# Types for linguistic typologies. A case study: Polarity Items

Raffaella Bernardi

UIL OTS, UNIVERSITY OF UTRECHT

## Contents

| 1  | The problem                            | 3  |
|----|----------------------------------------|----|
| 2  | Polarity Items                         | 4  |
| 3  | Non-veridical Contexts                 | 5  |
| 4  | Polarity items typology                | 6  |
| 5  | A concrete example                     | 7  |
| 6  | Categorial Type logic                  | 8  |
| 7  | Some useful derived properties         | 9  |
| 8  | The concrete example                   | 10 |
| 9  | Types for PIs and their licensors      | 11 |
| 10 | The general picture                    | 12 |
| 11 | Options for cross-linguistic variation | 13 |
| 12 | Greek (I)                              | 14 |
| 13 | Greek (II)                             | 15 |
| 14 | Italian (I)                            | 16 |
| 15 | Italian (II)                           | 17 |
| 16 | Summing up                             | 18 |
| 17 | What have we gained?                   | 19 |
|    |                                        |    |

## 1. The problem

- ▶ In formal linguistic literature, one finds examples of theories based on **classifi- cations** of items which belong to the same syntactic category but which differ in some respect. For example,
  - ▶ generalized quantifiers have been classified considering the different ways of distributing with respect to negation [Beghelli and Stowell'97];
  - ▶ wh-phrases can be divided considering their sensitivity to different weakislands strength [Szablosci and Zwarts'97];
  - ▶ adverbs differ in their order relations [Ernst'01];
  - ▶ **polarity items** have been distinguished by the sort of licensors they require for grammaticality [Wouden'94,Giannakidou'97].
- ▶ In all these cases, the described typologies are based on semantically motivated subset relations holding among the denotations of the involved items.
- ▶ Aim: to show how categorial type logic can contribute to the study of linguistic typologies, and how this application sheds light on the different role of binary vs. unary operators.

## 2. Polarity Items

- ▶ A typology of Polarity Items (PIs) has been described in [Zwarts 1995, Giannakidou 1997] where PIs are considered sensitive to (non-)veridicality.
- ▶ In other words, polarity items (syntactic) **distribution** depends on some semantic features, viz. (non-)veridicality, of their licensors.
- ► Though (non-)veridicality is an **invariant** among natural language expressions, PIs show **different** behavior cross-linguistically. E.g.
  - ▶ "Possibly" differs from its Greek counterpart: though they have the same meaning, the Greek version licenses PIs, whereas the English one does not.
- ▶ PIs are an interesting phenomena from a **cross-linguistic** perspective: languages differ in the distributional properties of PIs, rather than in their structural occurrence.

### 3. Non-veridical Contexts

Definition [(Non-)veridical functions] Let f be a boolean function with a boolean argument, a definition of (non-)veridical functions can be given starting from the following basic case:  $f \in (t \to t)$ 

- ▶ f is said to be **veridical** iff [f(x)] = 1 entails [x] = 1 (e.g. 'yesterday');
- ▶ f is said to be **non-veridical** iff  $\llbracket f(x) \rrbracket = 1$  does not entail  $\llbracket x \rrbracket = 1$  (e.g. 'usually');
- ▶ f is said to be **anti-veridical** iff [f(x)] = 1 entails [x] = 0 (e.g. 'It is not the case').

Note, AV functions form a proper subset of the NV ones,  $AV \subset NV$ 

## 4. Polarity items typology

Based on these distinctions of (non-)veridical contexts, PIs have been classified as follow:

- ▶ positive polarity items (PPIs) can occur in veridical contexts (V) ('some N');
- ▶ affective polarity items (APIs) cannot occur in V, i.e. they must occur in non-veridical contexts (NV), (e.g. 'any N');
- ▶ negative polarity items (NPIs) cannot occur in NV, i.e. they must occur in anti-veridical contexts (AV) (e.g. 'say a word').

Schematicaly, this means that

$$\begin{array}{lll} \mathrm{AV} \circ \Delta \lceil \mathrm{NPI} \rceil & *\mathrm{NV} \circ \Delta \lceil \mathrm{NPI} \rceil, \\ \mathrm{AV} \circ \Delta \lceil \mathrm{API} \rceil & \mathrm{NV} \circ \Delta \lceil \mathrm{API} \rceil, \\ *\mathrm{V} \circ \Delta \lceil \mathrm{NPI} \rceil & *\mathrm{V} \circ \Delta \lceil \mathrm{API} \rceil. \end{array}$$

where  $\circ$  is the composition operator,  $\Delta[X]$  means that X is in the structure  $\Delta$  and has wide scope in it, and \* marks ungrammatical composition.

## 5. A concrete example

'Yesterday', 'usually' and 'it is not the case' are all denoted in the domain  $D_t^{D_t}$ , hence their (syntactic) category is s/s. However,

- 1. (a) \*Yesterday I spoke with anybody I met.  $V \circ \Delta[API]$
- 2. (a) **Usually** I speak with anybody I meet.  $NV \circ \Delta [API]$

**Question**: How can we account for these differences among items denoted in the 'same' domain?

## 6. Categorial Type logic

In [Areces, Bernardi and Moortgat] the base logic  $(NL(\diamondsuit, \cdot^0))$  consisting of residuated and Galois connected operators has been studied.

**Language** Formulas are built from: Atoms, residuated operators:  $(\setminus, \bullet, /)$ ,  $(\diamondsuit, \Box^{\downarrow})$ ; and unary Galois connected ones:  $(^{0}\cdot, \cdot^{0})$ .

#### ► Models

```
Frames F = \langle W, R_0^2, R_{\diamondsuit}^2, R_{\bullet}^3 \rangle

W: 'signs', resources, expressions

R_{\bullet}^3: 'Merge', grammatical composition

R_{\diamondsuit}^2: 'feature checking', (order preserving)

R_0^2: 'feature checking' (order reversing)

Models \mathcal{M} = \langle F, V \rangle

Valuation V: TYPE \mapsto \mathcal{P}(W): types as sets of expressions
```

## 7. Some useful derived properties

$$\begin{array}{ccc} \mathsf{Compositions} & & \diamondsuit \Box^{\downarrow} A \to A & & A \to \Box^{\downarrow} \diamondsuit A \\ & & A \to {}^{\mathbf{0}} (A^{\mathbf{0}}) & & A \to ({}^{\mathbf{0}} A)^{\mathbf{0}} \end{array}$$

(Iso/Anti)tonicity 
$$B \to C$$
 implies  $B/A \to C/A$   $A \setminus B \to A \setminus C$  
$$A/C \to A/B \qquad C \setminus A \to B \setminus A$$

In Natural Deduction format, a general inference step we are going to use is the one below. If  $B \to C$ , then

$$\begin{array}{c} \Gamma \vdash B \\ \vdots \\ \Delta \vdash A/C \quad \Gamma \vdash C \\ \hline \Delta \circ \Gamma \vdash A \end{array} [/E]$$

## The concrete example

- 1. (a) \*Yesterday I spoke with anybody I met.  $*V \circ \Delta[API]$ 
  - $*V \circ \Delta[NPI]$ (b) \*Yesterday I said a word.
- 2. (a) Usually I speak with anybody I meet.  $NV \circ \Delta API$ 
  - (b) \*Usually I say a word. \*NV  $\circ \Delta$  [NPI]

In order to make fine-grained distinctions in the lexical assignments, we can use unary operators.

#### Lexicon

It is not... 
$$\in s/({}^{\mathbf{0}}s)^{\mathbf{0}}$$
 (AV)  
Usually  $\in s/({}^{\mathbf{0}}(\diamondsuit\Box^{\downarrow}s))^{\mathbf{0}}$  (NV)  
Yesterday  $\in s/\Box^{\downarrow}\diamondsuit s$  (V)

The type of a structure is determined by the element having wide scope, viz. in  $\Delta[X]$  it is determined by X.

$$api: ({}^{\mathbf{0}}(\Diamond \Box^{\downarrow}s))^{\mathbf{0}} \to npi: ({}^{\mathbf{0}}s)^{\mathbf{0}} \qquad npi: ({}^{\mathbf{0}}s)^{\mathbf{0}} \not\to api: ({}^{\mathbf{0}}(\Diamond \Box^{\downarrow}s))^{\mathbf{0}}$$
  
 $api: ({}^{\mathbf{0}}(\Diamond \Box^{\downarrow}s))^{\mathbf{0}} \not\to ppi: \Box^{\downarrow}\Diamond s \qquad npi: ({}^{\mathbf{0}}s)^{\mathbf{0}} \not\to ppi: \Box^{\downarrow}\Diamond s$ 

## 9. Types for PIs and their licensors

Schematically, the needed types are:

$$AV \in A/npi$$
  $NV \in A/api$ ,  $V \in A/ppi$   $api \rightarrow npi$   $npi \not\rightarrow ppi$   $api \not\rightarrow ppi$ .

Note, 
$$AV : A/npi \rightarrow NV : A/api \rightarrow AV \subset NV$$

$$\frac{\Delta\lceil \text{API}\rceil \vdash api}{\vdots} \times \frac{\Delta\lceil \text{NPI}\rceil \vdash npi}{\Delta\lceil \text{API}\rceil \vdash A} \times \frac{\Delta\lceil \text{NPI}\rceil \vdash npi}{\Delta\lceil \text{NPI}\rceil \vdash api} \times \frac{AV \vdash A/api}{\Delta\lceil \text{NPI}\rceil \vdash Api} \times \frac{A$$

## 10. The general picture

- ► Categorial type logic provides a modular architecture to study **constants** and **variation** of grammatical composition:
  - ▶ base logic grammatical invariants, universals of form/meaning assembly;
  - ▶ **structural module** non-logical axioms (postulates), lexically anchored options for structural reasoning.
- ▶ Up till now, research on the constants of the base logic has focussed on binary operators. E.g.
  - $\triangleright$  Lifting theorem:  $A \to (B/A) \backslash B$ ;

While unary operators have been used to account for structural variants.

- ▶ We show how **unary operators** can be used
  - ▶ to account for linguistic typologies encoding the subset relations among items of the same syntactic category, and
  - ▶ to account for **cross-linguistic** differences.

## 11. Options for cross-linguistic variation



# 12. Greek (I)

NPI: ipe leksi, API: kanenan, FCI: opudhipote

| 1. | Dhen idha <u>kanenan</u> .<br>(tr. I didn't see anybody)                                             | Neg > API      |
|----|------------------------------------------------------------------------------------------------------|----------------|
| 2. | Dhen <u>ipe leksi</u> oli mera<br>(tr. He <u>didn't say</u> a word all day)                          | Neg > NPI      |
| 3. | *Dhen idha opjondhipote<br>(tr. I didn't see anybody)                                                | *Neg > FCI     |
| 4. | Opjosdhipote fititis <b>bori</b> na lisi afto to provlima. (tr. Any student can solve this problem.) | Modal > FCI    |
| 5. | An dhis tin Elena [ <u>puthena/opudhipote</u> ], (tr. If you see Elena anywhere,)                    | Cond > API/FCI |
| 6. | An pis leksi tha se skotoso.<br>(tr. If you say a word, I will kill you)                             | Cond > NPI     |

# 13. Greek (II)

The data presented above can be summarized as follows:

| Greek       | FCI | API | NPI | PPI |
|-------------|-----|-----|-----|-----|
| Veridical   | *   | *   | *   | Yes |
| Negation    | *   | Yes | Yes | *   |
| Modal verb  | Yes | Yes | *   | Yes |
| Conditional | Yes | Yes | Yes | Yes |

\_\_\_\_\_

# 14. Italian (I)

NPI: nessuno, API: mai, FCI: chiunque

| 1. | Non gioco <u>mai</u>                          | Neg > API    |
|----|-----------------------------------------------|--------------|
|    | (tr. I don't play ever)                       |              |
| 2. | Non ho visto <u>nessuno</u>                   | Neg > NPI    |
|    | (tr. I haven't seen anybody)                  |              |
| 3. | *Non ho visto chiunque                        | *Neg > FCI   |
|    | (tr. I haven't seen anybody)                  |              |
| 4. | Chiunque <b>puó</b> risolvere questo problema | Modal > FCI  |
|    | (tr. Anybody can solve this problem)          |              |
| 5. | *Puoi giocare mai                             | *Modal > API |
|    | (tr. You can play ever)                       |              |
| 6. | *Puoi prendere in prestito nessun libro       | *Modal > NPI |
|    | (tr. You can borrow any book)                 |              |
| 7. | Se verrai <u>mai</u> a trovarmi,              | Cond > API   |
|    | (tr. If you ever come to visit me,)           |              |

# 15. Italian (II)

The data presented above can be summarized as follows:

| Italian     | FCI | API | NPI | PPI |
|-------------|-----|-----|-----|-----|
| Veridical   | *   | *   | *   | Yes |
| Negation    | *   | Yes | Yes | *   |
| Modal verb  | Yes | *   | *   | Yes |
| Conditional | *   | Yes | *   | Yes |

Contents First Last Prev Next

## 16. Summing up

- ▶ Semantic differences among items of the same (syntactic) categories are responsible for different syntactic behaviors;
- ▶ In  $NL(\diamondsuit, \cdot^0)$  these differences can be encoded in the **lexicon** by means of unary operators;
- ▶ The derivability relations governing unary operators and the tonicity properties of \, / give precise **instructions** to encode the semantic subset relations involved;
- ▶ Starting from the lexicon, the **logic rules** prove the correct distribution of the different items;
- ▶ Cross-linguistic differences are accounted for by building different lexicon, facilitating comparisons among languages.

## 17. What have we gained?

Assuming a categorial logic perspective on linguistic typologies help

- ▶ gain a deeper understanding of the typological classifications proposed in the literature of formal linguistics;
- ▶ carry out cross-linguistic comparisons;
- ▶ clarify the consequences predicted by the typologies opening the way to further investigations, and
- ▶ discover new dependencies between linguistic phenomena.