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I Project carried out at the University of Bologna (CILTA);

I Corpus 100-million-words synchronic corpus of contemporary Italian (CORIS);

I Deliverables part-of-speech tagging for the complete corpus, and (possibly) in a
later stage syntactic analysis for a subcorpus;

I Period 3 year project. Start of the linguistic annotation task: January 2004.

Corpora

I Beauty Real data vs. linguists’data;

I Essential tool for any study on Natural Languages to provide empirical support
to theories and applications.
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I Aim Part to Speech (PoS) tagging of CORIS.
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2. PoS tagging

I Aim Part to Speech (PoS) tagging of CORIS.

I Question Which PoS classification should we use?

I Other Projects

. Xerox, Grenoble (France)

. Delmonte, Venezia (Italy)

. TUT, Torino (Italy)

I Standards EAGLES project, guidelines by Monachini.

I Question How much do these classifications depend on linguistic-theories? Would
the tagging satisfy the original purpose of Corpus annotation (to provide empirical
support to NL applications)?
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3. Comparison

I Agreement on the main PoS tags: nouns, verbs, adjectives, determiners, articles,
adverbs, prepositions, conjunctions, numerals, interjections, punctuation and a
class of residual items.
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3. Comparison

I Agreement on the main PoS tags: nouns, verbs, adjectives, determiners, articles,
adverbs, prepositions, conjunctions, numerals, interjections, punctuation and a
class of residual items.

I Disagreement on the classification within the main PoS tags. For instance,
”molti luoghi diversi” - many different places- ”molti” (many) is considered

. an Indefinite DETERMINER in Monachini

. a Plural QUANTIFIER in Xerox, and

. Indefinite ADJECTIVE in Delmonte and TUT.

I Proposal To follow a bottom-up approach and deduce the PoS classification from
empirical data by considering the distributional behavior of words.
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I Aim To examine the distributional behaviour of some target words we can compare
the lexical distribution of their contexts [Harris (1951), Kiss (1973), Brill (1993)]:

. . . . . . il babbo gioca . . . dad plays

. . . macchina del babbo . . . . . . car of dad

. . . . . . il nonno gioca . . . grandfather plays

. . . macchina del nonno . . . . . . car of grandfather

I Result Using this method on Italian four different categories are obtained: Verbs
(V), Nouns (N), Adjectives (Adj) and Grammatical Words (GW). [Tamburini et.
ali (2000)]

I Drawback sparse data problem which inflates the GW category.
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5. Distributional Method: Tags

I First Solution To solve this problem Tamburini et ali. (2002) applied Brill’s
method on tags, obtaining a more fine-grained analysis of GW. [Brown, P. et.
ali (1992)]
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5. Distributional Method: Tags

I First Solution To solve this problem Tamburini et ali. (2002) applied Brill’s
method on tags, obtaining a more fine-grained analysis of GW. [Brown, P. et.
ali (1992)]

V GW
. . . non vedo mai nessuno . . . I never see anyone
. . . . . . vedo sempre qualcuno . . . I always see someone
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6. Distributional Method: Structures

I Relying on limited distributional contexts (± 2 words), the method fails to manage
linguistic phenomena involving larger chunks of language such as conjunctions.
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6. Distributional Method: Structures

I Relying on limited distributional contexts (± 2 words), the method fails to manage
linguistic phenomena involving larger chunks of language such as conjunctions.

GW N GW N
la mamma incarta il regalo per il babbo . . . . . . . . .

(the) mum wraps the gift for (the) dad
la mamma incarta il regalo e il babbo scrive il biglietto

(the) mum wraps the gift and (the) dad writes the greetings card

I Hence

. With limited context “e” seems to act as “per”

. Conjunctions may be clustered with prepositions.

I Tags carrying structural information could help overcome this problem.
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7. Proposal

We propose to exploit the structural information carried out by Categorial Type Assign-
ments (CTAs).

For example, in the sentence:

la mamma incarta il regalo per il babbo - mum wraps the gift for dad

per is a functor (head) which has the type pp/np

In the sentence:

la mamma incarta il regalo e il babbo scrive il biglietto
mum wraps the gift and dad writes the greetings card

e is a functor which has the type (s\s)/s
Therefore, categorial types clustering will properly distinguish prepositions from conjunc-
tion.
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8. Inducing and Clustering CTAs

We need to

I Induce Categorial Type Assignments from “raw” data

I Or better, from data enriched with linguistically neutral information

I Apply the clustering algorithm on the obtained CTAs.

Note, a rather small number of highly frequent words should suffice for the present task
[Brill (1993)].
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9. Which linguistic information can we exploit?

I The only PoS tags could be the ones clustered via of the distributional approach.
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9. Which linguistic information can we exploit?

I The only PoS tags could be the ones clustered via of the distributional approach.

I The grammatical relations that are less theory-driven are Head-Dependent (H-D)
and Functor-Argument (F-A) relations.

I They way H-D and F-A relate can be used to identify different modes of compo-
sition. In particular, we have founded the following main classes of dependents

1. Arguments (ARG), H-D coincides with F-A;

2. Modifiers (RMOD), H-D does not coincide with F-A. RMOD are optional
–they return the same category they compose with;

3. Auxiliaries (AUX), H-D does not coincide with F-A. AUX are indispensable
for grammaticality since they modify the head verb;

4. Coordination (COORD), they are polymorphic ternary relations.

I Based on these observations, information on H-D and F-A can be extracted from
(dependency) treebanks.

Contents First Last Prev Next J



10. From Treebank to PoS Classification

Given an Italian treebank

Contents First Last Prev Next J



10. From Treebank to PoS Classification

Given an Italian treebank

1. H-D relations: we extract only the linguistically-neutral information on the Heads
and their Dependents (ARG, RMOD, AUX, COORD);

Contents First Last Prev Next J



10. From Treebank to PoS Classification

Given an Italian treebank

1. H-D relations: we extract only the linguistically-neutral information on the Heads
and their Dependents (ARG, RMOD, AUX, COORD);

2. F-A structures we extract the functor-argument (F-A) structures;

Contents First Last Prev Next J



10. From Treebank to PoS Classification

Given an Italian treebank

1. H-D relations: we extract only the linguistically-neutral information on the Heads
and their Dependents (ARG, RMOD, AUX, COORD);

2. F-A structures we extract the functor-argument (F-A) structures;

3. Types we apply the Type Resolution algorithm proposed in [van Emden 88] and
[Buszkowski, Penn 90] obtaining Categorial Type Assignments (CTAs);

Contents First Last Prev Next J



10. From Treebank to PoS Classification

Given an Italian treebank

1. H-D relations: we extract only the linguistically-neutral information on the Heads
and their Dependents (ARG, RMOD, AUX, COORD);

2. F-A structures we extract the functor-argument (F-A) structures;

3. Types we apply the Type Resolution algorithm proposed in [van Emden 88] and
[Buszkowski, Penn 90] obtaining Categorial Type Assignments (CTAs);

4. Clusters we apply a distributional-syntactic clustering method on CTAs, obtaining
empirical suggestions to PoS TAG sets.

Contents First Last Prev Next J



10. From Treebank to PoS Classification

Given an Italian treebank

1. H-D relations: we extract only the linguistically-neutral information on the Heads
and their Dependents (ARG, RMOD, AUX, COORD);

2. F-A structures we extract the functor-argument (F-A) structures;

3. Types we apply the Type Resolution algorithm proposed in [van Emden 88] and
[Buszkowski, Penn 90] obtaining Categorial Type Assignments (CTAs);

4. Clusters we apply a distributional-syntactic clustering method on CTAs, obtaining
empirical suggestions to PoS TAG sets.

Treebank →extraction of
meta−data → Meta-Treebank →conversion→ F-A structures

↓typeresolution

TAG set ←clustering← Categorial Types
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11. Turin University Treebank (TUT)

The only available Italian Treebank is TUT.

I It is a collection of syntactically annotated Italian sentences;

I it’s rather small. It consists of 38,653 words and 1,500 sentences;

I it’s a dependency treebank.

There is also ISST

I It’s a multi-layered corpus, annotated at the syntactic and lexico-semantic levels;

I it has a user interface to explore the corpus;

I it counts 305,547 word tokens. But

I it’s not (freely) available.
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12. TUT representation format

In TUT trees:
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12. TUT representation format

In TUT trees:

I each node is labelled by a word;

I each arch is labelled by a grammatical relation.

The information concerning a single node word is given as below:

n word (f1 f2 . . .fn) [H;MORPH − SY NT − SEM ]

I n is the number of the linear order of the word occurrence;

I fi are morphological features associated with the word itself;

I MORPH−SY NT −SEM are the grammatical relations concerning the depen-
dency edge linking the word with its syntactic head (H).
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13. TUT example

************** FRASE ALB-71 **************

1 I (IL ART DEF M PL)

[6;VERB-SUBJ]

2 primi (PRIMO ADJ ORDIN M PL)

[3;ADJC+ORDIN-RMOD]

3 approcci (APPROCCIO NOUN COMMON M PL)

[1;DET+DEF-ARG]

4 non (NON ADV NEG)

[6;ADVB-RMOD]

5 sono (ESSERE VERB AUX IND PRES INTR 3 PL)

[6;AUX+TENSE]

6 stati (ESSERE VERB MAIN PART PAST INTR PL M)

[0;TOP-VERB]

7 esaltanti (ESALTANTE ADJ QUALIF ALLVAL PL)

[6;VERB-PREDCOMPL+SUBJ]

8 . (#\. PUNCT) [6;END]
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14. Grammatical Relation

I Aim We want to extract from TUT only (as far as possible) linguistically neutral
information.
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14. Grammatical Relation

I Aim We want to extract from TUT only (as far as possible) linguistically neutral
information.

I Basic H-D relation We can focus on the SYNT (functional-syntactic) component
of the TUT annotation.

I Hierarchy of Dependents Dependents are divided into a hierarchy reducing
to a few main ones. ARG (e.g. sublabels: SUBJ, OBJ, INDOBJ, INDCOMPL,
PREDCOMPL) and RMOD on the one hand, and AUX, COORD [see Bosco 2003].
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15. Functor Argument (F-A) structures

We want to convert the meta-treebank into F-A structures [Buszkowski, Penn ’90].
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15. Functor Argument (F-A) structures

We want to convert the meta-treebank into F-A structures [Buszkowski, Penn ’90].

I F-A structures are binary branching trees;

I The leaf nodes are labelled by lexical expressions (words);

I The internal nodes are labelled by / (for structures with the functor as the left
daughter) or . (for structures with the functor as the right daughter).

Contents First Last Prev Next J



16. Multimodal Composition

Following [Moortgat and Morrill (1991)] we treat functor-argument and head-dependency
relations as orthogonal dimensions of linguistic composition and use different modes.
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16. Multimodal Composition

Following [Moortgat and Morrill (1991)] we treat functor-argument and head-dependency
relations as orthogonal dimensions of linguistic composition and use different modes.

ad ah fd fh

fh J

fd /

ah .

ad I
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17. TUT simplified trees

Alan
0

Alan

ha
1

mangiato
2

ate

la
3

the

mela
4

apple

SUBJ AUX OBJ ARG

Figure 1: MOD and AUX: Functors as Dependents
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18. Multimodal F-A structures

From TUT trees we obtain

Contents First Last Prev Next J



18. Multimodal F-A structures

From TUT trees we obtain

- Allen I (mangia J (la J mela)

Contents First Last Prev Next J



18. Multimodal F-A structures

From TUT trees we obtain

- Allen I (mangia J (la J mela)

- Allen I (mangia J (la J (mela . rossa))

Contents First Last Prev Next J



18. Multimodal F-A structures

From TUT trees we obtain

- Allen I (mangia J (la J mela)

- Allen I (mangia J (la J (mela . rossa))

- Allen I ((ha / mangiato) J (la J mela))

Contents First Last Prev Next J



19. Type Resolution

I To adapt the type resolution algorithm to the multimodal system is rather straight-
forward.
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19. Type Resolution

I To adapt the type resolution algorithm to the multimodal system is rather straight-
forward.

I In the above example, fixing the goal type for these examples as s and using as only
clustered set the ones of NOUN (n), we obtain the following type assignments:

Allan A

mangia (A−•s)•−B

la B•−n

mela n

rossa n−◦n
ha ((A−•s)•−B)◦−D

mangiato D
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20. Clustering

CTAs are trees. To cluster them we can apply a Tree Pattern Matching Algorithm
[Shasha and Zhang ’97]
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20. Clustering

CTAs are trees. To cluster them we can apply a Tree Pattern Matching Algorithm
[Shasha and Zhang ’97]

I Tree-rewriting:

. Renaming;

. Deletion;

. Edit.

I Which is the weight of each operation?

. Renaming: Changing H-D relation cost more than changing F-A order;

. Renaming: Replacing Variables/Constants, Con/Con, Var/Var;

. Deletion and Edit: deleting (editing) a connective costs is tied to deleting
(editing) a con/var. But

. Deletion and Edit: How do they relate to renaming?
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21. Further Research

I On the conversion from TUT:
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I On the conversion from TUT:

. TUT uses traces. Should we remove them? How much would the resulting
clusters differ?

. In TUT anything can be a Top-formula. Should we leave it like this?

. What is the role of Higher Order Types in this procedure? Can we use them
to see how long distance dependency triggers gather together?

I On the Clustering:

. Does the tree clustering algorithm reduce to weight structural rules?

. Can derivability relations among types help cleaning up clusters and reach
the right level of similarity trees?

. Elementary trees of TAG have been induced by TUT [A. Mazzei]. Would it
make sense to compare clustering of TAGs trees and CTAs?

. Is the rather small size of the treebank a limit for this study?
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22. Questions

On the approach:

I Can this study help reaching a further understanding of structural rules in natural
language analysis?

I Can this study help investigating the role of surface vs. deep structures? (vd.
traces)

I How much are the result still empirically founded?

I What would we really learn from this study at the end?
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