer collects relevant information about the whole scatternet, such as the identity and the role
of the nodes, the nodes neighbors and the communication peers, and feeds them into the optimization
algorithm.

The optimizer uses a local search strategy based on a set of possible changes that can be made
on the topology, the so-called moves. Moves may lead to piconet formation or merging, or just make
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slaves move from one piconet to another one. In particular, moves targeting slaves typically increase
the number of piconets in the network, while moves targeting masters may merge piconets. Thus,
in our optimization procedure we try to reduce the number of hops by first moving slaves and then
moving masters. As an example, consider the scatternet shown in Figure 3. If there is a high traffic
flow between slaves 8 and 12, then the scatternet can be optimized by removing node 8 from master
2 and assigning it to master 1 instead.

For each move, the optimizer calculates the new value of F , the function to optimize, as defined in
Section II. If F decreases after the move, then its value is stored; otherwise it is dropped. At the end
of the optimization, the most convenient scatternet configuration, stored during the search, is set.

The optimization algorithm is executed periodically. We call the time between two consecutive
executions optimization period. Implicit feedback from the scatternet, like the gain of previous op-
timizations, can be used for dynamically determining the optimization period, e.g., in a scatternet
with dynamically changing traffic connections and high node mobility the optimization period will
be short, while in quasi-static environments the optimization will be rarely executed.

A. Move Types

A move is a set of modifications on the master-slave relationship between nodes in the network.
Such modifications are made by link creation, deletion and/or by master-slave role exchange. If, due
to these modifications, some nodes get disconnected, the operations necessary to reconnect them to
the scatternet are considered as parts of the same move. We identify four kinds of possible moves:

Slave to Slave (SS) – a slave connects to a different master or establishes a new piconet with a node
which then exchanges its role from slave to master. Since moving bridge nodes influences considerably
the routing scheme of the scatternet we are not moving bridge nodes but only pure slaves. Example
(see Figure 3): we want to remove slave 8 from master 2 and assign it to master 1. To this end we
set l28 = 0 and l18 = 1; i.e., first we cancel the link between master 2 and slave 8, then we create the
link between master 1 and slave 8.

Slave to Master (SM) – a slave creates a new piconet by paging another node. Example (see Figure
3): we want to remove slave 8 from master 2, change its role into master and assign slave 5 to it. To
this end we set l28 = 0 then l85 = 1. This means that we cancel the link between master 2 and slave
8, and create the link between node 8 and slave 5.

Master to Slave (MS) – a master becomes a pure slave. Such a move is possible only if the slaves
of the moving master (i.e., the node giving up its role of master) can be assigned to other nodes
in the scatternet. The optimizer takes the abandoned slaves (i.e., the slaves of the moving master)
one-by-one and assigns them to an already existing master, using SS and SM moves.

Master to Master (MM) – merging two piconets: a master overtakes all of the slaves of another
master. Such a move can take place when any node in the two piconets is in the range of the persisting
master (i.e., the node maintaining its role of master after the move) and the total number of nodes
in the two piconets is not greater than 8. This move can be done by removing from L all of the 1s



1. OPTIMIZER
2. Linit ← L
3. F ← ActualNrHops()
4. slavelist ← list of slaves (for SX module)
5. masterlist ← list of masters (for MS and MM)
6. for k ← 1 to nr div do

7. call one of SX, MS or MM optimization modules

8. if F > ActualNrHops() then

9. F ← ActualNrHops()
10. Lopt ← L
11. L ← Linit

12. HUpdate()
13. shuffle slavelist (for SX module)
14. shuffle masterlist (for MS and MM module)
15. L ← Lopt

16. HUpdate()
17. end OPTIMIZER

18. SX optimization module

19. for each slave i in slavelist do

20. execute SS and SM optimization

21. perform the best move and update roles

22. MS optimization module

23. for each master i in masterlist do

24. execute MS optimization

25. update roles

26. MM optimization module

27. for each master i in masterlist do

28. execute MM optimization

29. perform the best move and update roles

Fig. 4. Pseudocode of the optimizer

from the row of the master that is about to become a slave and adding them to the corresponding
positions in the row of the persisting master. The old master should be connected to the persisting
one through an additional operation. For instance, if node i gives up its role of master and joins the
piconet of master j, the additional operation would be lji = 1.

B. The Optimization Procedure

The optimization procedure is the core of our work. It determines the modifications to be performed
on the scatternet topology in order to reduce the number of hops between communicating nodes.

The optimization algorithm (Figure 4) consists of a main body (lines 1 − 17) from which our
optimization modules, namely SS, SM (either one denoted by SX in Figure 4), MS and MM, can be
called. At the beginning of the main body several initializations are performed. First, the initial state
of the link matrix L is saved (line 2). Using the function ActualNrHops(), we retrieve the number of
weighted hops between each source-destination pair and assign this number to F , our function to be



minimized. In lines 4− 5 all pure slaves and masters are selected and put in slavelist and masterlist,
used later by the SX, MS and MM optimization modules, respectively.

In line 6 we cycle trough the optimization procedure nr div times. At every iteration we must
choose only one move, the most favorable one, from a set of mutually excluding moves. Then, we
randomly reorder the nodes in slavelist and masterlist at the end of each iteration, and repeat the
search. By doing so, we change the order in which nodes are evaluated, and obtain a new series of
moves to evaluate.

Within the cycle, one of the SX, MS or MM optimization modules is executed. Each of these
modules performs a local search [6] executing one sequence of moves of the appropriate type. SX
evaluates the possibility of moving each slave using both, SS and SM moves (lines 18 − 21). The
move producing the greatest hop reduction is accepted, and the node roles modified by this move
are updated accordingly. Similar operations are performed in the MS and MM modules, except that
they act on the masterlist performing MS and MM moves, respectively.

A further difference is that for MS moves it is preferable to leave the reassigned slaves at their new
master, instead of resetting them at the end of the move and moving them again at a later step of
the MS module. This way we can save CPU processing time. Thus, in the MS module the best move
should not be re-executed, only the node roles must be updated (line 25).

If the value of F is reduced through the execution of an optimization module, we update F and
save the obtained configuration in Lopt (lines 8 − 10). Before moving to the next iteration of the
for loop, we set L to its initial value (line 11). This requires H to be updated. HUpdate() takes the
necessary input data from L, uses Floyd’s algorithm for solving the all-shortest path problem [5], and
stores the result in H. Finally, the nodes in slavelist or masterlist are reordered (i.e., a diversification
is done) for the next iteration of the for loop.

After the for loop, L is set to the best configuration found, stored in Lopt, and the hop matrix is
updated.

The optimization algorithm can execute the optimization modules in sequence, combining them in
different ways. For instance, if we perform the SX, MS and MM optimization modules, we obtain an
optimization algorithm that we refer to as SX MS MM. The SX module can also be replaced by an
SS or SM module giving the so-called SS MS MM and SM MS MM optimizations, respectively.

Regardless of the optimization modules used, after executing the optimizer a certain number of
times, the so-called diversifications (nr div), we find a scatternet configuration with fewer hops
connecting traffic sources to destinations. Our algorithm can guarantee a global optimal configuration
only if each optimization module is called for all possible permutations of nodes in the corresponding
slavelist and masterlist. This would take an unacceptably long period of time. Therefore, a good trade-
off between the number of diversifications and execution time should be found to achieve acceptable
performance in real environments.

C. Reduction of Hops by Using SS and SM Moves

As already mentioned in the previous sections, slave optimizations aim at finding the best possible
SS or SM move for reducing the number of weighted hops between a slave id and all of its communi-
cation peers. During the optimization, id is sequentially moved to each node in its radio proximity,
except those that are in the same piconet with id. Additionally, in the SS algorithm, neighboring
masters having 7 slaves already are also excluded from the search.

Consider that slave id is connected to master m while the target neighbor, i, is connected to a
different master (i.e., l[m][id] = 1 and l[m][i] = 0). The SS and SM moves alter these settings as
follows. In the case of an SS move, i pages slave id, while for SM moves slave id becomes a master
and pages neighbor i. If the value of F after the move is decreased, the move is stored. After the
current evaluation, the original links are restored, so that the subsequent move can be executed under
the same conditions.



At the end of the procedure, after all neighbors of id have been checked, the move minimizing F
is returned to the optimizer algorithm.

D. Reduction of Hops by Using MS Moves

The MS optimization algorithm changes the role of a master, id, into slave, connects each of id ’s
slaves to a new master and returns a list of performed moves.

In the first phase of the MS algorithm, all slaves of id are assigned to a new master that minimizes
the number of hops between each slave and its communication peers. If any of the slaves cannot
be assigned to some other master, the algorithm terminates, indicating that no MS optimization is
possible with master id.

In case all slaves were successfully reassigned to masters, id itself is also moved to one of its
neighboring masters, i. To become the new master of id, i must have less than 7 slaves and minimize
the value of F by accommodating id in its piconet. Moreover, it should be ensured that after assigning
id to i a path exists between id and all of its earlier slaves, in order to keep the scatternet connectivity
unaltered. Finally, it should be verified whether id is the master of i and whether they have a third
master in common. The creation of triangles or making two nodes masters of each other must be
avoided.

If all of the above conditions are met, master i is stored and the search continues with the next
neighboring master. After all masters have been checked, the one giving the greatest hop reduction
is chosen as the new master of id, and the corresponding sequence of moves is returned to the
optimizer. If no master observes all of the above conditions, no move with id ’s slaves is performed,
and the algorithm terminates without any hop reduction.

E. Reduction of Hops by Using MM Moves

Although MM moves target masters, the structure of the MM algorithm is similar to the SS and
SM procedures. It consists of checking every neighboring master i of a master id (with the goal of
merging their piconets), saving their links to their slaves, checking the hop reduction, and resetting
the saved links.

To this end, first we verify whether the total number of slaves in the piconet of id and that of a
particular master i is less than 6. This condition is necessary for conforming to the requirement of
at most 8 nodes in the new piconet. Second, we check whether all of the slaves of master i are in the
range of id. If such a master is identified, the piconets can be merged using an MM move.

After all masters have been checked, the master whose piconet merging would reduce the most the
number of weighted hops is returned to the optimizer algorithm.

F. Results

To evaluate the performance of our algorithms, we implemented a Bluetooth scatternet simulator in
C++. Since the algorithms operate on the scatternet topology, in our simulator we mainly considered
topology-related aspects. Thus, we implemented ACL physical links with the a maximum throughput
of 723 Kbps; added support for DH1, DH3, DH5, DM1, DM3 and DM5 packet types; links can be
set up only if two nodes are at less than 10 m from each other (i.e. they are in radio proximity);
six node roles have been considered: free node, pure slave, slave&bridge, master&bridge, pure master
and init master (i.e. same as pure master but it initiates piconet formation, see [2] for details since
this role is defined for the scatternet formation algorithm described in that paper); slave&bridge and
master&bridge nodes can relay data between piconets enabling this way multihop communication;
role switch is supported between pure slaves and pure/init masters; the other node types can only
change role if they observe the constraints regarding the number of their slaves and masters. During
our optimizations role switches happen only in the frame of moves, when verifications are performed



a) Optimization with simple moves b) Optimization in two phases
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Fig. 5. Optimizations in one (a) and two (b) phases
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Fig. 6. Optimization in three phases

to ensure the compliance to the specifications. There are up to 7 slaves and one master allowed
in a piconet. Low power modes are not yet supported as well as the explicit connection setup
procedure that requires the nodes to hop through the inquiry/inquiry scan and page/page scan
modes, respectively, before they can communicate.

We tested the optimizer by generating 50 scatternets, of 100 nodes each, over an area of 66 × 66
m2. We set the nodes’ radio range to 10 m and nr div = 1000. We randomly generated 100 source-
destination traffic connections (elements of C). The traffic intensity (tsd) on these connections is set
to 0.1, 0.25 and 0.5 for 50%, 30% and 20% of traffic connections, respectively. All simulations were
run on a Linux PC with a 1.7 Ghz CPU and 256 Mb RAM.

We performed experiments combining the SS, SM, MS and MM optimizations in many different
ways. For the sake of brevity, here we present only the results derived from some sample optimizations.
In particular, we consider three groups of experiments referring to the case where the optimization
algorithm is called one, two and three times, respectively, during the same simulation. Each call to
the optimizer corresponds to a different optimization module. Figures 5 and 6 show the evolution of
function F during these experiments, against the number of diversifications.

Then, for each group of experiments, the one giving the best performance is evaluated in greater
details in Tables I-III. In each table, the following metrics are presented. The Slaves, Slave&bridges
and Total master parameters report the number of pure slaves, slave&bridges and total number of
pure masters and master&bridges, respectively. The parameter Links represents the number of links
in the scatternet. The Weighted hops row shows the overall optimization achieved after each module



TABLE I

Optimization with SM moves

EXPERIMENT #1 Before After Diff. %
Pure slaves 32.92 14.32 -18.60 -56.50
Slave&bridges 32.48 33.42 0.94 2.89
Total Masters 34.60 52.26 17.66 51.04
Links 121.32 121.32 0.00 0.00
SM optimization [wh] 274.97 250.22 -24.75 -9.08
Hops [h] 1222.08 1121.68 -100.40 -8.26
Weighted hops [wh] 274.97 250.22 -24.75 -9.08

TABLE II

Optimization with SM MM moves

EXPERIMENT #2 Before After Diff. %
Slaves 33.34 21.20 -12.14 -36.41
Slave&bridges 32.34 38.02 5.68 17.56
Total Masters 34.32 40.78 6.46 18.82
Links 121.04 131.12 10.08 8.33
SM optimization [wh] 274.48 249.81 -24.67 -9.09
MM optimization [wh] 249.81 234.75 -15.06 -6.14
Hops [h] 1221.88 1054.92 -166.96 -13.76
Weighted hops [wh] 274.48 234.75 -39.73 -14.64

of the optimization is terminated, while the Hops row presents the corresponding hop count. The
distance weighted (i.e., multiplied) by the traffic intensity is expressed in weighted hops ([wh]), and
the distance is measured in hops ([h]). The rows referring to the SM, MS and/or MM optimizations in
the Before and After columns contain values of the weighted distance in the scatternet configuration
exactly before and after that specific phase of the optimization. All other values in these two columns
refer to the beginning and the end of the entire optimization procedure. The last two columns indicate
the differences between the values in the Before and After columns, expressed in the appropriate unit
(Diff.) as well as in percents (% ).

First, let us consider Figure 5.a and Table I. In Figure 5.a, for the sake of readability we present
only the first 50 diversifications out of 1000 (the curves remain flat from that point onward). The
plot shows that the SM optimization produces the greatest weighted hop reduction among the simple
moves. Master moves (MS and MM), instead, produce small hop reduction. This confirms that in our
initial scatternet masters were selected with care. Table I presents the results of the SM optimization,
i.e., the most performing among the simple moves. Observe that the SM optimization gives a weighted
hop reduction of 9.08%, at the expense of 51% increase in the number of masters (i.e., piconets). In
fact, according to their definition, SM moves transform the moving slave into a master creating a
new piconet. The number of links instead is unchanged, since SM moves always tear off a link for
another.

To improve the performance in terms of weighted distance and keep the number of piconets small,
we perform also master moves after having moved the slaves (i.e., after the 1000th iteration). The
results are presented in Figure 5.b. It can be seen that the largest hop reduction (14.64%) is obtained
through the SM MM optimization, whose performance is reported in Table II. Table II shows that the
14.64% gain in hop reduction corresponds to 18.82% and 8.33% increase in the number of masters and
links, respectively. Notice that the SS MS optimization produces a lower hop reduction (12.8%) but
it increases the number of masters and links by only 1.49% and 0.54%, respectively. This highlights
that master moves counterweight the increase in number of masters produced by slave moves.

Figure 6 presents the results of our third experiment, composed of slave optimizations followed by
both MS and MM moves (diversifications 1000 ÷ 1999 and 2000 ÷ 3000, respectively). We obtained
the best results with the SM MS MM optimization (see Table III). This optimization gives also the



TABLE III

Optimization with SM MS MM moves

EXPERIMENT #3 Before After Diff. %
Pure slaves 33.02 24.82 -8.20 -24.83
Slave&bridges 32.84 35.68 2.84 8.65
Total masters 34.14 39.50 5.36 15.70
Links 121.42 125.26 3.84 3.16
SM optimization [wh] 278.74 254.47 -24.27 -8.86
MS optimization [wh] 254.47 241.36 -13.11 -4.48
MM optimization [wh] 241.36 235.06 -6.30 -2.67
Hops [h] 1228.24 1047.88 -180.36 -14.34
Weighted hops [wh] 278.74 235.06 -43.68 -15.26

best overall performance. However, if we take into account the average optimization execution times,
we have: 26.94, 42.95 and 82.43 minutes for SM, SM MM and SM MS MM, respectively. Thus, we
can conclude that it is not worth performing both, MS and MM moves for additional 1− 2% of hop
reduction.

Finally, we highlight that the step-like behavior of function F in all of the three plots in Figures 5
and 6 suggests that most of the hop reductions happen at the beginning of each call to the optimization
algorithm, namely within the first 10 − 50 diversifications. Therefore, we can drastically reduce the
number of diversifications and, thus the execution times without any significant impact on the overall
performance. For example, repeating the SM, SM MM and SM MS MM optimizations with nr div =
10, the (execution time, reduction) pairs, expressed in [s,%], will be of (15.33, 8.67), (21.71, 13.82)
and (42.8, 14.29), respectively.

VI. Dynamic Scatternets

After presenting our algorithms for reducing path lengths in scatternets, now we aim at evaluating
our technique, when repeated executions of the optimizer algorithm are performed in a dynamic
network environment. In the following, we present how dynamic traffic connections and mobility have
been embedded in the optimization process as well as their impact on the scatternet performance.

A. Dynamic Connections

To deal with dynamic traffic flows, we assign a lifetime to each connection. A connection is replaced
with a new one (i.e., with a communication session between different, randomly selected end-nodes),
as soon as its associated lifetime expires. This way, we can keep the number of connections constant
during the entire simulation and obtain a clear view of the performance improvement achieved by
our optimization algorithms (indeed, the number of traffic connections in the scatternet has a major
impact on the aggregate throughput and power consumption).

Communicating nodes use the full bandwidth that has been allocated to them; for the bandwidth
allocation we employ the max-min fair algorithm [12], [7], taking into account also the constraints
imposed by the master-slave communication model of the Bluetooth technology.

Dynamic traffic connections motivate the periodic re-execution of the optimization procedure, which
reconfigures the scatternet so as to support more efficiently the newly evolved traffic patterns. Further
details on how dynamic traffic connections are embedded in the optimization process can be found
in Section VI-C.

B. Mobility

The second element that we consider to study dynamic scatternets is mobility. In our mobility
model, during each time unit of the optimization process the location of the nodes may change.



1. OPTIMIZATION PROCESS
2. set time unit, sim time, T
3. read node parameters

4. build topology

5. read initial connection set

6. while t < sim time do

7. call scatternet optimization procedure

8. calculate link capacities

9. allocate bandwidth to connections

10. tper ← 0
11. while tper < T do

12. calculate throughput & power cons.

13. forall connections c do

14. if t ≥ c.expiration t then

15. remove c
16. generate new connection

17. forall nodes n do

18. update location of n
19. fix possible link disruptions of n
20. update role of n & of its neighbors

21. reset broken connections of n
22. remove unused links

23. calculate link capacities

24. allocation bandwidth to connections

25. tper ← tper + time unit
26. t ← t + time unit
27. if t ≥ sim time then stop

28. end OPTIMIZATION PROCESS

Fig. 7. Pseudo code of the optimization process

Nodes move with walking speed in random directions. Since in this work we only study connected
networks, we do not allow nodes move to such new locations that would cause network partitioning.
Investigating on the effects of network disruptions on throughput and energy consumption might be
an interesting topic for future research.

When we evaluate the scatternet performance without using our hop reduction algorithms, a node,
which is disconnected from one of its masters due to mobility, sets up a new link to the first node
that it discovers within its neighborhood. Instead, when the optimization algorithms are used, the
node sets up a new link to that neighbor that reduces the most the length of its traffic connections.

Further details on how we embedded mobility in the optimization process can be found in Section
VI-C.

C. Optimization Process

In the following, we present the operation of a scatternet over time when our optimization algo-
rithms are implemented and in the presence of dynamic traffic flows and node mobility. We refer to
this series of scatternet optimization and management operations as the optimization process (Figure
7).

The optimization process starts out by setting and initializing several important parameters. In
particular, we set the time unit between two consecutive evaluations of the scatternet state; the



time sim time during which we analyze/simulate the behavior of the network; and the optimization
period T , which separates two subsequent optimizations. Further, we read all the a priori generated
node-specific parameters (including node position and degree of mobility) and after building an initial
topology in line 4 (based on the algorithm in [2]), we read from a file an initial set of traffic connections.

In line 6 the optimization loop starts, which provides the timestamp, denoted by t, for the opti-
mization process. At each iteration of the optimization loop, t is incremented by one time unit (line
26) until sim time is reached, i.e., the optimization process terminates.

The topology is optimized for the first time at the beginning of the optimization loop (line 7), when
the optimization procedure (containing the hop reduction algorithms) is called. Since the optimization
procedure modifies the scatternet topology, it should always be followed by the re-calculation of the
link capacities (line 8). Link capacities are calculated using the technique presented in Section III. The
modified link capacity pattern requires also the reallocation of the available bandwidth among the
connections of the scatternet, hence the max-min fair bandwidth allocation algorithm is performed
(line 9).

After the bandwidth re-allocation, the optimized scatternet is ready to operate. However, the
changing traffic patterns and node mobility gradually modify the configuration for which the network
was optimized, reducing the efficiency of the scatternet over time. This requires the optimization
procedure to be repeated periodically. The dynamicity management loop, starting at line 11, aims at
managing the aforementined dynamic behavior of the scatternet. The dynamicity management loop
starts after the execution of an optimization procedure and when it ends the subsequent optimization
procedure is called. Each optimization period (i.e., the time between two optimizations) is T seconds
long.

The purpose of the optimization process is to study the variations of the scatternet throughput
and power consumption; we calculate these values in line 12.

Two for loops follow after the performance calculations. In lines 13− 16 the connection expiration
times (denoted by c.expiration t) are checked and each expired connection is replaced with a new one,
with different (random) end nodes. Each newly created connection is initialized with an end-to-end
path, expiration time and is allocated a fair amount of bandwidth.

On the other hand, the second for loop (lines 17 − 21) manages the node mobility. At every
iteration of the dynamicity management loop each node is moved to a new location, based on the
preset walking speed, the length of the time unit and a random direction (line 18). In case a link is
disrupted due to node displacement and the limited Bluetooth radio range, a new link is searched for
to reset the connectivity of the node. If such a link is not available, the node relocation is cancelled.
However, if the node can be reconnected and its new location is acceptable, the role of the nodes that
are involved in the new link creation is updated (line 20). Finally, if a link used by any connection
was disrupted, and hence removed, the affected connections are repaired as well, by finding new paths
between their end nodes (line 21).

Before recalculating the link capacities and reallocating the bandwidth among the new connections,
in line 22 we remove those links from the scatternet that are not used for a predefined time interval
(namely, 20 s) by any connections. This is useful to avoid wasting node computational capacity on
links that are not used, as well as to counterweight the side-effect of master moves that tend to
increase the number of links in the scatternet.

Another side-effect of our optimizations is that slave moves tend to generate new masters. This is
not a problem when the optimization procedure is executed only once in a scatternet (as in Section
V), because slave moves produce just few new masters. However, when the optimization procedure is
executed periodically (as in this section), slave moves may gradually transform all nodes into masters.
It is easy to see the undesirable effects of such a phenomenon. Although not explicitly shown in the
pseudo code of Figure 7, we counterweight this shortcoming by executing slave moves followed by
master moves, which reduce the number of masters by merging piconets.

The optimization process will keep on altering between scatternet optimizations and dynamicity



management periods until sim time expires.

D. Results

To evaluate the performance of scatternets also in dynamic environments we embedded in our
simulator dynamic traffic flows and node mobility. We performed experiments with 50 scatternets of
100 nodes each over an area of 66x66 m2; we assume a radio range of 10m, DH5 packets, link quality
of 255 and 50 bidirectional traffic connections. Furthermore, we set the number of diversifications
nr div = 5, the simulation time sim time = 3600s with time unit = 1s, the duration of connections
in the range of 60− 120s and the optimization period T = 120s.

While in Section V-F we executed the optimization procedure only once during a simulation and
the traffic intensity was constant, here the traffic intensity depends on the bandwidth available for
each connection and varies over time. Since during a simulation the available bandwidth increases
due to hop reductions, the traffic intensity increases accordingly. Thus, we cannot consider anymore
the weighted number of hops as a valid performance metric since hop reduction may increase the
value of function F (1). Thus, in this section our goal is to reduce the number of pure hops instead
of the weighted hops.

Using the above settings, we evaluate the performance of the optimization algorithms with the
optimization process presented in Section VI-C, in the presence of dynamic traffic connections and
node mobility.

1) Dynamic Connections: Here we consider dynamic traffic connections and static nodes. Averaged
simulation results are shown separately for each kind of optimization in Table IV. The most important
performance metrics of a sample optimization (SS MS) are compared to the non-optimized scatternet
performance in Figure 8.

TABLE IV

Scatternet performance with dynamic connections and static nodes

EXP #1 Hops Throughp. Power Eff. Gain [%] Masters Links
No optim. 7.10 18.10 50.14 0.362 – 31.00 101.66
SS MS 5.08 25.47 43.15 0.591 +63.26 34.46 103.46
SS MM 5.17 25.16 43.33 0.581 +60.50 35.62 103.98
SM MS 5.60 24.72 44.42 0.557 +53.87 50.09 100.81
SM MM 5.16 24.78 43.11 0.575 +58.84 46.47 106.99
SS MS MM 5.04 25.12 42.49 0.592 +63.54 33.34 103.61
SM MS MM 5.14 25.38 42.58 0.596 +64.64 43.74 104.03

In Table IV the performance of non-optimized scatternets is shown along with the performance of six
different types of optimizations, in terms of average path length (i.e., hop count), average throughput,
average power consumption, and energy efficiency. We define the scatternet energy efficiency as the
ratio of the average throughput to power consumption, thus representing the amount of bits that can
be transmitted per energy unit.

As additional metrics, in the Table we show the average number of masters and number of links
during the simulations. In the Gain column we calculate the efficiency improvement of the different
optimizations with respect to the simulations with no optimization. This column clearly shows that
all of the six optimization types can provide performance improvements of about 60% with respect
to the non-optimized scatternets. We should also notice that the the average number of masters and
links are on favor of the non-optimized scatternets. When optimizations are performed, the number
of masters and links grow for the reasons explained earlier in this section, however with optimizations
containing SS moves this growth is negligible.

It is worth noticing that all six optimizations provide roughly the same performance improvements
in the mentioned experiments. If we had to select the most performant optimization type, one should
consider that SM MS MM optimizations give slightly better results but consist of three phases, while
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Fig. 8. Scatternet performance in the presence of dynamic connections with and without optimization; a) average hop count;
b) average throughput; c) average power consumption; d) energy efficiency.

SS MS optimizations achieve very close performance in two phases only. In Figure 8 therefore we focus
on the performance of the SS MS optimization.

The optimization process starts with the scatternet formation and the selection of the 50 con-
nections. At the beginning all of the metrics are constant until the first connection expires (notice
the short constant segment at the beginning of each curve in Figure 8). As the traffic connections
expire and new ones take their places, the performance of the non-optimized scatternets degrades.
The throughput (Figure 8.b) decreases and, hence, the power consumption (Figure 8.c) decreases too.
The fact that power consumption decreases does not mean that the scatternet performance improves,
indeed this decrease is caused by the lower number of transmitted bits. This is clearly explained by
the energy efficiency metric (Figure 8.d), which decreases over time.

Looking instead at the optimized scatternets (with the SS MS optimization in this case), we can
see that all metrics, except power consumption, improve each time we execute an optimization. The
impact of the optimizations can be seen on the evolution of the hop count (Figure 8.a), which is
then reflected in the other performance metrics. Power consumption is an exception because the
increased throughput after the optimizations requires more energy to be consumed for transmitting
the higher amount of bits. However, the gain on the energy efficiency metric clearly demonstrates
that the available energy is used more efficiently after the optimizations.

The plots in Figure 8 clearly show that the scatternet performance between two optimizations
gradually degrades due to the changing traffic flows. By periodically executing the hop reduction
algorithms, the network performance can be improved by about 60%.



2) Dynamic Connections and Mobility: The experiments with mobile nodes did not provide that
good results as those with dynamic connections. This is motivated by the very rapidly changing
scatternet topology, since 100 mobile nodes cause frequent link disruptions. It can be seen in the
Gain columns of Table V and VI that most of the optimizations provide negligible performance
improvements and some of them perform somewhat worse even than the non-optimized simulation
run. This behavior can be explained considering that the topology of a scatternet, whose nodes are
mobile, is not only shaped by the hop reduction algorithms, but also by the link disruptions and
creations caused by the mobile nodes. In a nutshell, it is difficult to keep the average number of hops
low with hop reduction algorithms because the mobile nodes reconfigure the topology continuously.

Only the SS MM and SM MM optimizations resulted in significant performance improvements,
however they achieved these results at the cost of a very high number of new links (about the double
of the non-optimized case) and masters. This behavior can be explained as follows. The number of
masters in the presence of mobility increases even without optimizations since the mobile nodes often
get disconnected from their masters and hence they have to form their own piconet made of two
nodes, when there is no other master in their range. Thus, if a slave A gets disrupted from its master
and forms a new piconet with bridge node B, this small piconet can be dissolved with MS moves as
soon as a master C enters the radio proximity of master A. Note that bridge B does not need be
reconnected to any master since it participates in multiple piconets. However, with MM optimizations
the slaves of A must all be in the range of the same master C. Therefore, with MM optimizations
is harder to reduce the number of masters in the scatternet. If both the MM and MS modules are
applied, the MS module will dominate the MM one because it has looser constraints. This explains
the high number of new masters generated by the two optimizations containing only the MM master
module.

TABLE V

Scatternet performance with static connections and mobile nodes

EXP #2 Hops Throughp. Power Eff. Gain [%] Masters Links
No optim. 7.76 23.34 58.94 0.396 – 55.48 121.34
SS MS 8.53 25.20 64.73 0.389 –1.77 58.48 111.02
SS MM 5.56 31.53 58.01 0.543 +37.12 73.95 207.75
SM MS 8.73 25.44 65.74 0.387 –2.27 58.10 107.59
SM MM 5.47 31.79 57.61 0.552 +39.39 74.65 213.09
SS MS MM 8.05 25.56 62.99 0.406 +2.52 59.80 118.16
SM MS MM 8.02 25.50 62.89 0.406 +2.52 60.19 119.02

TABLE VI

Scatternet performance with dynamic connections and mobile nodes

EXP #3 Hops Throughp. Power Eff. Gain [%] Masters Links
No optim. 7.94 22.21 59.29 0.375 – 55.60 121.34
SS MS 8.62 23.97 64.67 0.371 –1.07 58.46 110.99
SS MM 5.54 31.33 57.78 0.542 +44.53 74.11 209.10
SM MS 8.96 23.80 66.06 0.360 –4.00 58.09 107.46
SM MM 5.46 31.53 57.60 0.547 +45.87 74.42 211.38
SS MS MM 8.18 24.46 63.21 0.387 +3.20 59.93 118.38
SM MS MM 8.09 24.47 62.59 0.391 +4.27 60.08 119.11

The high number of links originates from the tendency of master optimizations of generating new
links. It looks like most of these newly generated links are used by the traffic connections, because
otherwise our mechanism that removes unused links would have eliminated them. Indeed, the high
energy efficiency obtained by the SS MM and SM MM optimizations can be explained only with the
fact that in mesh topologies with many links shorter paths can be found between the communicating
nodes than in scatternets with few links.
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Fig. 9. Energy efficiency versus moving speed

We also performed experiments as the nodes speed varies. The results presented in Figure 9 refer to
walking speeds in the range [0.5, 3]m/s. As expected, optimizations including MM moves and no MS
moves, provided more significant performance improvements for the reasons explained above. Figure
9 also shows that the scatternet performance degrades as the nodes speed increases.

We can conclude that even with low moving speeds it is hard to maintain an optimal scatternet
toplogy; this is certainly an interesting problem to address in future research.

VII. Conclusion

In this paper we addressed scatternet optimization techniques that aim at reducing the path length
between communicating nodes. Node mobility and changing traffic connections generate permanently
changing traffic flows; thus, to provide efficient communications it is not enough to form an optimal
network topology, rather a scatternet that best supports the current traffic flows as they vary in time
is required.

Intuitively, the scatternet performance, in terms of throughput and power consumption, highly
depends on the hop count separating the communicating peers. In this paper we demonstrated the
above intuition analytically. Then, simulations were required to get an insight in the actual scatternet
performance variations as a function of the hop count. To this end, we developed a heuristic algorithm
suite that reconfigures the nodes role and network links so as to minimize the number of hops between
communicating nodes in the scatternet. As part of the algorithm suite, we presented two algorithms
for reducing the length of connections belonging to slaves and other two for master connections. These
algorithms are based on four “move” types (i.e., elementary modules for reconfiguring scatternets)
and a matrix-based scatternet model, both defined in this paper.

Finally, to study the scatternets behavior over time, we extended our optimization algorithms
to support dynamic traffic flows and node mobility. The resulting optimization process provides a
systematic approach to scatternet optimization not only right after the network formation, but also
later, when the scatternet performance degrades because of the dynamic user behavior.

Simulation results showed that our hop reduction algorithms can reduce the aggregate hop count
in the scatternet by about 15%, and lead a performance improvement of above 60% under moderately
dynamic scenarios.

The centralized nature of our optimizations is their main weakness since they require to collect
all scatternet information at a single node and distribute the solutions to all other nodes; they are
therefore suitable for static or slowly changing environments. To add more flexibility to our approach
as well as for improving its efficiency for the future we plan to devise a decentralized solution for our
optimization technique. In that approach we also plan to provide additional evaluations about our
solution, mainly regarding the overhead and the operation with underloaded connections.
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