
Soundness of Semantic Methods for Schema Matching

M. Benerecetti1, P. Bouquet2, S. Zanobini2

1 Department of Physical Science – University of Naples – Federico II
Via Cintia, Complesso Monte S. Angelo, I-80126 Napoli (Italy)

2Department of Information and Communication Technology – University of Trento
Via Sommarive, 10 – 38050 Trento (Italy)

bene@na.infn.it, bouquet@dit.unitn.it, zanobini@dit.unitn.it

Abstract. One of the key challenges in the development of open semantic-based
systems is enabling the exchange of meaningful information across applications
which may use autonomously developed schemata. Semantic coordination is the
problem of discovering mappings across schemata and schema matching is one
of the proposed approaches. In this paper we provide a preliminary investigation
on the notion of correctness of semantic methods for schema matching. We de-
fine a first notion of semantic soundness (and completeness), but immediately
show that this notion is not appropriate to capture the intuitive notion of cor-
rectness for a method. We then introduce the idea of pragmatic soundness, and
argue that it corresponds to what we intuitively expect, but that it can’t be di-
rectly computed. Finally, we discuss some preliminary conditions under which a
semantically sound method can guarantee progmatic soundness as well, which is
– in our opinion – the best we can get from semantic methods.

1 Introduction

One of the key challenges in the development of open semantic-based systems is en-
abling the exchange of meaningful information across applications which may use
autonomously developed schemata (database schemata, classifications, even directory
trees on file systems in peer-to-peer applications) for organizing locally available data.
As in open system a beforehand agreement on the meaning of schemata seems im-
possible in practice, a large number of methods and systems have been proposed to
automatically match schemata1. The resulting mappings are then used as the basis for a
runtime semantic-based coordination of such a network of autonomous applications.

Methods may differ along many dimensions: the type of structures to which they
can be applied (e.g., trees, directed acyclic graphs, graphs); the type of result they re-
turn (e.g., similarity measures, model-theoretic relations, fuzzy relations); the resources
they use to compute such a relation (e.g. external lexical resources, ontologies, string
manipulators, graph matching techniques, instance-based techniques). In this paper, for
reasons that will be explained in detail, we are mostly concerned with a class of meth-
ods that we call semantic methods. The general intuition underlying semantic methods
is that they aim at discovering relations between (pairs of) entities belonging to different

1 A very partial list includes [14, 13, 11, 10, 4, 6, 9, 2, 5, 8, 3]. A detailed description of these
methods is out of the scope of this paper.

schemata based on the meaning of the two entities. However, beyond this point, there
is a significant disagreement on what characterizes a semantic method from a non se-
mantic method. For example, a recent paper by Giunchiglia and Schvaiko [7] proposes
to include among semantic methods only those methods that directly return a seman-
tic relation (e.g., material implication or logical equivalence), namely a relation with a
well-defined model-theoretic interpretation. This analysis is far from being shared in the
community, as other people feel that a method is semantic if it uses semantic informa-
tion to return its results, or if there is a principled way to assign an indirect semantics to
its results (e.g., mapping numerical values on semantic relations through the definition
of suitable thresholds).

In such a situation, it is not surprising that we still lack a clear definition of the
conditions under which a semantic method can be said to work “correctly”. Suppose,
for example, that we have a method α that takes in input two nodes nA and nB from
two schemata SA and SB respectively and returns True if the two nodes represent
equivalent concepts, False otherwise. Now, imagine that α is fed with the categories
/IMAGES/TUSCANY/FLORENCE and /PHOTOS/ITALY/FLORENCE2 belonging
to two classification schemata, and that it returns True. Is the result “correct”? Why?
And what if the result were False? Under what conditions would we accept this result
as “correct”?

This paper aims at answering this kind of questions. We start by providing a precise
characterization of schema matching for a special (but interesting) case of schemata,
namely hierarchical classifications. Then we propose a characterization of semantic-
based methods based on the idea that they must at least provide an explicit and formal
interpretation of the entities they compare, and of the resulting relation. Finally, for
this class of methods, we define the notions of semantic soundness and completeness,
but immediately show that this notion is not appropriate to capture the intuitive notion
of correctness for a method. We then introduce the idea of pragmatic soundness, and
argue that it corresponds to what we intuitively expect, but that it can’t be directly
computed. Finally, we discuss some preliminary conditions under which a semantically
sound method can guarantee progmatic soundness as well, which is – in our opinion –
the best we can get from a semantic method for schema matching.

2 The problem of schema matching

Schema is a broad term, that applies to different kinds of structures. In [3], it was ar-
gued that it makes no much sense to speak about schema matching in general, and
that the analysis should be done case by case along the dimension of the intended
use of a schema. Accordingly, in this paper we restrict our attention to a special kind
of schemata, hierarchical classifications, whose explicit purpose is to classify objects
(e.g., documents). This restriction does not affect the generality of our investigation, as
the method of analysis can be applied to study the problem of matching other types of
schema, such as database schemata, service descriptions, datatypes.

2 Throughout the paper we will use the notation X/.../Y to refer to a path in schema in
analogy with the notation for paths in a file system. If the schema is a tree, then / represent
the root of the schema and /X/.../Y a path from the root to Y through X.

We start with a few definitions that characterize the kind of schemata we deal with,
namely topic hierarchies used as classification schemata.

Definition 1 (Topic hierarchy). Let Λ be a set of labels (e.g., words in natural lan-
guage). A topic hierarchy S = 〈K, E, l〉 is a triple where K is a finite set of nodes, E

is a set of arcs on K, such that 〈K, E〉 is a rooted tree, and l is a function from K to Λ.

Two simple examples of topic hierarchies are depicted in Figure 1.

ITALY

FLORENCELUCCA FLORENCE

TUSCANY

IMAGES IMAGES

LUCCA

CHURCHES MUSEUMS

Fig. 1. Two simple topic hierarchies

A possible use for topic hierarchies is to classify documents. To express this for-
mally, we introduce the notion of classification function.

Definition 2 (Classification function). Let D be a set of documents and S a topic
hierarchy 〈K, E, l〉. A classification function over S is a function τ : D → K from
documents to nodes of S.

A classification function places a document under a node in a topic hierarchy. We asso-
ciate to each classification function a retrieval function, which is a function from nodes
to the sets of documents attached to them in a topic hierarchy. It essentially plays the
inverse rôle of the classification function.

Definition 3 (Retrieval function). Let D be a set of documents, S = 〈K, E, l〉 a topic
hierarchy, and τ a classification function over S. The retrieval function of τ over S is a
function µτ : K → 2D satisfying the following condition:

for every d ∈ D, d ∈ µτ (τ(d))

Finally, we want to formalize the intuition of a classification being a hierarchical
classification (hereafter HC). Intuitively, it must satisfy the following requirement: doc-
uments classified under a node Z along a path X/.../Y/Z could be also classified
under the ancestor nodes of the same path (though with a lower degree of precision) if
Z were removed from the topic hierarchy:

Definition 4 (Hierarchical classification). Given a set of documents D, a hierarchical
classification H = 〈S, τ 〉 is a pair where S is a topic hierarchy and τ is a classification
function over S which satisfies the following property: if τ classifies a document d

under a node Z along a path X/.../Y/Z, and we remove Z from the path, then τ

would assign d to the node Y of the path X/.../Y.

Schema matching can be defined as the problem of computing relations between
pairs of nodes belonging to different HCs. Let < be a set of relations that may hold
between two nodes belonging to two distinct schemata SA and SB . Then a mapping is
defined as follows:

Definition 5 (Mapping). A mapping MA→B between two HCs HA = 〈SA, τA〉 and
HB = 〈SB , τB〉 is a set of triples 〈nA, nB , r〉, where:

– nA and nB are two nodes belonging to SA and SB , respectively;
– r ∈ < is a relation between nA and nB .

Each triple 〈nA, nB , r〉 belonging to a mapping is called a mapping element.
Finally, as our goal is to discuss properties of schema matching methods, we for-

mally define a method as a function which returns true when a given relation holds
between two elements of different schemata, false otherwise:

Definition 6 (Schema Matching Method). Let MA→B be a mapping between two
HCs HA and HB . A schema matching method α : MA→B → {T, F} is a function
from mapping elements to boolean values.

Of course, it is more natural to view a method as a function which takes two nodes
as input and returns a relation as output. Here we adopt this more abstract (but after all
equivalent) characterization as it is more appropriate for our analysis.

3 Semantic methods for schema matching

In the previous section, we deliberately left the definition of schema matching methods
quite vague, as we wanted to characterize the problem of schema matching in a very
general form. Here we provide a precise characterization of semantic methods in a
precise way through two general principles that, in our opinion, distinguish semantic
methods from non semantic methods.

A method for schema matchng is a semantic methods if it satisfies the two following
principles:

Explicit representation of meaning: a semantic method must match schema elements
on the basis of an explicit representation of their meaning, where meaning is a for-
mal object of a logical type which corresponds to the type intended by the schema
designer. Notationally, if n is a node of a HC, then R(n) is the formal representa-
tion of its meaning;

Computation of relations based on meaning: given two nodes n and m belonging
to different HCs, a semantic method must return a relation which connects the
meanings of the schema elements under comparison. Such a relation must in turn
have an interpretation defined over the meaning of the compared elements.

So, according to the first principle, a semantic method should explicitly interpret
the elements of a HC as concepts, and provide a corresponding formal representation
of type concept (e.g., as terms in some Description Logic system [1]). For example,

the meaning of the nodes FLORENCE belonging to the right hand side schema and
CHURCHES belonging to the left hand side of schema of Figure 1 approximately corre-
sponds to the two concepts “Images of Florence in Tuscany” and “Images of churches
in Florence, in Italy”. Notice that a schema describing how a web service works (basi-
cally, a finite state automaton) should be interpreted in a completely different way, as
nodes would represent states that can be reached through actions associated to arcs.

Then, according to the second principle, when matching HCs, a semantic method
should return a relation between concepts (e.g., subsumption, equivalence, and so on).
Notice that here we will privilege classical model-theoretic relations, though it is pos-
sible to work with fuzzy-theoretic relations between concepts (see e.g. the common
framework for ontology. Going back to the example of Figure 1, the relation between
the two nodes FLORENCE and CHURCHES (interpreted as we said above) is that the
first is more general than the second. We note that, in this case, determining the relation
between the two concepts intuitively requires to use knowledge that was not extracted
from the two schemata, namely that Tuscany is in Italy. In the following, we will refer
to this external knowledge as the ontology associated to a method. In analogy to what
we said above, a relation between elements of two service description schemata would
be completely different.

We are now ready to start our discussion about soundness of semantic methods.

4 Semantic soundness and completeness

Given the two principles discussed above, a semantic method α is defined by: (i) a
language L suitable to explicitly represent the meaning of each schema element, (ii) a
procedure for extracting the meaning of each element n (R(n)), (iii) a (possibly empty)
ontologyO, and (iv) a set of relations < that it can compute. The 4-tuple 〈L,O,R(),<〉
is what we call the semantic frame of the method.

We now propose a notion of semantic soundness and completeness with rtespect
to a semantic frame F . The intuition is the following: a method is semantically sound
w.r.t. F if, whenever it computes a relation between two elements of distinct schemata,
the relation follows from what the method knows about the meaning associated to the
two elements; and is semantically complete if, whenever one of the relations in < be-
tween the meaning of two nodes follows from what the method knows, then the method
effectively returns that relation. More formally:

Definition 7 (Semantic Soundness). Let F = 〈L,O,R(),<〉 be the semantic frame
of a method α and HA and HB be two HCs. Then α is semantically sound w.r.t. C if
and only if for any mapping element 〈nA, nB , r〉 the following holds:

if α(〈nA, nB , r〉) = T, then O |=
L
R(nA) r R(nB)

Definition 8 (Semantic Completeness). Let F = 〈L,O,R(),<〉 be the semantic frame
of a method α and HA and HB be two HCs. Then α is semantically complete w.r.t. C

if and only if for any two nodes nA and nb the following holds:

if O |=
L
R(nA) r R(nB), then α(〈nA, nB, r〉) = T

Though these notions of semantic soundness and completeness seem reasonable, it
should be quite evident that they do not seem to capture what we have in mind when we
say that a method is correct. Indeed, what we would like to say is that a method is sound
when it computes the “right” relation between two elements, namely the relation that
follows from the “correct” interpretation of the schemata and from the use of the “right”
background knowledge. Instead, what the definitions above says is only that, given an
ontology and a formal representation of the meaning of two nodes, then a semantic
method is sound if and only if it derives only relations that logically follows from the
background knowledge provided by its ontology. But this is tantamount as saying that
a semantic method is sound if and only if the reasoner used to compute the relation
between meanings is sound and complete, which would be a very trivial result. Indeed,
imagine a dummy method that associate the same concept k to all the elements of two
HCs, and always returns the equivalence relation for any pair of nodes (for all k ∈ S
and k′ ∈ S ′, α(k, k′,≡) = T). Since any concept is always equivalent to itself, then
this method is semantically sound. But is this method of any interest?

Intuitively, the problem is that semantic soundness as we defined it (and a similar
argument can be done for completeness) does not say anything on the appropriateness
of the meaning explicitation performed by the method and on the relation between the
meaning of nodes and the available ontology. In short, semantic soundness is a neces-
sary but not sufficient condition to capture the intuitions we have about the correctness
of a method. What we need as a sufficient condition is a way for excluding dummy
methods like the one described above, namely methods that build arbitrary interpreta-
tions and use pertinent knowledge about the meaning of schema elements.

However, this is an extremely tough problem not only in schema matching, but
in general for any semantic theory based on formal logic. Indeed, as we know from
classical results (see e.g. the model-theoretic argument discussed by the philosopher
H. Putnam in [12]), there’s nothing we can do to prevent unintended interpretations of
a formal language. The form in which Putnam discusses this problem is the following:
even if two agents agree on the truth value of all the sentences of a language L (in-
cluding modal propositions on the necessity of propositions), this is not sufficient to
fix the interpretations of the terms they use, which means that they may still be talking
about different things. Our version of this argument would be the following: even if we
can guarantee that a method is semantically sound and complete, there is nothing that
guarantees that the two elements were correctly interpreted, and that relation between
the two nodes is the one we expect.

To get around this problem, there are basically two approaches available for seman-
tic methods. The first one, which we will call the linguistic approach, is to exploit the
fact that almost invariably the labels of schemata are meaningful expressions of natural
language, e.g. English. If this is the case, then not every interpretation is acceptable,
though ambiguity is still possible. For example, the word “bank” can mean “depository
financial institution” or “the slope beside a body of water” (Wordnet 1.7), but cannot
mean “animal with four legs”, unless we relax the assumptions that labels are taken from
English. The second approach, which we call instance-based approach, is to exploit the
data attached to a schema (e.g., the documents attached to the categories of a HC) to
guess the meaning of the category itself. The idea is that we can determine the meaning

of an element in a schema by processing the documents associated to that element, e.g.
by analyzing the number of times a word occur in a document, or the co-occurrence of
words in the same document. Both approaches, however, have their drawbacks: the lin-
guistic approach suffers from the “ambiguity problem”, namely there is still the possi-
bility that we haven’t caught the intended interpretation of a schema element (as natural
languages are ambiguous in different respects); instance-based methods suffers from
the “contingency problem”, namely the actual set of documents attached to an element
may be insufficient to capture the intended concept (let alone the fact that there may be
schemata not populated with documents at all).

To sum up, linguistic and instance-based approaches improve the situation of se-
mantic methods, but do not provide the sufficient conditions we are looking for. Is there
another way of defining the correctness of a method which does not refer to the explic-
itation of meanings? In the next section we propose a possible answer.

5 Pragmatic Soundness

The main reason why people develop schemata is to provide a suitable organization of
a body of relevant data, e.g. records in a database, file in a file system, documents in a
classification schema. Schema matching methods should allow applications to exchange
data in a meaningful way through the exploitation of mappings across schemata. For
example, when we match two HCs, the goal is to find mappings that allow us to retrieve
documents on a given topic which are classified under (possibly different) categories
in different HCs. From this perspective, if a semantically sound method derives that
two nodes are equivalent, then one would expect that a user would classify the same
documents under those two nodes; if the methods derives that a node is more general
than another one, then one would expect that the documents classifiable under the first
node are a superset of those classifiable under the second; and so on. If this holds, then
the method is correct, as it “does the right thing” for its users. This notion of correctness,
based on data rather than on the meaning of schema elements, is pragmatic, as it refers
to how people use schemata, and not (directly) to how they interpret it. Let us try to
make this intuition more precise.

Preliminary, we introduce the notation to refer to all documents classified in a sub-
tree of a topic hierarchy, and not only in a single node. The reason is the following.
Consider the two HCs of Figure 1. Note that the node FLORENCE in the right hand
side topic hierarchy has two children (CHURCHES and MUSEUMS), whereas the left
one has no children. This means that the documents that in the right hand side topic
hierarchy are classified under CHURCHES, would be probably classified under the node
FLORENCE in the left hand side topic hierarchy. Therefore, we introduce the notation
µτ (n↓) to denote the set of documents classified under a subtree rooted at the node n.
More formally, let n↓= {k ∈ K | k is a descendant of n} denote the set of nodes in the
subtree rooted at n, then µτ (n↓) =

⋃

m∈n↓ µτ (m).
Let D be a set of documents and < a set of relations between sets of documents

(for example, < = {=,⊆,⊇,⊥}, where ⊥ means disjoint). Furthermore, imagine that
a classifier classifies all documents of D in two different HCs (HA and HB). Then a
first tentative definition of pragmatic soundness could be the following:

Definition 9 (Strong Pragmatic Soundness). Let HA and HB be two HCs and α a
semantic method. Then α is strongly pragmatically sound if for any mapping element
〈nA, nB , r〉 (with r ∈ <) the following holds:

if α(〈nA, nB , r〉) = T then µτ (nA↓) r µτ (nB↓)

Intuitively, this means that if a semantic method α discovers a relation r between two
nodes nA and nB , then the corresponding set-theoretic relation r also holds between
the sets of documents classified by the function τ in the subtree rooted at the nodes nA

and nB
3.

However, this definition presupposes two very strong assumptions. First, D must
be the set of all possible documents of the universe; otherwise, it may happen that an
actual set of documents is not sufficient to discriminate between some set-theoretical
relations, such as ⊂ and = (it may happen that no document belonging to D which
would be associated to nA and nB , and therefore the two sets would be contingently
the same, whereas they would not if we had had more documents available).

But even more important, it presupposes that each document can be classified in
a unique way. Of course, this is not the case in general, as documents are typically
rich objects, and can be classified under different categories, depending on what as-
pect of the document is taken as dominant. For example, this paper could be classi-
fied under different categories (e.g. SEMANTIC INTEROPERABILITY, ONTOLOGY
INTEGRATION, SCHEMA MATCHING, FORMAL MODELS, . . .), and each of these
categories would reflect a legitimate point of view on the paper. Therefore, even if two
categories in two different HCs – populated by the same classifier – are semantically
related, we can’t guarantee that the sets of documents classified under those two cate-
gories will be in the same relation.

The considerations above suggest that we need a weaker notion of pragmatic sound-
ness, which can take into account the possibility that a classifier (human or automatic)
can legitimately classify the same document under different categories. In this situa-
tion, the question arises of whether there can be a reasonable notion of correctness.
Intuitively, we suggest that a counterfactual notion of correctness: a method is correct
if a classifier would not disagree with the answers produced by the method; in other
words if, no matter what the actual classification is, the classifier could have classified
the documents according to the relation discovered by the method.

To capture this intuition, we first introduce the following finer notion of classifier:

Definition 10 (Classifier). A classifier C is a pair 〈{τi}, F 〉, where {τi} is a set of
classification functions, and F =

〈

LC ,OC ,RC(),<
〉

is a semantic frame.

Associating a set of classification functions to a classifier allows us to capture the
fact that he can classify the same set of document in different ways. Therefore, when

3 To keep the formalism simple, we are abusing our notation by using the symbol r to refer both
to the (semantic) relation computed by a semantic method and the relation which holds be-
tween sets of documents. In fact, we rely on the intuitive mapping between semantic relations
(say, subsumption between concepts) and set-theoretic relations between their interpretation
(for subsumption, it would be set inclusion). To be precise, such a mapping should be explic-
itly defined.

populating a topic hierarchy, we allow classifiers to employ any of their classification
functions. Intuitively, the set {τi} can be seen as a set of “acceptable” classification
functions, in the sense that the classifier will be prepared to accept classifying a doc-
ument under a given node if there is a classification function belonging to {τi} which
would classify that document under the same node.

But this is not enough. Indeed, we also expect that there is a rationale behind the
classification tasks of any “reasonable” classifier. In other words, we expect that classi-
fiers perform their task based on their knowledge about the documents to be classified
and about the available categories. This is where the ontologyOC and the interpretation
function RC() associated to a classifier come into play. Intuitively, the ontology and the
interpretation function represents the knowledge classifiers use to understand the mean-
ing of a node and, consequently, for classifying a document. Classifiers are then called
pragmatically adequate if they act consistently with their knowledge. We capture this
by imposing the following condition: when a classifier C recognizes a relation hold-
ing between (the meanings of) two nodes nA and nB of two HCs HA and HB , then –
whatever classification function she is actually using – if this function classifies under
nA and nB the sets X and Y of documents, then there must be a (possibly distinct)
acceptable classification function which would classify under the other node a set X′

of documents in such a way that the corresponding set-theoretic relation holds between
the sets X ′ and Y . The following definition formalizes this intuition.

Definition 11 (Compatibile classification functions). Let C be a classifier, τ1 and τ2

two classification functions of C, r any relation in <, and nA in HA and nB in HB two
nodes. We say that τ1 is compatible with τ2 w.r.t. nA and nB if the following holds:

if OC |= RC(nA) r RC(nB), then µτ1
(nA↓) r µτ2

(nB↓)

Intuitively, two classification functions of a classifier are compatible w.r.t. two nodes
if their respective way of classifying documents under the two nodes preserve the re-
lation the classifier recognizes between the meanings of the two nodes. We can now
formalize the notion of pragmatically adequate classifier.

Definition 12 (Pragmatic adequacy). Let C = 〈{τi}, F 〉 be a classifier. Then C is
pragmatically adequate if, given any two nodes nA in HA and nB in HB , and any
classification function τ1 ∈ {τi}, there is another τ2 ∈ {τi} which is compatible with
τ1 w.r.t. nA and nB .

This definition simply says that if a classifier C associate a set of documents to
some node nA, and nA is in a certain relation r with a second node nB , then C must
be prepared, possibly by employing some other acceptable classification function of
his (namely, a compatible classification function), to classify under the nA a set of
documents holding the same relation r with the set of documents attached to nB .

Based on the definitions above, we can now attempt a second definition of prag-
matic soundness which, we believe, is the best we can expect from a schema matching
method. Intuitively, we say that a schema matching method is pragmatically sound if
whenever it derives a relation r between two nodes nA and nB , a pragmatically ad-
equate classifier would consider this result as “acceptable” according to the possible

ways he could classify a set of documents. By “acceptable” here we mean that whatever
set of documents C has actually placed under nA and nB (using one of his classification
functions), C could have placed under nA, using a possibly different admissible classi-
fication function, a set of documents in the same relation r with the set of documents
actually placed under nB . This intuition is captured by the following definition:

Definition 13 (Pragmatic Soundness). Let C = 〈{τi}, F 〉 be a pragmatically ade-
quate classifier, and HA and HB be two HCs. A method α is pragmatically sound w.r.t.
C if, for any mapping element 〈nA, nB , r〉, the following holds: if α(〈nA, nB , r〉) = T ,
then for any classification τ2 ∈ {τi} there is a classification τ1 ∈ {τi} such that, for
any r ∈ <, µτ1

(nA↓) r µτ2
(nB↓).

6 Can semantic methods be pragmatically sound?

Assume now we have a semantically sound matching method α which can answer
whether a semantic relation between two nodes holds or not. In this section we try to
answer the question of what can condition can guarantee that a sound semantic method
α is also pragmatically sound4. We can state the following proposition:

Proposition 1. Let F = 〈L,O,R(),<〉 be a semantic frame, α a method semanti-
cally sound w.r.t. F , and C =

〈

{τi}, F
C

〉

a pragmatically adequate classifier (where
F C =

〈

LC ,OC ,RC(),<
〉

). If OC v O and RC(m) = R(m), then α is pragmati-
cally sound. Moreover, if |{τi}| = 1, then α is strongly pragmatically sound.

The proposition states that if (i) α is semantically sound, (ii) the ontology used by
α is subsumed by a pragmatically competent classifier knowledge (i.e., it is a sound
but not necessarily complete representation of the classifier knowledge), and (iii) the
meaning assigned to the nodes by RC(m) andR(m) is the same (namely, |= RC(m) ≡
R(m)), then α is also pragmatically sound. If, in addition, (iv) the classifier always uses
the same classification function, then clearly α is also strongly pragmatically sound.

The first part of the proposition immediately follows from Definitions 7, 12 and 13.
The second part descends from Definitions 7, 12 and 9. A sketch of proof follows. Since
any relation between concepts that can be deduced from a less specific ontology (O) can
also be deduced by a more specific one (OC), Condition (i) toghether with Condition
(ii) ensure that any relation discovered by the method α would also be inferred by any
classifier. Moreover, if C is a pragmatically adequate classifier, whatever classification
function τ he has used to place documents under node nA and nB , by Definition12
there must be another acceptable classification function τ′ of C using which C would
have placed under nA a set of documents holding the relation r with those placed by τ

under nB . Hence pragmatice soundness follows. Adding the additional constraint that
the classifier only allows for a single classification function, immediately leads to strong
pragmatic soundness.

Let us now briefly comment on the conditions we needed to guarantee pragmatic
soundness of a semantic matching method. Condition (i) is quite easy to ensure, as we

4 The problem of pragmatic completeness is significantly harder and out of the scope of this
paper. We will not discuss it here.

already pointed out in Section 3. A logic framework powerful enough to express the
desired semantic relations between the concepts of interest, for which decidability is
guaranteed will suffice. Condition (ii) seems to be a relatively weak requirement. This
is an important observation, since providing a method with complete knowledge with
respect to a classifier is likely to be a very hard task, let alone the problem of providing
complete knowldge with respect to any classifier. Even though the first two conditions
seem to be reasonably easy to satisfy, Condition (iii) turns out to be quite strong. Notice
that weakening the condition on the semantic explicitation functions is problematic.
Soundness with respect to any set of semantic relations can indeed be ensured only if
the matching method and the classifier both assing the same interpretation (in terms
of concepts) to all the nodes of the HCs. Nevertheless, soundness can still be retained
on some specific sets of semantic relations, depending on the cases. For instance, if
we consider the set of relations {v,⊥}, then any semantically sound method employ-
ing a more specific semantic explicitation function than that of the classifier (namely,
|= RC(m) w R(m)) will still be paragmatically sound. Unfortunately, soundness with
respect to none of the other relations we have been considering in the paper would be
preserved in this case. Similarly, any semantically sound method employing a less spe-
cific semantic explicitation function than that of the user (namely, |= R(m) w RC(m))
will still be paragmatically sound only with respect to the relation w.

7 Conclusions

The consequence of Proposition 1 is that semantic methods can be guaranteed to obtain
pragmatically correct results under conditions (i)–(iii) (also (iv) if we want strong prag-
matic soundness). As condition (i) is quite trivial, we can conclude that the roadmap to
correct semantic methods is quite clear: (a) we need to build ontology which reflect the
classifier’s (or the user’s) point of view on the world (OC v O) and (b) we need to de-
sign tools that interpret a schema element as the user interprets it. These two problems
are not trivial, but they can be addressed with well-known methods belonging to disci-
plines like ontology engineering and knowledge representation. Ontology engineering
can help us to design better ontologies, e.g. ontologies that appropriately represent what
am individual or a community knows on a given domain; knowledge representation
gives us methods for representing the meaning of different types of schemata, beyond
classifications.

To conclude, we see our work as a small step towards a much more general goal,
namely the construction of a theory which explains how semantically autonomous en-
tities (agents) can communicate without presupposing a beforehand agreement on how
things should be represented. In other words, a theory of the role of meaning coordi-
nation in a theory of (inter)action. A lot remains to be done, but this goes beyond the
scope of this paper.

References

1. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-
Schneider, editors. The Description Logic Handbook. Theory, Implementation and Appli-
cations. Cambridge University Press, January 2003.

2. Sonia Bergamaschi, Silvana Castano, and Maurizio Vincini. Semantic integration of
semistructured and structured data sources. SIGMOD Record, 28(1):54–59, 1999.

3. Paolo Bouquet, Luciano Serafini, and Stefano Zanobini. Semantic coordination: A new ap-
proach and an application. In D. Fensel, K. Sycara, and J. Mylopoulos, editors, The Semantic
Web - ISWC 2003, volume 2870 of Lecture Notes in Computer Science (LNCS), pages 130–
145, Sanibel Island (FL, USA), October 2003. Springer Verlag.

4. Jeremy Carroll and Hewlett-Packard. Matching rdf graphs. In Proc. in the first International
Semantic Web Conference - ISWC 2002, pages 5–15, 2002.

5. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between ontologies
on the semantic web. In Proceedings of WWW-2002, 11th International WWW Conference,
Hawaii, 2002.

6. J. Euzenat and P. Valtchev. An integrativive proximity measure for ontology alignment.
Proceedings of the workshop on Semantic Integration, October 2003.

7. F. Giunchiglia and P. Shvaiko. Semantic matching. Proceedings of the workshop on Semantic
Integration, October 2003.

8. Ryutaro Ichisem, Hiedeaki Takeda, and Shinichi Honiden. Integrating multiple internet di-
rectories by instance–base learning. In AI AND DATA INTEGRATION, pages 22–28, 2003.

9. Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema matching with
cupid. In The VLDB Journal, pages 49–58, 2001.

10. Tova Milo and Sagit Zohar. Using schema matching to simplify heterogeneous data transla-
tion. In Proc. 24th Int. Conf. Very Large Data Bases, VLDB, pages 122–133, 24–27 1998.

11. Marcello Pelillo, Kaleem Siddiqi, and Steven W. Zucker. Matching hierarchical structures
using association graphs. Lecture Notes in Computer Science, 1407:3–??, 1998.

12. H. Putnam. Reason, Truth, and History. CUP, 1981.
13. Jason Tsong-Li Wang, Kaizhong Zhang, Karpjoo Jeong, and Dennis Shasha. A system for

approximate tree matching. Knowledge and Data Engineering, 6(4):559–571, 1994.
14. K. Zhang, J. T. L. Wang, and D. Shasha. On the editing distance between undirected acyclic

graphs and related problems. In Z. Galil and E. Ukkonen, editors, Proceedings of the 6th
Annual Symposium on Combinatorial Pattern Matching, volume 937, pages 395–407, Espoo,
Finland, 1995. Springer-Verlag, Berlin.

