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Abstract

Content The work presented in this course follows the parsing as deduction approach
to Linguistics. We use the tools of Categorial Type Logic (CTL) to study the interface
of natural language syntax and semantics. Our aim is to investigate the mathematical
structure of CTL and explore its expressivity for analyzing natural language structures.

Standard presentations of CTL using Gentzen’s Sequent Calculus or Proofnets are
prototypical examples of a logical account of natural language analysis. Nevertheless, the
limitations of these proof systems surface when one tries to fully explore the ’theoretical
space’ for type-logical connectives. We show how the generalized sequent framework of
Display Calculi (DC) improves upon the traditional accounts, and in particular, how it
opens new perspectives on the treatment of negative structure.

Such expressivity is required if one wants to enrich the type-logical vocabulary with
antitone connectives, in addition to the more familiar isotone operations. Phenomena
of polarity sensitivity, pervasive in natural languages, suggest that such extensions are
desirable.

Structure The course consists of two main components: The proof theoretical &
model theoretical background of CTL and the modeling of linguistic phenomena. Through
the course these two components will be mixed after a first separate introduction to each
of them providing the technical background and the motivations of the approach.

Pre-requisite The course is addressed to any student interested in logic, language
and their connections, and only basic background on propositional logic is required.
Students with knowledge of categorial grammar and proof theory will, of course, obtain
further profit.

ESSLLI’s related courses The course can be seen as a continuation of the founda-
tional course on ”Substructural Logics” given by Greg Restall at ESSLLI 01 (Helsinki).
In particular, we will show substructural logics at work by focusing on a specific one
(CTL) and by zooming in on the linguistic applications only mentioned by Restall.

Three closely related courses given at ESSLLI 04 are the introductory courses on
“Type logical grammar” and “Proof automation for type-logical grammars” (by Glyn

v



Morrill and Pierre Casteran & Richard Moot, respectively.) and the advanced course
on “Multi-modal combinatory categorial grammar” (by Geert-Jan Kruijff).

References The course notes have been mostly extracted from [Ber02] and [Gor98c,
Gor97]. In the course, at the end of each lecture we will provide further reading material
that can be downloaded from the CoLogNET portal of the “Logic and Natural Language
Processing Area”: http://colognet.let.uu.nl.

Exercises For the linguistic applications, we will propose some exercises to check your
understanding of the presented material. You will be able to check them your selves,
via the on-line version of Grail at: http://grail.let.uu.nl.

vi



Part I

Introduction to DC and CTL

In this part of the notes, we introduce the formal background behind the Grammar
Logic we will put at work in the second part of the notes. In particular, we focus
attention on the type-forming operations of Categorial Type Logic (CTL), which build
structured complex categories out of a small set of basic types. We show how the
analytical force of these type-forming operations derives from the fact that they come
in pairs of opposites —residuated or Galois connected pairs, to be more precise. We
have all become acquainted with these notions in our elementary math classes, when
we learned how to solve algebraic equations like 3× x ≤ 5 by ‘isolating’ the unknown x
using the laws connecting (×,÷), producing the solution x ≤ 5

3
. In categorial grammar,

such pair of opposites is used to put together and take apart linguistic expressions, both
syntactically and semantically.

In Chapter 1, we try to set CTL within the “Language & Logic” big ombrella, briefly
pointing to its main pecularities.

In Chapter 2, we provide the algebraic notions of residuation and Galois that govern
the behavior of the type-forming operations of CTL and introduce Display Calculi (DC)
as a unified framework for presenting resource and structure sensitive reasoning.

In Chapter 3, we introduce CTL by means of DC sheding lights on the proof theo-
retical beahvior of CTL operators. Moreover, we study the derivability relations we will
see at work in Part II.





Chapter 1

Where do we stand?

This course is part of the “Logic & Language” Session of ESSLLI’04. As such, we
would like to start in this preliminary and informal chapter from the very broad area
and zoom into the framework we will be introducing in the course. In this way we
hope to help the reader grasping the main properties of the framework and spotting
similarities and differences with what he/she labels as “Logic & Language”. We will
start from Computational Linguistics, move to Formal Grammars and end with Logical
Grammars.

1.1 Formal Grammars

Formal Grammars are an area of investigation of Computational Linguistics. The field
is as diverse as linguistics itself, in general it could been seen as the study of formal
devices which can be used to distinguish grammatical and ungrammatical strings of a
given language [CCCSS00] and build their semantic interpretation. These formal devices
can be automata, which are abstract computing machines, and formal grammars, which
are string (or structure) rewriting systems. Formal Grammars are used by parsers to
determine the “syntactic structure” of string of words. See [Mit03] for an overview of
the field.

The object of this course is a formal grammar. Here we point out the major tasks of
formal grammars and the devices that are used to carry them out by briefly comparing
Context-Free Phrase Structure Grammars with the framework object of our studying,
Categorial Grammars (CG)1.

Phrase Structure Grammars. In formal language theory a language is defined as
a set of strings, i.e. a set of finite sequences of vocabulary items. A grammar for a
language then is a formal device that defines which strings belong to that language.
One particular kind of formal system that is used to define a language is commonly
known as a context-free phrase structure grammar. Besides deciding whether a string

1This section is extracted (and adapted) from [Hey99] with the author’s permission. We thank Dirk
for this.

3



4 Chapter 1. Where do we stand?

belongs to a given language, this grammar deals with phrase structures represented as
trees.

An important difference between strings and phrase structures is that whereas string
concatenation is assumed to be associative, trees are bracketed structures. The latter
thus preserve aspects of the compositional (constituent) structure or derivation which is
lost in the string representations. We illustrate the behavior of this grammar by means
of the example below.

Example 1.1. [Grammars and Languages]We consider a small fragment of English de-
fined by the following grammar G (= 〈LEX, RULES〉), with vocabulary Σ and categories
CAT.

Σ = {Sara, dress, wears, the, new},
CAT = {det, n, np, s, v, vp, adj},
LEX = {〈Sara, np〉, 〈the, det〉, 〈dress, n〉, 〈new, adj〉, 〈wears, v〉}
RULES = {s→ np vp, np→ det n, vp→ v np, n→ adj n}

Among the elements of the language recognized by the grammar, L(G), are 〈the, det〉
because this is in the lexicon, and 〈Sara wears the new dress, s〉 which is in the language
by the repeated application rules.

(1) 〈new dress, n〉 ∈ L(G) because
n→ adj n ∈ RULES,
〈new, adj〉 ∈ L(G) (LEX), and
〈dress, n〉 ∈ L(G) (LEX)

(2) 〈the new dress, np〉 ∈ L(G) because
np→ det n ∈ RULES,
〈the, det〉 ∈ L(G) (LEX), and
〈new dress, n〉 ∈ L(G) (1)

(3) 〈wears the new dress, vp〉 ∈ L(G) because
vp→ v np ∈ RULES,
〈wears, v〉 ∈ L(G) (LEX), and
〈the new dress, np〉 ∈ L(G) (2)

(4) 〈Sara wears the new dress, s〉 ∈ L(G) because
s→ np vp ∈ RULES,
〈Sara, np〉 ∈ L(G) (LEX), and
〈wears the new dress, vp〉 ∈ L(G) (3)

In a similar way we can show that the set of phrase structure trees (T (G)) contains the
following tree which we also depict in the usual graphical way.

〈〈Sara, np〉, 〈〈wears, v〉, 〈〈the, det〉, 〈〈new, adj〉, 〈dress, n〉, n〉, np〉, vp〉, s〉
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s

np

Sara

vp

v

wears

np

det

the

n

adj

new

n

dress
As the following table shows, we can also derive that the sentence is in the language

by means of a rewriting procedure. The left column represents the sequence of categories
and words that is arrived at by replacing one of the categories (c) (identical to the left-
hand side of the rule in the second column) on the line above by the right-hand side of
the rule or by a word that is assigned the category c by the lexicon.

s s→ np vp
np vp vp→ v np
np v np np→ det n
np v det n n→ adj n
np v det adj n 〈Sara, np〉
Sara v det adj n 〈wears, v〉
Sara wears det adj n 〈the, det〉
Sara wears the det adj n 〈new, adj〉
Sara wears the new n 〈dress, n〉
Sara wears the new dress

This example recapitulates the basic definitions of grammar and language isolating
some of the functions a grammar is required to serve. In particular, it shows that the
principal tasks of a grammar are the definition of several sets of objects: (i) a set of
expressions (the string set), (ii) a set of pairs of expressions and categories (language),
(iii) a set of phrase structures. More abstractly, we can say that a grammar is a device
that is concerned with two aspects.

(1) Defining the membership of elements to some (sub)set: classification or categori-
sation.

(2) Specifying the compositional structure of complex elements.

The grammars that we introduced categorise expressions in two steps. The lexicon
component LEX of a grammar deals with the categorisation of the atomic expressions
(the words), whereas the RULES determine the category of complex expressions. The
rules also take care of the definition of compositional structure. They define which parts
can combine to form larger structures. Categories play an important role in defining
the compositional structure because they group together the set of expressions that
behave similarly with respect to compositional structure. In other words, the rules
make reference to the categories, not to the individual expressions.
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Besides classification, another important function of a grammar is to define struc-
ture. Analysing this aspect, we can say that the context-free grammar fixes the order of
(sub)expressions (precedence) and a part-whole structure (dominance). Phrase struc-
ture trees make this compositional structure and the categorisation of wholes and parts
explicit. We will now turn to another type of grammar that performs the same tasks in
a different way and which is the ancestor of the logical grammar presented in the course.

Categorial Grammars. The formal grammar we work with, Categorial Grammars
(CG), adopts an alternative way to define classification and composition. In this type of
grammar the lexical component takes over the role of the rule component in fixing the
compositional structure of a language. It is important to notice how in order to effect
this, the notion of category is modified.

CG have a richer notion of category than Phrase Structure Grammars. Besides
atomic categories, they also use complex categories of the form A/B and (B\A) (where
A and B are again categories, possibly complex themselves.) A language is defined
solely by a lexicon that assigns categories to words. There are no phrase structure rules.
Instead, a pair of general combination operations is used: (1) an expression in A/B
concatenated with an expression of category B gives an expression in A (see (a) below);
(2) an expression in B concatenated with an expression in B\A gives an expression
in A (the schema is symmetric to (a)). Notice that these schemata do not mention
specific categories, but use variables over arbitrary categories A, B. The information
about precisely which expressions combine with others is provided by the lexicon. For
instance, an adjective, such as new, might be assigned the category n/n, which, by the
general schema, means that it combines with expressions in n to form expressions in n.
Representing this composition in a tree we have (a’) that plays the role of the phrase
structure in (b).

(a) (a’) (b)

A

A/B

wordi

B

wordj

n

n/n

new

n

dress

n

adj

new

n

dress

Note that CG categories could be seen as trees themselves and therefore are close
to the elementary trees of Tree Adjoining Grammar (TAG). The reader is referred to
the foundational course given by B. Gaiffe and G. Perrier “Basic Parsing Techniques
for natural language” (ESSLLI 04) for an introductory comparison of CG and TAG and
to [Moo02] for a formal embedding of (a version of) the former into the latter.

From this elementary summary, it should be clear how classification and composi-
tion are defined in this alternative framework. One thing that is important to underline
is that the classification of expressions by the categories directly expresses their com-
bination properties. These aspects will be spelled out in precise terms in Chapter 4
where it is also shown how moving from Classical CG to Categorial Type Logic (CTL)
corresponds to move from a formal grammar to a logic grammar where categories are
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logical formula and rules are logical rules. Here we try to briefly explain the place CTL

occupies within the “Logic and Natural Language Processing” (LNLP) area.

1.2 Logic and NLP

In several fields Logic is used to grasp the global features of reality abstracting away
from the empirical details and providing a model of the observed objects. In our case,
the object is natural language. Logic has been recognized to be an important tool for
understanding the structure of language (both its syntax and semantics) since [Fre87].
Moreover, inference tools are a crucial component of Natural Language Processing (NLP)
systems that require deep analysis which integrate semantic analysis of natural language
utterances to their general cognitive processing. Valuable references for foundational and
advanced introductions to the field are [PMW90, vBtM97].

Since 1995 an European Conference on Logical Aspects of Computational Linguistics
(LACL) is organized every two years. In the introduction of LACL’96 proceedings the
field is classified in (i) logical semantics of natural language, (ii) grammar and logic, (iii)
mathematics with linguistic motivations, and (iv) computational perspectives. Following
this division, if we have to chose one label, we can say that the framework presented
in the course follows under the “grammar and logic” one. As before, we would like to
highlight the main aspects in which CTL differs from other logical views on grammars.

Logic Based Grammars. One known example of a family of logics used to accom-
plish NLP tasks are Feature Logics [Rou97]. They are known to be especially useful
in classifying and constraining the linguistic objects known as feature structures. Here,
the logic is used to formalize linguistic theories. For instance, the feature co-occurrence
restriction used in Generalized Phrase Structure Grammar (GPSG) to say that any
category classified as a verb must have a negative “noun” and a positive “verb” quality

[V FORM ] ⊃ [−N, +V ]

can be represented in modal feature logic by means of the universal modality 2 as
following

2(vform : ture→ n : − ∧ v : +)

In other words, a linguistics rule is “translated” into a logical language and then the
formal system is used to reason with the formalized linguistic objects.

Contrary to this, in CTL there is no such distinction between an a-priori grammar
(with its set of grammatical rules) and a logic in which the former is translated. The
grammar is in itself a logic, and the only rules at work are the (logical and structural)
rules of the system obtained by investigating its algebraic structure. The reader is
invited to compare the use of the universal modality above with its application in CTL

explained in Part II.
As fully explained in these course notes, CTL is a (modal) logic used to reason on

linguistic signs. Syntactic categories are formulas, grammatical rules are logical rules,
and structural (re)ordering corresponds to structural rules (or frame constraints). As
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such, soundness and completeness properties do not simply characterize the logic, but
rather are main properties of the grammar itself. The challenge is to investigate the
’theoretical space’ of the family of (modal) logics and select the proper model of natural
language grammar suitable for the specific natural language to be generated. In the
course, we will show how Display Calculi help carrying out this task.

Resources Sensitivity. A second crucial point is the resource sensitivity notion that
governs the manner in which the operations of a system can utilize its resources: how
often they may be used, how they can be assembled together to create larger structures,
and how they can be reconfigured into other equivalent structures.

From a logical perspective, resource sensitivity is nicely exemplified in Linear Logic
[Gir87] where the implicational connective −◦ is used to indicate that it consumes the
resource that is needed to prove the consequent; thus, the formula p−◦q is read as
‘consume p yielding q’. After the rule for −◦ is applied, the resource p is no longer
available for further inferential steps.

In Linear Logic, Contraction and Multiplication of resources are reintroduced locally
by means of unary operators (!, ?) which are used to mark those resources for which the
corrisponding structural rules are adequate. The use of these “markers” introduces the
idea of structural rules that are controlled rather then globally available.

The logical concerns behind this logic have direct parallels in natural language gram-
mar and are reflected in CTL which is a resource-sensitive logic (see [Moo99] for more
details). Clearly, the multiplicity of linguistics material is important, since linguistic el-
ements must generally be used once and only once during an analysis. Thus, we cannot
ignore or waste linguistic material (1-a), nor can we indiscriminately duplicate it (1-b).

(1) a. *The coach smiled the ball. 6= The coach smiled.

b. *The coach smiled smiled. 6= The coach smiled.

As in other domains, in Linguistic as well, there is the need of locally controlling struc-
tural reasoning and account for the different compositional relations linguistic phenom-
ena may exhibit. As in Linear Logic, in CTL as well this control is expressed by means
of unary operators. However, the unary operators of CTL belong to the same algebraic
structure of the implication operators used for simple composition of structures. This
algebraic property and its encoding into sequent calculi is the topic of Chapter 3.

Statistical and Logic Based Approaches. We would like to conclude this part
with a last comment on the possible application of logical grammars. As pointed out
in [Car03], while, logic oriented linguists are more interested in selecting the proper logic
for modeling natural language, computer scientists typically worry about efficiency of
processing in terms of time and space, often side-stepping cognitive issues in the interest
of building effective software. Within the computational linguistic community, this in-
terest is reflected in the development of statistical models that have largely supplanted
logical ones. Statistical algorithms search for the ”best” structure which is assumed to
be the one with the highest likelihood and perform much better than any logic-based
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grammar system when put at work with large data, as needed in several applications.
Rather than seeing this as a failure of the logical approach, in the LNLP area the inte-
gration of the inductive and the deductive styles of grammatical reasoning is perceived
as an exciting challenge for the field. (See [Per00] for an interesting discussion.) As
for the computational aspects of CTL and related grammars, the reader is refered to
the courses given at ESSLLI’04 by P. Casteran and R. Moot (Proof automation for
type-logical grammars) and by G. Jaeger and J. Michaelis (An introduction to mildly
context-sensitive grammar).





Chapter 2

Introduction to DC

We introduce Display Calculi (DC) as a unified framework for presenting resource and
structure sensitive reasoning. We use the term “Display Calculi” rather than “Display
Logic” because display logic is really not a logic per se but a proof-theoretic framework
for generalised sequent calculi.

Since this is an advanced course, we are going to assume that you know about Hilbert
calculi, about (n + 1)-ary relational semantics for n-ary non-classical connectives a là
Jónsson and Tarski, and about sequent calculi. But don’t worry: more background
information will be provided in the lectures themselves if necessary.

2.1 Preliminaries

We first introduce some notions from algebra which play a central role in display calculi
but which are important in their own right. Most of this is based upon the work of J
Michael Dunn [Dun93].

Let A := (A,≤A) and B := (B,≤B) be two partially ordered sets (so that both ≤A

and ≤B are reflexive and transitive). A pair (f, g) of unary functions f : A 7→ B and
g : B 7→ A form a:

Residuated Pair if fa ≤B b iff a ≤A gb

Dual Residuated Pair if b ≤B fa iff gb ≤A a

Galois Connection if b ≤B fa iff a ≤A gb

Dual Galois Connection if fa ≤B b iff gb ≤A a

We shall assume that A = B since our domain will always be the set of “formulae”,
thereby dropping the subscripts on the order ≤. A dual residuated pair (f, g) is then
just a residuated pair (g, f) so we shall not consider dual residuated pairs further.

Given a partially ordered set 〈A,≤〉, an n-ary function f is isotone (sometimes called
monotonic) in its i-th position if for all ai and all a and b

a ≤ b implies f(a1, · · · , ai−1, a, ai+1, · · · , an) ≤ f(a1, · · · , ai−1, b, ai+1, · · · , an)

11



12 Chapter 2. Introduction to DC

It is antitone (sometimes called anti-monotonic) if

a ≤ b implies f(a1, · · · , ai−1, b, ai+1, · · · , an) ≤ f(a1, · · · , ai−1, a, ai+1, · · · , an)

Dunn also gives equivalent definition for characterising residuated pairs and Galois
connections using the “tonicity” of the functions involved as:

Residuated Pair: Both f and g are isotone, and fgb ≤B b and a ≤A gfa

Galois Connection: Both f and g are antitone, and b ≤B fgb and a ≤A gfa

Dual Galois Connection: Both f and g are antitone, and fgb ≤B b and gfa ≤A a.

As we shall see, unary modalities often appear in pairs which form residuated pairs,
while negations often appear in pairs which form Galois connections and dual Galois
connections. These notions generalise to binary functions (connectives) as follows.

A partially ordered groupoid is a triple 〈A, ◦,≤〉 where A is a non-empty set, ◦ is
a binary operation on A which is isotonic in each place, and ≤ is a partial order on A.
The isotonicity condition is simply this: if a ≤ b then a ◦ c ≤ b ◦ c and c ◦ a ≤ c ◦ b.

A partially ordered groupoid is

Left Residuated: when an element c← b always exists such that a ◦ b ≤ c iff a ≤ c← b

Right Residuated: when an element a→ c always exists such that a◦b ≤ c iff b ≤ a→ c

Residuated: when it is both left and right residuated.

An equivalent definition is:

Left Residuated when ◦ is isotonic in each place and a◦(a→ b) ≤ b and b ≤ a→ (a◦b).

Right Residuated when ◦ is isotonic in each place and (b← a)◦a ≤ b and b ≤ (b◦a)← a.

2.2 Introduction

2.2.1 Residuation and Galois Connected Logical Connectives

We now give a informal account of the logical connectives that correspond to the al-
gebraic principles described above. Their main features are that they are based on
residuation and galois connections, and that they are a “resource sensitive”, a notion
that is explained in more detail later.

We assume the existence of a semantic consequence relation Γ |= A which captures
the notion that formula A follows semantically from a collection of formulae Γ. This
depends upon the semantics of the logic in question. As we shall see, resource sensitivity
means that we must account for the order of formulae in Γ, the number of copies of a
formula in Γ as well as whether that formula is really needed in order to conclude A
from Γ.
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2.2.2 Unary Modalities

By unary modalities we mean isotonic unary connectives usually called “box” and “di-
amond”.

Syntax: We shall use 2 and 3. We shall also use 3
↓ and 2

↓.

Semantics: The Kripke semantics of such (unary) modalities is given by a binary relation
R over the underlying set of “worlds” or “points” or “situations” W . To such
frames 〈W, R〉 , we add a valuation v mapping atomic formulae like p to the
subsets of W where the atomic formulae are true. For any x ∈ W , we write x  p
when x ∈ v(p) and extend this to the modalities in the following way:
x  3A iff ∃y. R(x, y) and y  A
x  2A iff ∀y. if R(x, y) then y  A
x  3

↓A iff ∃y. R−1(x, y) and y  A
x  2

↓A iff ∀y. if R−1(x, y) then y  A

Correspondence: Certain formula shapes correspond to certain first-order properties
(frame conditions) of R. For example, the reflexivity condition ∀x.R(x, x) cor-
responds to the shape 2A ⇒ A. That is, a frame F validates all instances of the
formula shape 2A ⇒ A iff the underlying binary relation R has the property of
being reflexive.

Residuation: The diamond and box modalities are connected via residuation as follows:

3
↓A |= B iff A |= 2B

3A |= B iff A |= 2
↓B

We have already mentioned that the notion of dual residuation does not add anything
of value when we have the same underlying partially ordered set, so unary modalities
can also be seen to be related by dual residuation.

2.2.3 Unary Negations

By unary negations we mean anti-tonic unary connectives usually called “not”.

Syntax: We shall use ¬ and ∼.

Semantics: The Kripke semantics of such (unary) negations is given by a binary relation
R (of incompatibility) over the underlying set of “worlds” or “points” or “situa-
tions” W . To such frames 〈W, R〉 , we add a valuation v mapping atomic formulae
like p to the subsets of W where the atomic formulae are true. For any x ∈ W , we
write x  p when x ∈ v(p) and extend this to the modalities in the following way:
x  ¬A iff ∀y. if R(x, y) then y 6 A
x ∼ A iff ∀y. if R−1(x, y) then y 6 A

Correspondence: Certain formula shapes correspond to certain first-order properties
(frame conditions) of R.
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Galois Connection: The two negations are connected via the laws of Galois connections
as follows:

A |= ¬B iff B |=∼ A

The fact that the connectives are anti-tonic is reflected in the fact that the sub-
formulae A and B switch sides under the Galois laws while the negation itself changes
but remains on the same side of |=.

The negations described above have a “box”-like flavour to them since they are
couched in terms of all R-successors and all R-predecessors.

There are also negations that can be captured by dual Galois connections, and these
have a “diamond” like flavour. We omit details because these take us beyond the scope
of our lectures.

2.2.4 Binary Connectives

By binary connectives we mean non-classical conjunctions, disjunction and implications.
They are sometimes called intensional conjunction and disjunction.

Syntax: We shall use ⊗ for intensional conjunction, ⊕ for intensional disjunction, and
→ and← for the two implications which arise naturally from the Lambek calculus.

Semantics: The Kripke semantics of such (binary) modalities is given by a ternary rela-
tion R over the underlying set of “worlds” or “points” or “situations” W . Again,
adding a valuation gives a model in which we evaluate the intensional connectives
at any particualr x ∈W as below:
x  A⊗ B iff ∃y, z. R(x, y, z) and y  A and z  B
x  A→ B iff ∀y, z. if R(x, y, z) and y  A then z  B
x  A← B iff ∀y, z. if R(x, y, z) and z  A then y  B

Correspondence: Certain formula shapes correspond to certain first-order properties
(frame conditions) of R.

Residuation: These three connectives are related via residuation as set out below:
A |= C ← B iff A⊗B |= C iff B |= A→ C.

2.2.5 Resource Sensitivity

The connectives of classical logic have some rather strong properties such as the fact that
A ∧ A ⇔ A. Thus one occurrence of the formula A is equal in logical power to many
occurrences of A by universal substitution of logical equivalents. Resource sensitive
logics break such strong properties and count each occurrence of A.

More formally, suppose we consider a Hilbert derivation of A from a collection of
formulae Γ as a finite sequence of formulae 〈A0, A1, · · · , An〉 where An is A and each
formula in the sequence is either an instance of an axiom schema, or is obtained from
previous members of the sequence via a rule of inference like modus ponens or necessi-
tation. We can then count the number of times that a particular formula is “used” in
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such inference rules. For example, if we use p and p⇒ q to infer q and then use p and
p⇒ r to infer r then we have used p twice.

If we want to track such usage then we must speak of formula occurrences and we
must keep track of the usage of such occurrences. Such logics are traditionally known
as resource sensitive logics, but can be categorised into three broad classes:

Use At Most Once: In these logics, the formula A⇒ (A∧A) is not valid but A∧B ⇒
A is valid. Consequently, each occurrence of A can be utilised at most once since
we cannot produce more occurrences of A simply by utilising A ⇒ (A ∧ A) to
produce more occurrences.

Use At Least Once: In these logic, the formula A∧B ⇒ A is typically not valid, but
A ⇒ (A ∧ A) is valid. In particular, A ∧ A⇒ A is not valid. Consequently, each
occurrence of A ∧ A must be utilised at least once since we cannot gain access to
only a portion of it via A ∧A⇒ A.

Use Exactly Once: If neither A ⇒ (A ∧ A) nor A ∧ B ⇒ A is valid then we obtain
the motivation of linearity, each formula occurrence must be utilised exactly once.

Bounded Logics: Once we can count the number of uses of a formula occurrence, it is
natural to consider logics where each occurrence can be used exactly n times for
some finite n.

2.3 Proof Theory

2.3.1 Axiomatic Presentation

As is usual in Hilbert calculi, there are many axiom schema and very few inference rules.
For modalities we typically need the K axiom

2(A⇒ B)⇒ (2A⇒ 2B) 2
↓(A⇒ B)⇒ (2↓A⇒ 2

↓B)

and axioms which guarantee the residuation conditions such as:

A⇒ 23
↓A 32

↓A⇒ A

together with the necessitation rules:

Nec-2
` A

` 2A
Nec-2↓

` A

` 2
↓A

For the binary connectives we typically require axioms like A∧B ⇒ A and A∧B ⇒
B, which capture resource sensitivity. But often, Hilbert axiomatisations are given in
terms of implicational axioms only. We omit details as this would take us too far afield.

The main problem with Hilbert calculi is that they do not lend themselves to com-
putation or automation. It is not at all obvious how to find derivations because the
right instantiation of a particular axiom often requires an “Eureka” step.
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(ctrL)
Γ, A, A ` ∆

Γ, A ` ∆
(ctrR)

Γ ` A, A, ∆

Γ ` A, ∆

(wkL)
Γ, Ai ` ∆

Γ, A1, A2 ` ∆
(i ∈ {1, 2}) (wkR)

Γ ` Ai, ∆

Γ ` A1, A2, ∆
(i ∈ {1, 2})

(prmL)
Γ, B, A ` ∆

Γ, A, B,` ∆
(prmR)

Γ ` B, A, ∆

Γ ` A, B, ∆

Figure 2.1: Sequent Structural Rules

2.3.2 Sequent Calculi

The traditional way to examine the subtle nature of resource sensitivity is to use
Gentzens’s sequent calculi. Here, the building blocks are sequents of the form Γ ` ∆
where the Γ and ∆ are comma-separated sequences of formula occurrences. Thus, we
have built-in the notion that the sequence A, B is different from the sequence B, A, and
that the sequence A is different from the sequence A, A.

A sequent calculus then consists of a finite collection of rules of the form

(name)
Γ1 ` ∆1 Γ2 ` ∆2 · · · Γn ` ∆n

Γ ` ∆

where the sequents above the line are called the premises and the sequent below the line
is called the conclusion.

There is a finite collection of initial sequents which are rules without premises such
as the rule

p ` p

since this sequent requires no premise as justification.

A derivation of Γ ` ∆ is a tree of sequents where the root is the sequent Γ ` ∆, each
leaf is an instance of an initial sequent, and every sequent in the tree is obtained from
its children by instantiating a rule of the calculus.

For every logical connective, there is a rule that introduces (creates) that connective
on the left of the sequent arrow, and another that introduces (creates) that connective
on the right of the sequent arrow. For example, the introduction rules for conjunction



2.3. Proof Theory 17

are usually given as:

(∧L)
Γ, A, B ` ∆

Γ, A ∧B ` ∆
(∧R)

Γ ` A, ∆ Γ ` B, ∆

Γ ` A ∧B, ∆

There are three rules which alter only the structure of sequents by adding, deleting or
permuting the order of formulae called “contraction”, “weakening” and “permutation”
as shown in Figure 2.1.

The permutation rule allows us to re-arrange the order of formula occurrences in a
sequence. It is usually present in most sequent calculi. Resource sensitivity is gained
by including or omitting the other rules of contraction and weakening, which alter the
number of formula occurrences in sequents. The three broad classes of resource sensitive
logics are captured as explained below:

Use At Most Once: In these logics, the rules

(ctrL)
Γ, A, A ` ∆

Γ, A ` ∆
(ctrR)

Γ ` A, A, ∆

Γ ` A, ∆

are omitted. If we now track the usage of A from the conclusion to the premise,
then each occurrence of A can be utilised at most once since we cannot produce
more occurrences of A as we go up the derivation by using the contraction rules,
and the leaves must be of the form p ` p.

Use At Least Once: In these logics, the rules

(wkL)
Γ, Ai ` ∆

Γ, A1, A2 ` ∆
(i ∈ {1, 2}) (wkR)

Γ ` Ai, ∆

Γ ` A1, A2, ∆
(i ∈ {1, 2})

are omitted. Thus, as we go up the derivation, formulae occurrences cannot dis-
appear. Every formula occurrence must be used at least once in order to end up
with leaves of the form p ` p.

Use Exactly Once: If we omit both weakening and contraction rules then we obtain
the basis of linearity, each formula occurrence must be utilised exactly once.

Bounded Logics: Bounded versions of weakening and contraction can be used where
we are allowed to add or delete n occurrences of formulae.

2.3.3 Cut And Its Elimination

Most sequent calculi come equipped with a rule called the cut rule:

(cut)
Γ1 ` A, ∆1 Γ2, A ` ∆2

Γ2, Γ1 ` ∆2, ∆1

where the formula A is known as the cut-formula.
We could write a whole book on the various ways of viewing this rule but here are

some of its salient points:
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Transitivity of `: If ∆1 and Γ2 are both empty, then this rule captures the fact that
the derivability relation ` is transitive viz:

(cut)
Γ1 ` A A ` ∆2

Γ1 ` ∆2

Mimicking Modus Ponens: An easy way to prove the completeness of a sequent
calculus w.r.t. an existing Hilbert calculus is to use the cut rule to mimic modus
ponens. To see this, we put Γ1, ∆1 and Γ2 to empty and put ∆2 equal to B:

(cut)
` A A ` B

` B

Bi-valency of A: In all the logics we study, a formula will take one of two truth values.
Viewed upwards, the cut rule can be seen to capture this bi-valency: that is, in
order to find a derivation for Γ2, Γ1 ` ∆2, ∆1 we try the left premise assuming that
A is false, and try the right premise assuming that A is true.

Unfortunately, the cut rule is bad for proof search since the move from the conclu-
sion up to the two premises involves a formula A which may not appear at all in the
conclusion. That is, we have to guess the right A in order to use the cut rule effectively.

The cut rule is also bad from a resource sensitive reading since it causes formula
occurrences to disappear from a derivation as we go down. The contraction rule also
has this effect, but we do not want this effect in “logics without contraction”.

The main requirement of a good sequent calculus is then the ability to eliminate cut.
There are two ways to view this and it is important to fix the nomenclature:

Cut Admissibility: We assume that the sequent calculus does not contain the cut rule
and assume we are given two cut-free derivations of Γ1 ` A, ∆1 and Γ2, A ` ∆2

respectively. We then produce a cut-free derivation of Γ2, Γ1 ` ∆2, ∆1 from these
two cut-free derivations.

Cut Elimination: We assume that the sequent calculus does contain cut and assume
that we are given two derivations of Γ1 ` A, ∆1 and Γ2, A ` ∆2 respectively
(which may contain multiple uses of cut). We further assume that these two
derivations are the premises of a bottom-most instance of the cut rule with con-
clusion Γ2, Γ1 ` ∆2, ∆1. We then produce a cut-free derivation of Γ2, Γ1 ` ∆2, ∆1.
One way to do this is to always attack the top-most cut in the given derivation,
and in any intermediate derivations we produce. In which case, we mimick the
cut-admissibility procedure since the sub-derivations above this top-most cut are
guaranteed to be cut-free.

Both of these methods traditionally involve a double induction on the size of the
cut-formula and the depth from the leaves of the occurrence of cut we are trying to
eliminate. Often, the majority of a paper on a sequent calculus is taken up in proving
this theorem. Needless to say, the intricacies of cut-elimination are beyond the scope of
these lectures.
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2.3.4 Why Move To Other Proof Systems?

Because Gentzen’s comma is too limited to capture the diversity of the logical phenom-
ena we are trying to captue in a disciplined and uniform way. The literature abounds
with sequent calculi for many of these logics, but often, a small change in one rule ne-
cessitates alterations to other rules since sequent calculi are not modular. Moreover, the
cut-elimination procedures are not modular, so that a small change in the sequent rules
can necessitate a huge increase in the complexity of the cut-elimination procedure.

Various alternative sequent formulations have been studied and we give a flavour of
what they involve, but a detailed study would take us too far afield.

Hyper-sequents: Γ1 ` ∆1 | Γ2 ` ∆2 | · · · | Γn ` ∆n

A hyper-sequent is an ordered list of traditional sequents. The rules are built from
hyper-sequents instead of sequents but keep the traditional n premises and one
conclusion structure. There are extra rules to allow us to add or delete or permute
members of these lists, and even rules that allow us to move formula occurrences
from one member to another. Avron [Avr96] shows that many non-classical logics
can be captured this way.

Multi-sequents: Γe; Γi ` ∆i; ∆e

A sequent is now composed of at least two compartments on each side: the “exten-
sional” and “intensional” compartments. Each compartment is a comma-separated
set, multiset or sequence of formulae occurrences. We can also have extra rules that
move formula occurrences from the extensional to the intensional compartments,
or vice-versa. See [Gir93, Cro0X] for details.

Higher-level Sequents: σ `i δ

Sequents are now composed of sub-sequents in a tree-like fashion with each sequent
arrow marked by a level. There are rules that allow us to move formulae from one
level to another. See Dosen [Doš85] and Masini [Mas92] for details.

Proof Nets: If we trace a particular formula up a traditional sequent calculus deriva-
tion until it becomes principal, then trace its sub-formulae, we will eventually
reach the leaves and find its constituent atomic formulae. Girard saw that the
tree-like structure of sequents could be replaced by graphs where each node con-
tains a formula, and the edges of the graphs represent the rules applied to obtain
larger formulae from their sub-formulae. A certain subset of such graphical nets
can be shown to capture sequent derivations. Again, the details are beyond the
scope of this course. See [TS96] for details.

Display Calculi: The basic structural apparatus of sequents is made more complicated
by allowing complex n-ary structural connectives in addition to Gentzen’s comma.
These are added and used in a disciplined way to ensure that each structural
connective captures only one logical aspect of the logic, and that each such logical
aspect can be included or omitted at will without affecting the other logical aspects
of the logic.
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2.4 Display Calculi

As we hope to show in this section, Display Calculi provide a powerful and unified proof-
theoretical framework for Logic Engineering. The main advantage of display calculi is
that they provide much finer control over the properties of individual connectives in a
truly modular manner. This modularity is a by-product of a clear separation of logical
and structural aspects of the logic in question using logical and structural rules which
are couched in such a way that all logical aspects are captured by the logical rules and all
other aspects are captured by structural rules. This is only possible by allowing complex
unary and structural connectives which act as meta-level proxies for their logical counter-
parts in a manner that generalises the overloading of Gentzen’s polyvalent “comma” as
standing for conjunction on the left of the sequent arrow and disjunction on the right
of the sequent arrow.

The name “display calculus” comes from a defining property of display calculi which
allows us to “display” every substructure of a complex structure as the whole of one
side of the sequent.

The intuition of display calculi can be given in terms of high school algebra using
the familiar method of solving algebraic equations like 2x2− 4 ≤ 0 by manipulating the
equation to “make x the subject” as follows:

the equation (2× x2)− 4 ≤ 0
becomes (2× x2) ≤ 0 + 4 by adding 4 to both sides
becomes x2 ≤ (0 + 4)/2 by dividing both sides by 2

becomes x ≤
√

(0 + 4)/2 by taking (positive) square root of both sides

becomes x ≤
√

2 by simplification (or rewriting).

Most of these manipulations are only possible because the operations come in “oppo-
site” (residuated or Galois connected) pairs that undo the effects of each other; namely
(+,−), (×, /), (x2,

√
x). The ability to “display the x” by “making x the subject” allows

us to unravel the context surrounding the x, thereby shedding some light on the meaning
of x in the given context. Once we have a handle on x, we can replace all occurrences
of x in other equations by the right hand side, thereby reducing the number of variables
in the problem at hand.

The modularity of display calculi is also manifested by one general cut-elimination
theorem, which applies to all display calculi whose rules obey eight conditions stipulated
by Belnap [Bel82].

As many people have observed, Display Calculi are a very low-level tool for auto-
mated reasoning. That is, there are many rules and no real systematic procedure for
finding derivations. Nevertheless, as we hope to show, display calculi are an important
tool for designing new logics.

By way of introduction, we now look at a particular display calculus for classical
propositional logic from [Gor97]. A much more general account which will be useful
later can be found in [Gor98d, Gor98b].

Since this is supposed to be an introduction to display calculi we cover the various
aspects of display calculi by comparing and contrasting a display calculus δPC for
classical propositional logic from [Gor97] with traditional sequent calculi for classical
propositional logic.
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2.4.1 Formulae and Structures

As with all sequent calculi there are two disjoint sorts of syntactic entities:

Formulae: which are built from atomic formulae like p and q and logical constants
like > and ⊥ using logical connectives like ∧. Formulae are written using formula
variables like A and B and C. For classical propositional logic we use the following
syntax in BNF form:

p ::= > | ⊥ | p0 | p1 | · · ·
A ::= p | ¬A | A ∧ B | A ∨ B | A⇒ B

Structures: which are built from formulae (i.e. formulae are atomic structures) and
structural constants (say I) using structural connectives like comma. Structures
are written using structure variables like X and Y and Z. For classical proposi-
tional logic we use the following syntax in BNF form:

X ::= A | I | ∗X | X , Y

Notice the hierarchy: formulae are atomic structures, but structures are not formu-
lae. In traditional sequent calculi we already make a distinction like this using Γ for
a set, multiset or sequence of formula occurrences while using A for a single formula
occurrence. But unlike in traditional sequent calculi, there are no initial assumptions
about structures: they are not sets, multisets or lists for example.

Moreover, there is no underlying assumption about commutativity or associativity
of structural connectives. Whereas Gentzen’s comma is polyvalent, the structural con-
nectives from display calculi come with a fixed arity, usually unary or binary. Thus
structures are complex trees with internal nodes containing structural connectives and
leaf nodes containing formulae.

2.4.2 Sequents and Sequent Rules

A sequent X ` Y consists of an antecedent X on the left of “turnstile” and a succe-
dent Y on the right of “turnstile”. Sequent rules are of the form:

(name)
X1 ` Y1 X2 ` Y2 · · · Xn ` Yn

X ` Y

where the sequents above the horizontal line are the premisses and the sequent below
the horizontal line is the conclusion.

The rules come in two flavours: structural rules and logical rules.

2.4.3 Structural Rules

Structural rules are built from structure variables like X, structural constants, and
structural connectives: that is, no formula variables, no logical constants and no formula
connectives are allowed in their statement.
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(I+
− `)

X , I ` Y

X ` Y

I , X ` Y

(` I+
− )

X ` I , Y

X ` Y

X ` Y , I

(VerI)
I ` X

Y ` X
(ExI)

X ` I

X ` Y

(M `) X ` Z

X , Y ` Z
(`M)

Z ` X

Z ` X , Y

(C `) X , X ` Z

X ` Z
(` C)

Z ` X , X

Z ` X

(A `)
X , (Y , Z) ` W

(X , Y ) , Z ` W
(` A)

W ` X , (Y , Z)

W ` (X , Y ) , Z

(P `) Y , X ` Z

X , Y ` Z
(` P )

Z ` Y , X

Z ` X , Y

Figure 2.2: Basic Structural Rules

In traditional sequent calculi we are used to seeing a structural rule like contraction
or weakening expressed using formula variables:

(Ctr)
Γ, A, A ` ∆

Γ, A ` ∆
(Wk)

Γ,` ∆

Γ, A ` ∆

but now we insist that only structure variables be used in structural rules. As we shall
see, this is because of a substitution condition that is required of all display calculi. So
the display calculus analogues for contraction and weakening are of the form:

(Ctr)
X, Z, Z ` Y

X, Z ` Y
(Wk)

X ` Y

X, Z ` Y

The rest of the structural rules for δPC are shown in Figure 2.2. Some rules are
clearly just “rewrite” rules where a structural connective turns into a logical connective,
possibly on the other side of turnstile. In fact, for each connective, at least one of its
rules is a rewrite rule.

The other rule can be viewed bottom-up as a constraint that limits the upward
application of that rule. For example, the (` ∧) rule can only be applied bottom-up if
the left hand side can be put into a form (X, , Y ).

Theorem 2.1. Every “rewrite” rule is invertible: if the conclusion is derivable then so
is the premiss.

By way of example, here is how to obtain a derivation of the premiss A , B ` Z of
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(⊥ `) ⊥ ` I
(` ⊥)

X ` I

X ` ⊥

(` >)
I ` Z

> ` Z

(` >) I ` >

(∨ `) A ` X B ` Y

A ∨ B ` X , Y
(` ∨)

Z ` A , B

Z ` A ∨ B

(∧ `) A , B ` Z

A ∧B ` Z
(` ∧)

X ` A Y ` B

X , Y ` A ∧ B

(⊃`) X ` A B ` Y

A ⊃ B ` ∗X , Y
(`⊃)

A , X ` B

X ` A ⊃ B

(¬ `) ∗A ` Z

¬A ` Z
(` ¬)

Z ` ∗A
Z ` ¬A

Figure 2.3: Logical Introduction Rules

the (` ∧) rule from a given derivation of its conclusion A ∧B ` Z:

A ` A B ` B
(` ∧)

A , B ` A ∧B A ∧B ` Z
(cut)

A , B ` Z

2.4.4 Logical Rules

A logical rule introduces exactly one formula connective, either as the whole of the
antecedent, or as the whole of the succedent, of its conclusion. Clearly, there should
be two logical rules for each connective: one rule introducing that connective into the
antecedent and the other into its succedent. The introduced formula is known as the
principal formula, and the subformulae from which it is composed are known as the side
formulae.

In traditional sequent calculi we are used to introducing logical connectives into a
context viz:

(∧L)
Γ, A, B ` ∆

Γ, A ∧B ` ∆

But now we must use a rule like:

(∧L)
A, B ` Y

A ∧ B ` Y

with no context like Γ. Notice that the introduced formula is then displayed!
The rest of the logical rules for δPC are shown in Figure 2.3.



24 Chapter 2. Introduction to DC

(id) p ` p (cut)
X ` A A ` Y

X ` Y

Figure 2.4: Identity and Cut Rules

∗X ` Y

∗Y ` X

X ` ∗Y
Y ` ∗X

∗ ∗X ` Y

X ` Y

X ` Z , ∗ Y

X , Y ` Z

Y ` ∗X , Z

Z , ∗ Y ` X

Z ` X , Y

∗X , Z ` Y

Figure 2.5: Display Postulates

Finally, we need a rule which introduces atomic formulae, and a cut rule as shown
in Figure 2.4. Note that we can cut on formulae only.

2.4.5 Display Postulates, Antecedent Parts and Succedent Parts

A display calculus must also have a collection of (usually bidirectional and unary) struc-
tural rules called “display postulates” which allow us to “unravel” each structure.

The display postulates we need to unravel structure for δPC are shown in Fig-
ure 2.4.5.

For example, the following rules are enough to allow us to unravel any structure built
only from formulae and the ∗ structural connective:

(dgc)
∗X ` Y

∗Y ` X
(gc)

X ` ∗Y
Y ` ∗X

If you squint your eyes and pretend that ∗ is a unary function on some underlying
set, and pretend that ` is a partial order then these are precisely the conditions for a
dual Galois connection (∗, ∗) and a Galois connection (∗, ∗), whence the names “dgc”
and “gc”. Thus ∗ is an antitonic operation, and as we shall see, is an exact proxy for
classical negation wherever it appears in a sequent.

The rule which allows us to cancel two occurrences of ∗ is not really required for
unraveling occurrences of ∗ and could be put into the basic structural rules as a property
of ∗.

Since we also have a binary comma which we want to be isotonic in both argument
positions we also need the following display postulates which will later reveal themselves
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to capture residuation:

X ` Z , ∗ Y

X , Y ` Z

Y ` ∗X , Z

Z , ∗ Y ` X

Z ` X , Y

∗X , Z ` Y

That is, since ∗ is an antitonic operation, we can use it in the appropriate place to
unravel structures build from commas.

As we have seen, the tonocity of operators often plays an important role in deter-
mining their other properties. Consequently, in the general case of display calculi, each
structural connective comes with a tonicity vector which tells us whether that structural
connective is isotonic or antitonic in that position. Using this notion, it is possible to
assign a polarity of “antecedent part” or “succedent part” to each substructure of a
structure. Intuitively, we count the number of polarity switches that are necessary to
reach the sub-structure occurrence in question. If the sub-structure occurrence is of
the same polarity then it has the same “cedency” as the structure in which it appears,
otherwise, it has the opposite “cedency”.

For the particular calculus considered here, the following definition suffices. In any
structure Z, the substructure X occurs negatively (respectively positively) if X ap-
pears in the scope of an odd number (respectively zero or an even number) of ∗ connec-
tives [Bel82]. In a sequent V `W , a particular occurrence of X is an antecedent part
(respectively succedent part) if it occurs positively in the antecedent V (respectively
positively in the succedent W ) or if it occurs negatively in the succedent W (respectively
negatively in the antecedent V ) [Bel82].

For example, if we use a unary anti-tonic structural connective ∗ then the occurrence
of X in ∗X has a “negative” polarity with respect to the polarity of ∗X. Thus the
occurrence of X in ∗X ` Y is a succedent part since it has the opposite “cedency”
to ∗X which is an antecedent part since ∗X appears positively in the antecedent in
∗X ` Y .

We now have all the ingredients to state the defining feature of a display calculus.
The display calculus δPC is shown in Figures 2.4.5-2.4.

2.4.6 Display Theorem

Two sequents σ and σ′ are structurally equivalent if we can pass from one to the
other (and back) using only the display postulates. The name Display Calculus comes
from the following theorem (which does not hold for subformulae of a formula!).

Theorem 2.2. [Theorem (Belnap82):] For every sequent X ` Y and every substructure
Z of X ` Y , there is a structurally equivalent sequent Z ` Y ′ or X ′ ` Z that has Z
displayed as the whole of its antecedent if Z is an antecedent part or succedent if Z is a
succedent part of X ` Y .

Lemma 2.3. For any formula A, the sequent A ` A is provable.

Proof: By induction on structure of A.
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2.4.7 Soundness and Completeness

There are two main ways to prove the soundness of a display calculus:

Semantics: If the logic in question has a semantics then we need only show that the
rules of the display calculus map valid formulae to valid formulae.

Syntactic: If the logic in question has a Hilbert calculus then we need only show that
the rules of the display calculus map theorems to theorems.

In both cases, it is useful to translate sequents into formulae, we therefore give a
translation τ from sequents to formulae using two mutually recursive functions τ1 and
τ2 where:

τ(X ` Y ) := τ1(X)⇒ τ2(Y )

τ1(X , Y ) := τ1(X) ∧ τ1(Y ) τ2(X , Y ) := τ2(X) ∨ τ2(Y )
τ1(∗X) := ¬τ2(X) τ2(∗X) := ¬τ1(X)
τ1(I) := > τ2(I) := ⊥
τ1(A) := A τ2(A) := A

The following lemma is often useful when proving completeness but will not been
needed here. It shows how the structural connectives are overloaded to capture their
logical counter-parts in antecedent and succedent positions.

Lemma 2.4. For every structure Z, both Z ` τ1(Z) and τ2(Z) ` Z are provable in δPC.

Proof: By simultaneous induction on the structure of Z.
To prove soundness of δPC we follow the semantic route.

Theorem 2.5. [Soundness] If the sequent X ` Y is provable in δPC then the formula
τ(X ` Y ) is PC-valid.

Proof: By induction on the length of the proof of X ` Y .
Base Cases: If the proof of X ` Y is of length one then X ` Y must be one of the
axioms of δPC shown on top of the dotted lines below:

p ` p

p⇒ p

I ` >
> ⇒ >

⊥ ` I

⊥ ⇒ ⊥
And each τ -translated formula shown below the dotted line is trivially PC-valid.
Induction Step: For the induction step we show that for each rule of δPC, if the τ -
translation of the premiss is PC-valid then so is the τ -translation of the conclusion.
This allows us to extend the theorem to proofs of X ` Y of arbitrary lengths.

For example, the soundness of the display postulates for ∗ reduces to showing the
following easy (vertical) equivalences in PC where objects of the form τ1(X) are just
formulae of PC:
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¬τ2(X)⇒ τ2(Y )

iff

¬τ2(Y )⇒ τ2(X)

τ1(X)⇒ ¬τ1(Y )

iff

τ1(Y )⇒ ¬τ1(X)

¬¬τ1(X)⇒ τ2(Y )

iff

τ1(X)⇒ τ2(Y )

The τ -translates of the display postulates for comma reduce to the (residuation)
laws shown (horizontally) below by putting A ⇒ B := (¬A ∨ B), and artificially,
A ⇐ B := (A ∨ ¬B). These residuation laws are easily seen to hold for classical
propositional logic where (A⇒ B) is (B ⇐ A):

τ1(X)⇒ τ2(Z) ∨ ¬τ1(Y ) iff τ1(X) ∧ τ1(Y )⇒ τ2(Z) iff τ1(Y )⇒ ¬τ1(X) ∨ τ2(Z)

τ1(Z) ∧ ¬τ2(Y )⇒ τ2(X) iff τ1(Z)⇒ τ2(X) ∨ τ2(Y ) iff ¬τ2(X) ∧ τ1(Z)⇒ τ2(Y )

The easiest syntactic way to prove completeness is to use “Axiom Chopping” whereby
we show that every axiom of a Hilbert calculus for our logic is derivable in our display
calculus and that each of the Hilbert calculus rules of inference is derivable in our display
calculus. We can then mimic any Hilbert calculus derivation within our display calculus.

For example, we now show that the traditional rule of Modus Ponens (from ` A and
` A ⇒ B infer ` B) is derivable in δPC. As our assumptions we are given purported
δPC derivations of the sequents I ` A and I ` A⇒ B. Our task is to produce a δPC
derivation of the sequent I ` B. This we show below:

I ` A⇒ B

A ` A B ` B
(⊃`)

A⇒ B ` ∗A , B
(cut)

I ` ∗A , B
(dp)

A , I ` B

A ` B

I ` A A ` B
(cut)

I ` B

An alternative way would be to show that every rule of a traditional sequent calculus
for classical propositional logic is derivable in δPC. Here is how to mimic one form of
the traditional cut rule shown below left:

Γ ` A, ∆ Π, A ` Σ
(cut)

Π, Γ ` Σ, ∆

τ1(Γ) ` A , τ2(∆)
(dp)

τ1(Γ) , ∗ τ2(∆) ` A

τ1(Π) , A ` τ2(Σ)

A ` ∗τ1(Π) , τ2(Σ)
(cut)

τ1(Γ) , ∗ τ2(∆) ` ∗τ1(Π) , τ2(Σ)
(dp)

τ1(Π) , (τ1(Γ) , ∗ τ2(∆)) ` τ2(Σ)
(A`),(dp)

τ1(Π) , τ1(Γ) ` τ2(Σ) , τ2(∆)

Finally, a third way is to prove completeness is to show that the Lindenbaum algebra
that results from taking the equivalence classes of provably equivalent formulae, where
A ≡ B iff A ` B and B ` A, is an algebra of the form appropriate for the logic in
question. See [Gor97] for details.

Theorem 2.6. [Completeness] If the formula τ(X ` Y ) is PC-valid then the sequent
X ` Y is provable in δPC.
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2.4.8 Cut Elimination

The beauty of display calculi becomes apparent when we consider cut-elimination.
Belnap stipulates eight conditions on the rules of the calculus which guarantee cut-
elimination. The version of the rules below is taken from Kracht [Kra96].

For every sequent rule Belnap [Bel82, page 388] first defines the following notions: in
an application Inf of a sequent rule (ρ), “constituents occurring as part of occurrences
of structures assigned to structure-variables are defined to be parameters of Inf ; all
other constituents are defined as nonparametric, including those assigned to formula-
variables. Constituents occupying similar positions in occurrences of structures assigned
to the same structure-variable are defined as congruent in Inf ”.

For example, in an instance of the associative rule (A), all constituents of structures
assigned to the structure variables are parameters. As usual, the introduction rules for
the logical connectives like (`⊃) involve constituents (side formulae) in the premisses
and constituents (principal formulae) in the conclusion that are not parameters.

The eight (actually seven) conditions shown below are from [Kra96]:

(C1) Each formula which is a constituent of some premiss of a rule ρ is a subformula
of some formula in the conclusion of ρ.

Intuition: formulae cannot disappear from premisses to conclusion as in the cut
rule.

(C2) Congruent parameters are occurrences of the same structure.

Intuition: true by definition since we use structural variables rather than formula
variables.

(C3) Each parameter is congruent to at most one constituent in the conclusion. Equiv-
alently, no two constituents of the conclusion are congruent to each other.

Intuition: This forbids rules like

X ` Z

X , X ` Z

and leads to the condition about formulae appearing only once in the antecedents
of primitive formulae in the section on encoding of axioms using structural rules.

(C4) Congruent parameters are either all antecedent parts or all succedent parts of
their respective sequent.

Intuition: this forbids rules like

X , Y ` Z

X ` Y , Z

where Y switches from being an antecedent part into a succedent part.

(C5) If a formula is non-parametric in the conclusion of a rule ρ, it is either the entire
antecedent, or the entire succedent. Such a formula is called a principal formula.

Intuition: all introduced formulae are displayed.
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(C6/7) Each rule is closed under simultaneous substitution of arbitrary structures for
congruent parameters.

Intuition: the traditional contraction rule would not obey this condition since it is
couched in terms of formula variables, not structure variables. That is, we could
only substitute formulae into these variables, not arbitrary structures.

(C8) If there are inference rules ρ1 and ρ2 with respective conclusions X ` A and A ` Y
with A principal in both inferences (in the sense of C5), and if (cut) is applied
to yield X ` Y then, either X ` Y is identical to X ` A or to A ` Y ; or it is
possible to pass from the premisses of ρ1 and ρ2 to X ` Y by means of inferences
falling under (cut) where the cut-formula is always a proper subformula of A. If
A satisfies the “if” part of this condition it is known as a “matching principal
constituent”.

The conditions C1-C7 can be verified simply by inspection of the rules. Only C8
requires some work but it can be proved, case by case, using induction on the structure
of the cut formula. For example, below is a cut on the formula A ∧ B where A ∧ B is
principal in both premisses of (cut). And below that are two derivations (split due to
typesetting reasons) showing that the same conclusion can be derived from the same
premisses using a cut on (the strictly smaller) formula A and B instead, at the cost of
some extra display postulate (dp) moves:

X ` A Y ` B
(` ∧)

X , Y ` A ∧ B

A , B ` Z
(∧ `)

A ∧ B ` Z
(cut)

X , Y ` Z

original cut on (left and right) principal A ∧ B

X ` A

A , B ` Z
(dp)

A ` Z , ∗B
(cut)

X ` Z , ∗B
(dp)

X , B ` Z

B ` ∗X , Z

Y ` B B ` ∗X , Z
(cut)

Y ` ∗X , Z
(dp)

X , Y ` Z

replace by cuts on A and B

C8: reduction of cut degree for principal cuts on A ∧B

We thus have access to Belnap’s cut-elimination theorem.

Theorem 2.7. [Cut-elimination] Any display calculus whose rules obey conditions C1-
C8 enjoys cut-elimination: if there is a proof of the sequent X ` Y in δPC, then there
is a cut-free proof of X ` Y in δPC [Bel82].



30 Chapter 2. Introduction to DC

The proof of this theorem is beyond the scope of this course as it falls squarely in
the realm of proof theory. Suffice to say that the cut-elimination theorem has actually
been checked by using an interactive theorem prover [DG02, DG03].

2.4.9 Gentzen Overloading

Usually, comma is a proxy for ∧ when comma appears on the left hand side of turnstile
and a proxy for ∨ when it appears on the right hand side of turnstile. This phenomenon
of overloading also appears in display calculi, but there is greater complexity because
structural connectives can have a polarity associated with them.

For example, by perusing the translation τ it is obvious that in δPC, the structural
connective ∗ is really a proxy for classical negation ¬ in both antecedent and succedent
positions.

2.4.10 Encoding Axioms Via Structural Rules

Kracht [Kra96] shows that modal display calculi capture certain axiomatic extensions
of a Hilbert calculi for tense logic Kt by the addition of purely structural rules. This
phenomenon can be applied to any display calculus. Below we consider the case for
δPC.

Let δL be the display calculus obtained by deleting from δPC all the structural
rules from Figure 2.2. Let ρ be a structural rule and let δLρ be the display calculus
δL extended by rule ρ. Let Ax be a formula of the form A ⇒ B and let LAx be the
logic obtained by adding Ax as an axiom schema. The display calculus δLρ properly
characterises LAx iff δLρ satisfies C1-C8 and is sound and complete with respect to
LAx.

A formula A ⇒ B is primitive iff A and B are built from propositional variables
and the constants > with the help of ∧ only, and if no propositional variable appears
in A more than once [Kra96]. The definition of primitivity changes with the structural
connectives that are available so this definition suffices for the structural connectives we
have for δPC.

A structural rule ρ is special if it is of the form shown below:

(ρ)
X ` Z

Y ` Z

Again, this definition has been simplified for δPC: a more general definition would
take us too far afield.

Following Kracht [Kra96], define the following translation σ from positive formulae
into structures:

σ(>) = I σ(p) = Xp

σ(A ∧B) = (σ(A) , σ(B))

Now, given a primitive formula Ax of the form A⇒ B we calculate the special structural
rule (ρ), given below:

(ρ)
σ(B) ` Z

σ(A) ` Z
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That is, instead of adding new rules couched in terms of formulae, we add purely struc-
tural rules couched in terms of their translation under σ.

The next two theorems show that these rules capture the equation exactly, and
vice-versa.

Theorem 2.8. If A ⇒ B is a primitive formula Ax then the display calculus δLρ
properly characterises LAx.

Theorem 2.9. If (ρ) is a special structural rule that meets C1-C8 then δLρ properly
characterises the logic LAx where Ax is the primitive formula τ1(Y )⇒ τ1(X).

For example the primitive axioms for contraction, weakening, associativity and com-
mutativity are shown below with their corresponding special structural rules.

contraction weakening associativity commutativity

p⇒ p ∧ p p ∧ q ⇒ p p ∧ (q ∧ r)⇒ (p ∧ q) ∧ r p ∧ q ⇒ q ∧ p

(Ctr)
X , X ` Z

X ` Z
(Wk)

X ` Z

X , Y ` Z
(A)

(X , Y ) , W ` Z

X , (Y , W ) ` Z
(P)

X , Y ` Z

Y , X ` Z





Chapter 3

Displaying CTL

In this chapter, we take a close look at the mathematical structure which we use to
model natural language and introduce the grammatical base logic we will see at work in
Part II. We spell out the logical connection between the binary operators of the system
NL introduced by Lambek in [Lam61] and the unary ones of NL(3) proposed by Kur-
tonina and Moortgat [Kur95, KM95, Moo96b]. Moreover, following Dunn [Dun91] and
Goré [Gor98c], we show that the algebraic structure of these systems can accommodate
downward monotone unary operators as well. We present the extended system NL(3,·0)
and study its formal properties. A very useful survey of the field of substructural logics
is given in [Res00].

By means of Display Calculi (Chapter 2), we clarify how the logical rules of NL,
NL(3) and NL(3,·0) actually encode the definition of residuated and Galois operators.
We then give the axiomatic presentation of the logical system of residuated and Galois
connected operators NL(3,·0), proving its soundness and completeness with respect to
Kripke frame semantics. Furthermore, we study the proof theoretical behavior of these
systems beginning with Display Calculi, compiling in the Galois connection law and then
moving to a cut-free Gentzen sequent presentation. Finally, we investigate the abstract
derivability patterns that arise in NL(3,·0). We refer to the whole family of logic as
Categorial Type Logics (CTLs).

The results presented here draw on work done in collaboration with Carlos Areces
and Michael Moortgat [AB04, ABM01].

3.1 Capturing Residuation

3.2 The Logic of Residuation NL

The base system of the CTL family of the binary type forming operators is the non-
associative and non-commutative Lambek calculus NL [Lam61]. We present its axiomatic
presentation and the original sequent calculus given by Lambek.

Definition 3.1. [Formula Language of NL] Given a set ATOM of atomic propositional

33
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formula, the language of NL is defined recursively as

FORM ::= ATOM | FORM/FORM | FORM\FORM | FORM • FORM.

An axiomatic presentation of NL is given as follows.

Definition 3.2. [NL: Axiomatic System] The system NL is defined by the axioms below.
Given A, B, C ∈ FORM

[REFL] ` A −→ A,
[TRANS] If ` A −→ B and ` B −→ C, then ` A −→ C,

[RES2] ` A −→ C/B iff ` A •B −→ C iff ` B −→ A\C.

NL is commonly called the pure logic of residuation, and rightly so as we can see from
its axiomatic presentation. [REFL] and [TRANS] define essential properties for the
derivability relation −→ while [RES2] characterizes (\, •, /) as a residuated triple1.

The axiomatic presentation of NL clearly shows that residuation directly governs
the behavior of its type forming operators. Unfortunately, it is not well-suited proof
theoretically. In particular, the [TRANS] and [RES2] rules above violate the subformula
property, introducing non determinism in the proof search. As with classical propo-
sitional logic, an alternative is the formulation of an equivalent Gentzen presentation,
in which the use of the counterpart of [TRANS], the cut-rule, can be shown to be re-
dundant (cut-elimination) and the [RES2] is compiled in the logical rules. The sequent
presentation is well behaved proof theoretically: it enjoys the subformula property and
it yields backward-chaining decision procedure [Lam58, Lam61].

Sequent Calculus

While in the axiomatic presentation the derivability relation holds between formulas of
the logical language, in a Gentzen system it is stated in terms of sequents : pairs Γ⇒ A
where Γ is a structured configuration of formulas or structural term and A is a logical
formula. The set STRUCT of structural terms needed for a sequent presentation of NL

is very simple.

STRUCT ::= FORM | (STRUCT ◦ STRUCT).

The logical rules of the Gentzen system for NL are given in Figure 3.1. In the figure,
A, B, C are formulas, Γ, ∆ are structural terms and the notation Γ[∆] is used to single
out a particular instance of the substructure ∆ in Γ.

As we can see from inspecting these rules, it is not immediately obvious that they are
characterizing the same derivability relation as the one characterized by the axiomatic

1[RES2] is the axiomatic presentation of the definition of residuated partially ordered groupoid given
in Chapter 2 – the implications are here written as \ and / as it is usual in the Lambek tradition. [RES2]
could also be understood as a kind of deduction theorem. But while a deduction theorem is better seen
as a link between the meta-language and the object language, [RES2] relates three operators in the
object language.
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A⇒ A
[axiom]

∆⇒ A Γ[A]⇒ C

Γ[∆]⇒ C
[cut]

∆⇒ B Γ[A]⇒ C

Γ[(A/B ◦∆)]⇒ C
[/L] Γ ◦B ⇒ A

Γ⇒ A/B
[/R]

∆⇒ B Γ[A]⇒ C

Γ[(∆ ◦B\A)]⇒ C
[\L] B ◦ Γ⇒ A

Γ⇒ B\A [\R]

Γ[(A ◦B)]⇒ C

Γ[A •B]⇒ C
[•L] Γ⇒ A ∆⇒ B

(Γ ◦∆)⇒ A •B
[•R]

Figure 3.1: Gentzen sequent calculus for NL.

presentation of NL. To establish the equivalence between the two formats, define the
translation ·t : STRUCT→ FORM as

(Γ1 ◦ Γ2)
t = (Γt

1 • Γt
2),

At = A, for A ∈ FORM.

Proposition 3.3. [See [Lam58, Lam61]] If ` A −→ B is a theorem of the axiomatic
presentation of NL then there is a Gentzen proof of A ⇒ B. And for every proof of a
sequent Γ⇒ B, ` Γt −→ B is a theorem.

The system presented in Figure 3.1 includes the cut-rule, but Lambek proved also in
[Lam58], that the rule is admissible, in the sense that it does not increase the set of
theorems that can already be derived using just the other rules.

Proposition 3.4. [Cut-elimination and Decidability] The cut-rule is admissible in NL,
and the system is decidable.

3.2.1 The Residuated Unary Operators NL(3)

The system NL(3) introduced in [Moo96b, Moo97] is obtained by adding unary residu-
ated operators 3 and 2

↓ to NL. The logical language of NL is extended with formulas
formed by 3 and 2

↓ and consequently the 〈·〉 is added to the structural language.

Definition 3.5. [Formulas and Structures of NL(3)] Given a set ATOM of atomic
propositional symbols, the logical and structural languages of NL(3) are obtained ex-
tending the set of FORM and STRUCT of NL.

FORM ::= ATOM |FORM/FORM | FORM\FORM | FORM • FORM |
3FORM | 2↓FORM.

STRUCT ::= FORM |( STRUCT ◦ STRUCT) | 〈STRUCT〉.
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Its axiomatic presentation is obtained by simply adding to the axioms in Definition 3.2
the one below.

[RES1] ` 3A −→ B iff ` A −→ 2
↓B

which defines the pair (3, 2↓) as a residuated pair of operators (Chapter 2).
As in the case of [RES2], the axiom above is compiled in the logical rules to obtain

a well behaved proof system. The logical rules in Gentzen sequent format are as in
Figure 3.2.

Γ[A]⇒ B

Γ[〈2↓A〉]⇒ B
[2↓L]

〈Γ〉 ⇒ A

Γ⇒ 2
↓A

[2↓ R]

Γ[〈A〉]⇒ B

Γ[3A]⇒ B
[3L] Γ⇒ A

〈Γ〉 ⇒ 3A
[3R]

Figure 3.2: Logical rules for residuated unary operators of NL(3).

3.2.2 Kripke Models

The Lambek calculi and their modern extensions are modal logics. Standard models for
modal logics are Kripke models, or relational structures. These structures are rather
simple, they only consist of a set together with a collection of relations on that set, but
they turn out to be extremely expressive and have found several interesting applications
(see [BRV01] for an introduction to modal logic and an overview of the field). In this
course we will use Kripke models to reason with linguistic resources, we here repeat the
definitions given in Chapter 2,

Definition 3.6. [Kripke Models] A model for NL(3) is a tuple M = (W, R3
•, R

2
3
, V )

where W is a non-empty set, R3
• ⊆ W 3, R2

3
⊆ W 2, and V is a valuation V : ATOM →

P(W ). The R3
• relation governs the residuated triple (\, •, /), the R2

3
relation governs the

residuated pair (3, 2↓). Given a model M = (W, R, V ) and x, y ∈ W , the satisfiability
relation is inductivly defined as follows2.

M, x  A iff x ∈ V (A) where A ∈ ATOM.

M, x  3A iff ∃y[R3xy &M, y  A].

M, y  2
↓A iff ∀x[R3xy →M, x  A].

M, x  A •B iff ∃y∃z[R•xyz & M, y  A & M, z  B].

M, y  C/B iff ∀x∀z[(R•xyz & M, z  B)→M, x  C].

M, z  A\C iff ∀x∀y[(R•xyz & M, y  A)→M, x  C].

2Note that the unary operators 3 and 2
↓ can be thought of as the possibility in the past (P) and

the necessity in the future (G) operators of temporal logic [Pri67], therefore their interpretation moves
in the opposite directions along the accessibility relation R3. The downarrow on the universal operator
is there to highlight this fact.
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Given an arrow A −→ B, a model M = (W, R, V ) and x ∈ W , we say that M, x |=
A −→ B iff M, x  A implies M, x  B. M |= A −→ B iff for all x ∈ W , M, x 

A −→ B. We say that A ⇒ B is valid (notation |= A −→ B) iff for any model M,
M |= A −→ B.

Theorem 3.7. [Soundness and Completeness [Dos92, Kur95] ] NL(3) ` A −→ B iff
|= A −→ B

It is easy to show that the [RES1], and [RES2] preserve validity in all Kripke models
establishing soundness. The proof is by induction on the length of the derivation of
A −→ B. For completeness, one uses a simple canonical model, which effectively falsifies
non-theorems. The canonical model Mc = (W c, Rc

•, R
c
3
, V c) is as below

W c = FORM (the set of all formulas in the language),
Rc

•(ABC) iff ` A −→ B • C
Rc

3
(AB) iff ` A −→ 3B, and

A ∈ V c(p) iff ` A −→ p.

To show that the canonical model is adequate, one proves the Truth Lemma below.

Lemma 3.8. [Truth Lemma] For any formula B,Mc, A  B iff ` A −→ B.

With this lemma, we can prove completeness with respect to a class of models. Suppose
6` A −→ B. Then by Lemma 3.8 Mc, A 6 B. As Mc, A  A, we have Mc 6|= A −→ B
and hence 6|= A −→ B.

3.2.3 Structural Constraints

The system introduced above can accommodate different modes of accessibility relations
and impose restrictions on the interpretation of the accessibility relations R• and R3.
On the proof theoretical level this correspond to introduce structural rules.

Completeness. The above completeness result is extended to stronger logics by re-
stricting the attention to the relevant classes of frames. In [Kur95] it is shown that one
can use the tools of modal Correspondence Theory [Ben84] to generalize the complete-
ness result above to a family of logics. A useful class of structural rules with pleasant
completeness properties is characterized by Weak Sahlqvist structural rules.

Definition 3.9. [Weak Sahlqvist Structural Rules]A weak Sahlqvist structural rule is
a rule of the form

Γ[Σ′[Φ1, . . . , Φm]] ` C

Γ[Σ[∆1, . . . , ∆n]] ` C

subject to the following conditions:

i. both Σ and Σ′ contains only the structural operators ◦, 〈·〉;
ii. Σ′ contains at least one structural operator;

iii. there is no repetition of variables in ∆1, . . . , ∆n;
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iv. all variables in Φ1, . . . , Φm occur in ∆1, . . . , ∆n.

Proposition 3.10. [Sahlqvist Completeness ([Kur95])] If P is a weak Sahlqvist struc-
tural rule, then (i) NL(3) +P is frame complete for the first order frame condition
corresponding to P , and (ii) L+ P has a canonical model whenever L does.

Complexity. Structural rules have an effect on the generative capacity of CTL sys-
tems. The base logic NL is strictly context free. By allowing structural rules to copy
or delete type formulas, the systems become Turing-complete [Car99]. But it is shown
in [Moo02] that with a linearity restriction on structural rules, one stays within PSPACE,
the complexity class of context-sensitive grammars. The linearity constraint requires
structural rules to be non-expanding in the sense defined below.

Definition 3.11. [Non-Expanding Structural Rules] Given an antecedent configuration
Σ, the length of Σ is defined as follows:

length(∆1 ◦∆2) = length(∆1) + length(∆2) + 2
length(〈∆〉) = length(∆) + 1
length(∆) = 0.

A structural rule

Γ[Σ′[∆1, . . . , ∆n]] ` C

Γ[Σ[∆π1 , . . . , ∆πn
]] ` C

where Σ′ is non empty, is non-expanding if

length(Σ[∆π1 , . . . , ∆πn
]) ≤ length(Σ′[∆1, . . . , ∆n]).

3.3 Displaying Residuation and Galois Connection

In this section by means of Display Calculi (DCs), we clarify the residuation principle
hidden in the logical rules of NL(3) and study the proof theoretical behavior of Galois
unary operators obtaining NL(3,·0).

As explained in Chapter 2, the fundamental property of DCs which gives them their
name, is the ‘display property’: any particular constituent of a sequent can be turned into
the whole of the right or left side by moving other constituents to the other side. This
property is strongly used in the general cut-elimination method. But for our approach
more interesting than the display property is the ability of DCs to define the behavior
of their logical operators in terms of structural properties —sequent rules involving only
structural operators.

3.3.1 Residuation

Here we look at Binary and Unary Residuated operators.
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Binary Operators

Let us introduce the appropriate logical and structural language for the DC we want to
investigate. We start by the logic of residuation based only on binary operators.

Definition 3.12. [DC Language] Given a set ATOM of atomic propositional symbols
and the sets OPs = {; , <, >} and OPl = {•, /, \} of structural and logical operators
respectively, the set FORM of logical formulas and the set STRUCT of structural formulas
are defined as

FORM ::= ATOM | FORM • FORM |
FORM/FORM | FORM\FORM.

STRUCT ::= FORM | STRUCT; STRUCT |
STRUCT < STRUCT | STRUCT > STRUCT.

The behavior of the structural operators is explicitly expressed by means of display
postulates. In what follows, we will use variables ∆, Γ, Σ, Φ, Ψ to denote structures, and
reserve A, B, C for logical formulas. In the case of residuation, we can directly express
that (; , <, >) is a residuated triple by the following structural rule [rp]. In order to
avoid confusion between the logical rules of CTL and DC we mark the latter as L’ and
R’.

Γ⇒ ∆ > Σ
∆; Γ⇒ Σ

[rp]

∆⇒ Σ < Γ
[rp]

What remains to be done is to project the residuation behavior of (; , <, >) into the
corresponding logical operators (•, /, \). The general methodology is described in detail
in [Gor98a]. In a nutshell, it works as follows. We are in search of a right and left
introduction rule for each of the logical operators, we can obtain [•L’], [/R’] and [\R’]
directly from [rp] by projection. In the literature on DCs these rules are usually called
rewrite rules (see Figure 3.3).

To obtain the still missing rules we have to work only slightly harder. As we pointed
out in Chapter 2, from the fact that (; , <, >) are residuated we know their monotonicity
behavior, and this is exactly what we need.

Let s be a structural operator and l its corresponding logical counterpart. In the
schemata below we will select whether the consequent of the rule is s(∆, Γ) ⇒ l(Φ, Ψ)
or l(∆, Γ)⇒ s(Φ, Ψ) depending on the rule needed.

Φ⇒ ∆ Ψ⇒ Γ
[l, s](∆, Γ)⇒ [s, l](Φ, Ψ)

if s is [↓, ↓] ∆⇒ Φ Γ⇒ Ψ
[l, s](∆, Γ)⇒ [s, l](Φ, Ψ)

if s is [↑, ↑]

∆⇒ Φ Ψ⇒ Γ
[l, s](∆, Γ)⇒ [s, l](Φ, Ψ)

if s is [↑, ↓] Φ⇒ ∆ Γ⇒ Ψ
[l, s](∆, Γ)⇒ [s, l](Φ, Ψ)

if s is [↓, ↑]

Applying the schemata above, we obtain [•R’], [/L’], and [\L’]. The full set of rules is
shown in Figure 3.3.
The rules will immediately encode the proper tonicity of the operator. It is also easy to
prove that the logical operators indeed satisfy the residuation property. We show two
of the required four derivations below.
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A⇒ ∆ Γ⇒ B
A/B ⇒ ∆ < Γ

[/L’] Σ⇒ A < B
Σ⇒ A/B

[/R’]

A; B ⇒ Σ
A •B ⇒ Σ

[•L’] Γ⇒ B ∆⇒ A
Γ; ∆⇒ B • A

[•R’]

∆⇒ A B ⇒ Γ
A\B ⇒ ∆ > Γ

[\L’] Σ⇒ A > B
Σ⇒ A\B [\R’]

Figure 3.3: DC logical rules for residuated binary operators.

B ⇒ A\C
A⇒ A C ⇒ C
A\C ⇒ A > C

[\L’]

B ⇒ A > C
[cut]

A;B ⇒ C
[rp]

A •B ⇒ C
[•L’]

A⇒ A B ⇒ B
A;B ⇒ A •B

[•R’]
A •B ⇒ C

A;B ⇒ C
[cut]

B ⇒ A > C
[rp]

B ⇒ A\C [\R’]

And in a similar way we can prove the “composition property” we mentioned in Chap-
ter 2.

As we can see, DC provides guidance in our logic engineering task of designing a se-
quent calculus characterizing the behavior of a triple of residuated operators. Moreover,
we can readily verify the conditions specified by Belnap and conclude that the cut is
admissible.

If we compare the calculus just obtained with the one introduced in Figure 3.1 we
immediately notice similarities, but also important differences, the most relevant being
the presence of only one structural operator, and the restriction to a single formula in
the right hand side of sequents. It is not too difficult to restrict the language to obtain
a perfect match (but of course, in doing so we would be giving up the display property,
and “abandoning” DC and its general theorem concerning cut-elimination). Consider,
for example, the [\L’] rule

∆⇒ A B ⇒ C
A\B ⇒ ∆ > C

[\L’] by [rp]

∆⇒ A B ⇒ C
A\B ⇒ ∆ > C

[\L’]

∆;A\B ⇒ C
[rp] hence ∆⇒ A B ⇒ C

∆;A\B ⇒ C
.

By replacing ; by ◦ and adding structural contexts (which are now required given that
we have lost the display property) we obtain [\L]

∆⇒ A Γ[B]⇒ C

Γ[∆ ◦ A\B]⇒ C
[\L].

Unary Operators

By spelling out the law of residuation for unary functions, we derive a sequent calculus
that can be compiled into the standard calculus for NL(3). Let us start by defining the
proper logical and structural languages.
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Definition 3.13. [Logical and Structural Languages for a DC Presentation of NL(3))]
Given a set ATOM of atomic propositional symbols and the sets OPs = {•, ◦} and
OPl = {3, 2↓} of structural and logical operators3, the set FORM of logical formulas
and the set STRUCT of structures for a display calculus presentation of NL(3) are
defined as

FORM ::= ATOM | 3FORM | 2↓FORM.

STRUCT ::= FORM | • STRUCT | ◦ STRUCT.

Again we start by specifying the residuated behavior of the structural pair (◦, •),

•∆⇒ Γ
∆⇒ ◦Γ [rp].

And we obtain the rules for the logical operators by projection and monotonicity be-
havior. The full set of rules is given in Figure 3.4.

A⇒ ∆
2

↓A⇒ ◦∆ [2↓L’] ∆⇒ ◦A
∆⇒ 2

↓A
[2↓R’]

•A⇒ ∆
3A⇒ ∆

[3L’] ∆⇒ A
•∆⇒ 3A

[3R’]

Figure 3.4: DC logical rules for residuated unary operators.

We can prove that (3, 2↓) is a residuated pair.

A⇒ 2
↓B

B ⇒ B
2

↓B ⇒ ◦B [2↓L’]

A⇒ ◦B [cut]

•A⇒ B
[rp]

3A⇒ B
[3L’]

A⇒ A
•A⇒ 3A

[3R’]
3A⇒ B

•A⇒ B
[cut]

A⇒ ◦B [rp]

A⇒ 2
↓B

[2↓R’]

Now we “compile” the structural postulate [rp] to obtain the logical rules in the standard
Gentzen presentation of NL(3) as we did in the case of binary operators. We spell out
the needed steps for the 2

↓ operator and obtain the rules [2↓L] and [2↓R] as presented
in [Moo97] —by replacing • by 〈·〉.

A⇒ B

2
↓A⇒ ◦B [2↓L’] by [rp]

A⇒ B

2
↓A⇒ ◦B [2↓L’]

•2↓A⇒ B
[rp] by compilation

Γ[A]⇒ B

Γ[〈2↓A〉]⇒ B
[2↓L].

Γ⇒ ◦A
Γ⇒ 2

↓A
[2↓R’] by [rp]

•Γ⇒ A
Γ⇒ ◦A [rp]

Γ⇒ 2
↓A

[2↓R’] by compilation
〈Γ〉 ⇒ A

Γ⇒ 2
↓A

[2↓R].

The logical rules of the 3 are obtained straightforwardly.

3Note that the ◦ of DC is not the same as the binary one used in NL(3).
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3.3.2 Galois Connected Operations

Galois connected operators have been also studied in the context of Linear Logic,
see [Lam93, Abr91, Gor98c, Res00], where they are intended to exhibit negation-like
behavior. This means that the Galois properties have to be mixed with extra features
guaranteeing, for example, a double negation law 0(A0) = A = (0A)0. In related work,
Lambek [Lam99, Lam01] considers algebraic structures he calls pregroups, where each
element a has a left and a right adjoint, written al and ar. Also in these structures,
one has alr = a = arl. In this course, we do not consider these stronger notions, but
we concentrate on the pure Galois properties and investigate the effects of adding 0·, ·0
to the base multimodal logic NL(3). Rember that we are interested in the base logic
because we think it opens a window on the invariants of grammatical composition —the
laws of the base logic are universals in the sense that they do not depend on structural
postulates (that is, non-logical axioms).

3.3.3 Axiomatic Presentation of NL(3,·0)
There are two ways to extend the standard axiomatic presentation of NL(3) with Galois
operators to obtain NL(3,·0). A system in Hilbert style Hil-NL(3,·0) can be obtained
by extending NL(3) with the axioms [A1], [A2] and the rules [R1], [R2] below. It is
easy to show that [GC] is a derived rule in this setting. Alternatively, one adds [GC] to
NL(3). It can be shown then that [A1], [A2] and the rules [R1], [R2] are derivable4.

[A1] ` A −→ 0(A0).
[A2] ` A −→ (0A)0.
[R1] From ` A −→ B infer ` B0 −→ A0.
[R2] From ` A −→ B infer ` 0B −→ 0A.

[GC] ` A −→ 0B if and only if ` B −→ A0.

The Kripke style semantics of NL(3) can be straightforwardly extended to NL(3,·0). A
model for NL(3,·0) is a tupleM = (W, R3

•, R
2
3
, R2

0
, V ), where W, V and the accessibility

relations R3
• and R2

3
are as before. The new binary relation R2

0
governs the Galois

connected pair (0·, ·0). For simplicity, in what follows we will restrict ourselves to models
M = 〈W, R, V 〉 where R is the relation governing the Galois operators.

Given a modelM = (W, R, V ) and x, y ∈W we define

M, x  A0 iff ∀y(Rxy →M, y 6 A).
M, x 

0A iff ∀y(Ryx→M, y 6 A).

It is easy to show that the axioms [A1], and [A2] are true in all Kripke models, and that
the rules [R1] and [R2] preserve validity, establishing soundness. For completeness, we
can extend the formula-based canonical construction for NL(3). The canonical model
Mc = (W c, Rc, V c) has

4Note that a similar alternative presentation could have been given while introducing NL(3). There
as well, we could obtain a Hilbert style system based on the composition of residuated type forming
operators and on their monotonicity properties.
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W c = FORM (the set of all formulas in the language),
¬Rc(AB) iff ` A −→ B0, and
A ∈ V c(p) iff ` A −→ p.

Notice that we define when two elements of W are not related by R. This, of course,
defines also which elements are related. But we can do even better than Mc. Given
an arrow A −→ B, we can restrict W c to be simply W c = Sub(A) ∪ Sub(B) (the set of
subformulas of A and B) and prove the following truth lemma.

Lemma 3.14. [Truth Lemma] Given A −→ B, then for all C, D ∈ Sub(A) ∪ Sub(B)
Mc, C  D iff ` C −→ D.

With this lemma, we can prove completeness with respect to a class of finite models,
and hence obtain also decidability (actually, even an upper bound on complexity).

Proof. The proof proceeds by induction on the complexity of the consequent formula.
For B ∈ ATOM, Mc, A  B iff A ∈ V c(B) iff, by definition of V c, ` A −→ B. We
assume as induction hypothesis (IH) that the lemma is true for formulas of lower or
equal complexity than B.

We consider 0B (the case for B0 being even simpler).

[⇒] direction. Mc, A 
0B iff for all D ∈ W c if RcDA then Mc, D 6 B. By contra-

position and definition of Rc, for all D, Mc, D  B implies ` D −→ A0. By definition
of W c, D is in Sub(A) ∪ Sub(B) and we can apply IH to obtain that for all D ∈ W c,
` D −→ B implies ` D −→ A0. In particular, B ∈ W c and by [REFL] ` B −→ B,
hence ` B −→ A0. By [GC], ` A −→ 0B.

[⇐] direction. Assume ` A −→ 0B to proveMc, A 
0B. Take D such that RcDA, we

should prove Mc, D 6 B. Notice that by definition of Rc, we have that 6` D −→ A0.
For contradiction, suppose Mc, D  B, then by IH, ` D −→ B, but then we can prove
` D −→ A0 as follows

` A −→ 0B
` D −→ B
` 0B −→ 0D

[R2]

` A −→ 0D
[TRANS]

` D −→ A0
[GC]

(3.1)

qed

Theorem 3.15. [Completeness] Given A −→ B, then |= A −→ B implies ` A −→ B.

Proof. Suppose 6` A −→ B. Then by Lemma 3.14 Mc, A 6 B. As Mc, A  A, we
have Mc 6|= A −→ B and hence 6|= A −→ B. qed

As we already said, Lemma 3.14 actually establishes a strong finite model property
(an arrow A −→ B is valid iff B is satisfied in Mc, A, a (pointed) model whose size
is polynomial in |A| ∪ |B|). From this, an NP upper bound in the complexity of the
validity problem for NL(3,·0) follows.

Theorem 3.16. Given A −→ B ∈ NL(3,·0), deciding whether A −→ B is valid can be
done in non-deterministic polynomial time.
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Displaying Galois Connected Operations

The method we have used above when looking at the logics of residuation can handle
other kinds of algebraic properties, assuming that they can be encoded in terms of
display rules. In this section we apply this method to the Galois connections.

The steps we will take to provide a DC encoding [GC] should be familiar by now.
We start by explicitly writing the algebraic property characterizing a Galois connection
for a pair of structural operators (\, [).

Γ⇒ [∆
∆⇒ \Γ

[gc].

We now project this behavior into the logical operators (0·, ·0) as it is shown in Figure 3.5.

Σ⇒ A
0A⇒ [Σ

[0·L’] Σ⇒ [A
Σ⇒ 0A

[0·R’]

Σ⇒ A
A0 ⇒ \Σ

[·0L’]
Σ⇒ \A

Σ⇒ A0
[·0R’]

Figure 3.5: DC logical rules for Galois connected unary operators.

To move closer to standard sequent presentations of CTL, we need to compile [gc] into
the logical rules. We can take [0·L] and [·0L] as they are. To obtain [0·R] and [·0R] we
need to apply [gc].

Σ⇒ [A
Σ⇒ 0A

[0·R’] by [gc]

A⇒ \Σ

Σ⇒ [A
[gc]

Σ⇒ 0A
[0·R’] by compilation

A⇒ \Σ

Σ⇒ 0A
[0·R].

Σ⇒ \A

Σ⇒ A0
[·0R’] by [gc]

A⇒ [Σ
Σ⇒ \A

[gc]

Σ⇒ A0
[·0R’] by compilation

A⇒ [Σ
Σ⇒ A0

[·0R].

The full set of rules obtained is shown in Figure 3.6. Notice that given the nature of
Galois connections (which involves a permutation in the order of the poset), it is not
possible to eliminate the structural operators from the right hand side of the sequents.
This is an important difference with respect to what we obtained in the previous section.
The proofs below show that the 0· and ·0 operators are indeed Galois connected,

A⇒ B0

B ⇒ B
B0 ⇒ \B

[·0L]

A⇒ \B
[cut]

B ⇒ 0A
[0·R]

A⇒ 0B
B ⇒ B

0B ⇒ [B
[0·L]

A⇒ [B
[cut]

B ⇒ A0
[·0R]

That is, the rule [gc] holds for 0· and ·0. Moreover, the operators satisfy the appropriate
Galois composition laws [gcl].
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Σ⇒ A
0A⇒ [Σ

[0·L]
A⇒ \Σ

Σ⇒ 0A
[0·R]

Σ⇒ A
A0 ⇒ \Σ

[·0L] A⇒ [Σ
Σ⇒ A0

[·0R]

∆⇒ Γ Γ⇒ Σ
∆⇒ Σ

[cut]

Figure 3.6: Compiled logical rules for Galois connected unary operators.

A⇒ A
A0 ⇒ \A

[·0L]

A⇒ 0(A0)
[0·R]

A⇒ A
0A⇒ [A

[0·L]

A⇒ (0A)0
[·0R]

From these, the fact that the operators are [↓]-functions follows immediately.

A⇒ B
A⇒ 0(B0)

[gcl]

B0 ⇒ A0
[gc]

A⇒ B
A⇒ (0B)0

[gcl]

0B ⇒ 0A
[gc]

The system so obtained does not enjoy cut-elimination. When interested in computa-
tional aspect of the system, this is an essential property to achieve. In the next section
we present a solution to this problem.

Cut-Free Sequent Calculus

In this section we show how the cut-rule of the system we have reached by applying our
method can be eliminated yielding a decidable proof search.

In the Gentzen presentation, we want to compile away the display postulate [gc], but
also part of the cut-rule, so to obtain a cut-free system. Because the Galois connected
operators are order-reversing, we have to distinguish positive and negative contexts in
the statement of the cut-rule. We write Γ[∆] for a structure Γ with a substructure ∆ in
an isotone position (dominated by an even number of occurrence of [ or \), and Γ{∆}
for a structure Γ with ∆ in an antitone position (dominated by an odd number of [ or
\). In (3.2) we give the four instances of the cut-rule we have to consider.

∆⇒ A Γ[A]⇒ ∆′

Γ[∆]⇒ ∆′
[cut1]

∆′ ⇒ Γ[A] A⇒ ∆

∆′ ⇒ Γ[∆]
[cut2]

∆⇒ A ∆′ ⇒ Γ{A}
∆′ ⇒ Γ{∆} [cut3]

Γ{A} ⇒ ∆′ A⇒ ∆

Γ{∆} ⇒ ∆′
[cut4]

(3.2)

The logical rules we have obtained in the previous section (Figure 3.6) swap around
antecedent and succedent of a sequent. For cut-elimination to go through, we also
need contextual versions of the rules, compiling in the axiom schemata [A1]/[A2] with
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[cut2]/[cut4]. The full system NL(3,·0) is given in Figure 3.7. We will call Seq-NL(3,·0)
the Gentzen system introduced in this section, to distinguish it from its Hilbert-style
axiomatization Hil-NL(3,·0) . When the difference on the presentation is irrelevant we
will use the unmarked NL(3,·0).

Theorem 3.17. [Cut-Elimination] In Seq-NL(3,·0), every valid sequent A −→ B has a
cut-free proof.

The proof proceeds by induction on the complexity of the cut-inferences. Below, we
present the principal cases of the cut-elimination transformation: the cases where a cut
on a complex cut-formula is replaced by a cut on its sub-formula, thus decreasing the
complexity. The other cases follow the same ideas.

In (3.3) and (3.4), isotone cuts [cut1], [cut3] on the complex formula A0 are replaced
by antitone cuts [cut4], [cut2]. Similarly for cuts on 0A. (We use double lines for the
instantiation of the premise that makes a logical rule applicable.)

A⇒ [∆
∆⇒ A0

[·0R]

Γ{A} ⇒ ∆′

Γ{[(A0)} ⇒ ∆′
[·0L+]

Γ[A0]⇒ ∆′

Γ[∆]⇒ ∆′
[cut1]

Γ{[∆} ⇒ ∆′
;

Γ{A} ⇒ ∆′ A⇒ [∆

Γ{[∆} ⇒ ∆′
[cut4]

(3.3)

A⇒ [∆
∆⇒ A0

[·0R]

∆′ ⇒ Γ[A]

∆′ ⇒ Γ[[(A0)]
[·0R−]

∆′ ⇒ Γ{A0}
∆′ ⇒ Γ{∆} [cut3]

∆′ ⇒ Γ[[∆]
;

∆′ ⇒ Γ[A] A⇒ [∆

∆′ ⇒ Γ[[∆]
[cut2]

(3.4)

In (3.5) and (3.6), antitone cuts [cut4], [cut2] are replaced by isotone cuts [cut1], [cut3].

Γ{\A} ⇒ ∆′

Γ{A0} ⇒ ∆′
(·0L−)

∆⇒ A
A0 ⇒ \∆

[·0L]

Γ{\∆} ⇒ ∆′
[cut4] ;

∆⇒ A Γ{\A} ⇒ ∆′

Γ{\∆} ⇒ ∆′
[cut1]

(3.5)

∆′ ⇒ Γ[\A]

∆′ ⇒ Γ[A0]
[·0R+]

∆⇒ A
A0 ⇒ \∆

[·0L]

∆′ ⇒ Γ[\∆]
[cut2] ;

∆⇒ A ∆′ ⇒ Γ[\A]

∆′ ⇒ Γ[\∆]
[cut3]

(3.6)

We can also establish soundness and completeness on the basis of the sequent presenta-
tion.
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A⇒ A
[axiom]

∆⇒ B Γ[A]⇒ C

Γ[(A/B ◦∆)]⇒ C
[/L] Γ ◦B ⇒ A

Γ⇒ A/B
[/R]

∆⇒ B Γ[A]⇒ C

Γ[(∆ ◦B\A)]⇒ C
[\L] B ◦ Γ⇒ A

Γ⇒ B\A [\R]

Γ[(A ◦B)]⇒ C

Γ[A •B]⇒ C
[•L] Γ⇒ A ∆⇒ B

(Γ ◦∆)⇒ A •B
[•R]

Γ[A]⇒ B

Γ[〈2↓A〉]⇒ B
[2↓L]

〈Γ〉 ⇒ A

Γ⇒ 2
↓A

[2↓ R]

Γ[〈A〉]⇒ B

Γ[3A]⇒ B
[3L] Γ⇒ A

〈Γ〉 ⇒ 3A
[3R]

∆⇒ A
0A⇒ [∆

[0·L]
A⇒ \∆

∆⇒ 0A
[0·R]

∆⇒ A
A0 ⇒ \∆

[·0L] A⇒ [∆
∆⇒ A0

[·0R]

Γ{A} ⇒ ∆

Γ{\0A} ⇒ ∆
[0·L+]

∆⇒ Γ[A]

∆⇒ Γ[\0A]
[0·R−]

Γ{A} ⇒ ∆

Γ{[A0} ⇒ ∆
[·0L+]

∆⇒ Γ[A]

∆⇒ Γ[[A0]
[·0R−]

∆⇒ Γ[[A]

∆⇒ Γ[0A]
[0·L−]

Γ{[A} ⇒ ∆

Γ{0A} ⇒ ∆
[0·R+]

∆⇒ Γ[\A]

∆⇒ Γ[A0]
[·0L−]

Γ{\A} ⇒ ∆

Γ{A0} ⇒ ∆
[·0R+]

Figure 3.7: Logical rules of NL(3,·0).
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Soundness and completeness Seq-NL(3,·0)

We start by proving the following.

Proposition 3.18. LetM = 〈W, R, V 〉 be a model, and x ∈W then

1. M, x |= ∆ −→ ∆′[A] and |= A −→ B then ∆ −→ ∆′[B].

2. M, x |= ∆[A] −→ ∆′ and |= B −→ A then ∆[B] −→ ∆′.

3. M, x |= ∆ −→ ∆′{A} and |= B −→ A then ∆ −→ ∆′{B}.

4. M, x |= ∆{A} −→ ∆′ and |= A −→ B then ∆{B} −→ ∆′.

Proof. By induction on the number of operators surrounding A. qed

Now define the following forgetting function.

Definition 3.19. We define the translation Tr : STRUCT→ FORM as follows,

Tr(p) = p for p ∈ ATOM

Tr(0(A)) = 0(Tr(A)) Tr([(A)) = 0(Tr(A))

Tr((A)0) = (Tr(A))0 Tr(\(A)) = (Tr(A))0.

Theorem 3.20. [Soundness of Seq-NL(3,·0)] The sequent presentation of NL(3,·0) is
sound.

Proof. Given a rule
A⇒ B
C ⇒ D

we prove that if |= Tr(A) −→ Tr(B) then |= Tr(C) −→ Tr(D), and similarly for rules
with two premises.

Notice that Proposition 3.18 proves soundness of the cut-rules. For rules [0·R+],
[·0R+] it is trivial, [0·L] For rules [0·R], [·0R], [0·L] and [·0L] use the fact that the [GC]
rule is sound. For rules [0·R−], [·0R−], [0·L+] and [·0L+] use Proposition 3.18 plus the
fact that axioms [A1] and [A2] are valid. qed

Theorem 3.21. [Equivalence of Seq-NL(3,·0) and Hil-NL(3,·0)] If A −→ B is a theo-
rem of Hil-NL(3,·0) then there is a proof of A −→ B in Seq-NL(3,·0). And for every
proof of a sequent Γ⇒ ∆ in Seq-NL(3,·0), Tr(Γ)⇒ Tr(∆) is a theorem of Hil-NL(3,·0).
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Relating Galois connected and Residuated Operations

The families of residuated unary and binary operators and unary Galois connected
operators of NL(3,·0) (Figure 3.7) are totally independent and there is no interaction
among them. Each family is interpreted by its own accessibility relation R3

•, R2
3

and R2
0
.

If we want to create some interaction among the operators there could be different ways
of relating them. The interaction could be established by means of structural postulates
or as in δPC. (See Dunn’s work on Gaggle Theory [Dun91] for a discussion of semantics
for residuation and (dual) Galois connections, and [Gor98a] for a general presentation
in the framework of display calculi). In these course notes we leave this question open
and investigate the expressivity of the pure logic of Galois connected and residuated
operators. In the next section we discuss the derivability relation among types that we
will explore in Part II.

3.4 Derivability Patterns

We have seen that the binary and unary logical connectives of NL(3,·0) are governed by
the same algebraic principles of residuation and of the related ones of Galois connections.
In this section, we highlight some useful derivability relations among types determined
by these algebraic properties. Let us start presenting some theorems of the part of the
system which is already well known, namely NL.

First of all, notice that (X/·, ·\X) is a pair of Galois connected operators, therefore
the algebraic principle [GC] discussed in this chapter was already hidden in the base logic
of the binary residuated operators. All the derivability relations which hold for this pair
hold for the unary Galois connected operators and vice versa. In particular, in [Lam88]
it is pointed out that the lifting of a category to a higher order type, A −→ B/(A\B),
is a closure operation, as it obeys Definition 3.22 below.

Definition 3.22. [Closure] Let A = (A,v) be a partially ordered set. Any correspon-
dence

a v a∗

which associates with each element a some other element a∗ in A shall be called a closure
operation provided it satisfies the three conditions below:

a v a∗, a∗ v b∗ if a v b, a∗∗ v a∗.

By exploring NL(3,·0) one soon realizes that the definition above characterizes the
behavior not only of X/(·\X), (X/·)\X, but also of 0(·0), (0·)0, 2

↓
3(·), when considering

v as the derivability relation (−→) and A as the set of types FORM.
First of all, we have already seen how residuated and Galois connected operators

compose (Section 3.1), viz. A −→ 2
↓
3A, A −→ 0(A0) and A −→ (0A)0. Morever, we

know that 3· and 2
↓· are upward monotone, whereas ·0 and 0· are downward monotone.

By the monotonicity calculus it follows that their compositions, 2
↓
3· and 0(·0), (0·)0

are upward monotone operators. Finally, the derivability relations below can easily be
proved,
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2
↓
32

↓
3A −→ 2

↓
3A and (0((0A)0))0 −→ (0A)0.

Note that since closure operations are upward monotone the above derivability relation
are in fact equivalences.

Another interesting property regards triples of Galois connected operators, as com-
mented in [Ore44]. The same behavior is exhibited by residuated pairs. Let (f1, f2)
be either the residuated or Galois connected operators, f1f2f1A iff f1A, and similarly
f2f1f2A iff f2A.

0((0A)0)←→ 0A and (0(A0))0 ←→ A0
32

↓
3A←→ 3A and 2

↓
32

↓A←→ 2
↓A.

From these simple relations an interesting net of derivability patterns can be derived.
The ones we will explore in this thesis are summarized in the picture below.

I �

� I

32
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A2
↓
332

↓A

2
↓
3A

6
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3.5 Key Concepts

In this chapter by explaining why CTLs are also known as “logics of residuation”, we
have introduced modern extensions of the Lambek calculi. The fundamental points to
be emphasized are:

1. NL(3) is the pure logic of residuation. In other words, its operators are governed
by the algebraic principle of residuation. All theorems provable in NL(3) are
consequences of this principle.

2. The algebraic structure of NL(3) provides room for a pair of order-reversing op-
erators, Galois connected operators (0·, ·0). The whole system NL(3,·0) is sound
and complete with respect to Kripke models and is at least in NP.

3. Similarly, the same algebraic structure could accommodate dual Galois connected
operators. One could extend the logic presented here with those operators.



Part II

Linguistic Analyses

The assembly of meaning is governed by a systematic correspondence between semantic
types and the domains of denotation where expressions find their semantic value. Many
natural language phenomena show that successful composition is dependent on finer
distinctions within the denotation domains standardly assumed. In this part of the notes,
we show that the extended vocabulary of type-logical constants introduced in Chapter 3
provides the means to encode the required distinctions in lexical type assignment.

In Chapter 4, we introduce the background assumptions of the categorial approach
in linguistics, and we sketch the developments that have led to the introduction of CTL.
Moreover, we review the different uses of unary residuated operators proposed in the
CTL tradition.

In Chapter 5, we see look at unary operators as logical features and employ them in
the analysis of Generalized Quantifiers and Polarity Items. We develop a type-logical
account of scope construal which recasts the minimalist feature-checking mechanisms
in purely deductive terms. Moreover, we study the distribution of polarity-sensitive
expressions. We investigate compatibility and incompatibility relations from a cross-
linguistic perspective, showing how we reduce distributional differences between polarity-
sensitive items in Dutch, Greek and Italian to differences in the lexical type assignments
of these languages.





Chapter 4

The Logical Approach in Linguistics

The framework of categorial type logic (CTL) [Moo97] developed out of earlier work in
the tradition of categorial grammar. In this chapter, we briefly present these ancestral
lines of research, and we give the reader an idea of the kind of problems that have led
to the introduction of CTL.

The present chapter is organized as follows. We start by introducing classical and
combinatory categorial grammars, two formalisms closely related to CTL (Section 4.1).
Then, by highlighting the differences between these frameworks and the logical approach
assumed in these course notes, we introduce the main aspects of CTL (Section 4.2).
Moreover, we discuss the proof theoretical perspective on form-meaning assembly of
linguistic expressions (Section 4.3).

4.1 Rule-Based Categorial Grammars

The categorial tradition of natural language analysis goes back to the pioneering works
of Lesniewski [Les29] and Ajdukiewicz [Ajd35]. The ingredients of a categorial grammar
are extremely simple: a system of syntactic categories (or types), and a set of rules to
compute with these types. The categories are either atomic, or they are structured as
‘fractions’ a

b
. Atomic types categorize expressions that in some intuitive sense are ‘com-

plete’; incomplete expressions are assigned a fractional category. The basic combinatory
rule schema takes the form of a kind of ‘multiplication’: from a

b
×b one obtains the cate-

gory a. The algebraic nature of the schemata for category combination was emphasized
by Bar-Hillel in [BH53].

In this section, we discuss two categorial frameworks: the classical categorial gram-
mars of Ajdukiewicz and Bar-Hillel (CG, also known as AB grammars), and the com-
binatory categorial grammars of Steedman (CCG, [Ste00]). These frameworks have the
same category concept, but they have different sets of rule schemata for category com-
bination: the CCG rule set extends the schemata of CG in order to overcome certain
expressive limitations of the classical categorial approach.

53
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4.1.1 Classical Categorial Grammar

The type language and the rules of classical Categorial Grammar (CG) are defined as
below.

Definition 4.1. [Type Language and Rules of CG] The language of CG is recursively
built over atomic categories by means of the category forming operators \ and /. The
combinatorial behavior of categories is captured by the left/right application rules.

CG language. Given a set of basic categories ATOM, the set of categories CAT is the
smallest set such that:

i. if A ∈ ATOM, then A ∈ CAT;

ii. if A and B ∈ CAT, then A/B and B\A ∈ CAT.

There are two schemata for category combination, backward application (BA) and forward
application (FA) CG rules.

A/B, B ⇒ A [FA]
B, B\A⇒ A [BA].

[FA] (resp. [BA]) says that when an expression of category A/B (resp. B\A) is concate-
nated with an expression of category B on its right (resp. on its left), it yields a structure
of category A.

To facilitate the comparison between CG and the categorial systems developed by Lam-
bek (Section 4.2), we present CG as a deductive system (cf. Buszkowski [Bus97]). Below
we define the derives relation, holding between a finite sequence of categories Γ and a
category A.

Definition 4.2. [Derivability Relation] Let ⇒ be the derivability relation between a
finite non-empty sequence of categories Γ and a category B (Γ ⇒ B), fulfilling the
following conditions:

A⇒ A [id]
Γ, A, Γ′ ⇒ B and ∆⇒ A, then Γ, ∆, Γ′ ⇒ B. [cut]

In CG⇒ is the smallest relation containing the logical axioms [id], the application rules
[BA] and [FA] as non-logical axioms, and it is closed under [cut].

To obtain a grammar G, we add a lexicon to the deductive part. Let Σ be the terminal
alphabet, i.e. the set of basic natural language expressions. The lexicon LEX assigns
a finite number of types to the elements of Σ, i.e. LEX ⊆ Σ × CAT. We say that G
generates a string w1 . . . wn ∈ Σ+ as an expression of category B if and only if there
are categories A1, . . . , An such that (wi, Ai) ∈ LEX and A1, . . . , An ⇒ B. L(G), the
language of G, is the set of strings generated by G for some designated category, the
start symbol of G.

It was shown in [BGS60] that CG has the weak generative capacity of Context Free
Grammar (CFG). But conceptually, CG already improves on CFG. The structured cate-
gory format allows one to replace a stipulated set of rewrite rules by two simple combi-
natory schemata. In phrase structure grammar, this categorial idea later resurfaced in
the form of the X-Bar Theory [Jac77].
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In order to get a feeling for the kind of phenomena that can be handled by CG, and
for the limitations of this framework, we introduce an extremely elementary fragment of
English in Example 4.3. We will use the phrases given there as a checklist throughout
this chapter, and come back to them later to see how the descendants of CG improve
on the original framework.

Example 4.3. [English Toy Fragment] The fragment contains simple declarative sen-
tences, with intransitive or transitive verbs; proper names and full noun phrases intro-
duced by determiners; nominal and adverbial modifiers; relative clauses with subject
and object relativization.

(1) a. Lori left.
b. Lori knows Sara.
c. Sara wears the new dress.

(2) a. The student left.
b. Some student left.

(3) a. No student left yet.
b. Some student left already.

(4) a. who knows Lori.
b. which Sara wrote.
c. which Sara wrote there.

(5) a. Every student knows one book.
b. Every student knows some book.
c. No student knows any book.

Let us see whether we can come up with a CG that generates the phrases of our toy
fragment.

Example 4.4. [CG Grammar for the Toy Fragment] Let ATOM be {n, s, np} (for com-
mon nouns, sentences and names, respectively) and LEX as given below:

Lori, Sara np the np/n
student, book, dress n left np\s
knows, wrote, wears (np\s)/np some, every, one, any, no (s/(np\s))/n
which, who (n\n)/(np\s) there, yet, already (np\s)\(np\s)
new, tall n/n

Given the lexicon above, our sample grammar recognizes the strings in (1), (2) and (3)
as expressions of category s; the relative clause in (4-a) is recognized as an expression
of type n\n. By way of illustration, we give the derivations of (1-c) and (4-a). We use
the familiar parse tree format, with vocabulary items as leaves and the types assigned
to them in the lexicon as preterminals.

Sara wears the new dress ∈ s? ; np, (np\s)/np, np/n, n/n, n⇒ s?
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Sara
np

wears
(np\s)/np

the
np/n

new
n/n

dress
n

n [FA]

np [FA]

np\s [FA]

s [BA]

who knows Lori ∈ n\n? ; (n\n)/(np\s), (np\s)/np, np⇒ n\n?

who
(n\n)/(np\s)

knows
(np\s)/np

Lori
np

np\s [FA]

n\n [FA]

Turning to the remaining examples, our CG runs into problems. Let us look at the
relative clauses first. The case of subject relativization (4-a) is derivable from the as-
signment (n\n)/(np\s) to the relative pronoun, but this type will not do for object
relativization (4-b), or for (4-c) where the relativized position is a non-peripheral con-
stituent of the relative clause body. To generate these structures, our CG would have
to multiply lexical assignments in an ad hoc way for each case. Writing tv as an ab-
breviation for (np\s)/np, the assignment ((n\n)/tv)/np to the relative pronoun would
produce (4-b); for the non-peripheral case of relativization, yet another type would be
needed —obviously, not a very satisfactory situation. In a similar way, multiple lexical
assignments would be needed to obtain the examples in (5), with full noun phrases in
direct object position: the lexicon, as it stands, only covers the subject case. Writing
iv as an abbreviation for np\s, the determiners some, every, one, any, no could be
assigned a second type (tv\iv)/n for their occurrence in direct object position.

One way of dealing with this failure to express structural generalizations in lexical
type assignments is to extend the inventory of combinatory rules of CG. The framework
of Combinatory Categorial Grammar, developed by Mark Steedman, offers the most
elaborate proposal for this strategy.

4.1.2 Combinatory Categorial Grammar

For an detailed exposition of Combinatory Categorial Grammar (CCG), we refer the
reader to [Ste00, Bal02]1. The architecture of CCG is the same as that of CG: we can
take over the definitions of the category language, the derives relation, lexicon, grammar
G and the language generated by L(G) from the previous section, with one important
change: instead of having just the forward/backward application rules as non-logical
axioms, CCG introduces a larger set of rule schemata. The name CCG derives from the
fact that these extra schemata are inspired by the combinators of Curry’s Combinatory
Logic [CF68].

1In order to avoid confusion with the notation and facilitate the comparison between CCG and CTL

we replace the “left-result” notation used in CCG, with the “result on top” one we have being using so
far.
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Below we present some of the rule schemata that have been proposed in the CCG

framework, and we return to our toy fragment, to see how they can help in the cases
where CG failed.

Lifting A⇒ B/(A\B) [T]
Forward Composition A/B, B/C ⇒ A/C [B]
Backward Crossed Composition A/B, A\C ⇒ C/B [B×]

Example 4.5. [Wh-Dependencies] Let us look first at the cases of direct object rela-
tivization in (4-b) and (4-c). Suppose we extend the lexicon given in Example 4.4 with
a second type for which and who: (n\n)/(s/np). Intuitively, this type says that the
relative pronoun looks for a clause with an np missing at the right edge. With the com-
binators [T] and [B], we can compose subject and transitive verb in (4-b), and produce
the required type s/np for combination with the relative pronoun as shown in the deriva-
tion below. The [T] combinator lifts the subject np type into a fractional type s/(np\s)
which can then combine with the transitive verb by means of Forward Composition.

which
(n\n)/(s/np)

Sara
np

s/(np\s) [T] wrote
(np\s)/np

s/np
[B]

n\n [FA]

The combinators [B] and [T] are not enough to parse the phrase in (4-c): which Sara
wrote there. Here, the missing np in the relative clause body comes from a non-peripheral
position, whereas our lexical entry for non-subject relativization insists on a peripheral
missing np, as indicated by the argument subtype s/np for the relative pronoun. To
derive the non-peripheral case of relativization, our CCG grammar has to relay on the
combinator [B×] as illustrated below.

which
(n\n)/(s/np)

Sara
s/(np\s) [T]

wrote
(np\s)/np

there
(np\s)\(np\s)

(np\s)/np
[B×]

s/np
[B]

n\n [FA]

Example 4.6. [Object generalized quantifiers] The next set of examples are the sen-
tences with full noun phrases in direct object position. In our discussion of CG, we
already noticed that the noun phrase some book can be assigned a type which allows it
to combine with a transitive verb by means of Backward Application producing np\s as
a result. A derivation is given in (i) below. In CCG , there is a second option for typing
the direct object: (s/np)\s. This type requires the combination of the subject and the
transitive verb into a constituent of type s/np. This combination, as we have already
seen in the derivation of relative clauses, can be obtained by means of the Composition
combinator [B]. By way of illustration, we present the derivations of (5-b) in (i) and (ii),
the reader is referred to [Ste00] for a proper analysis of quantifiers within CCG. In the
discussion of meaning assembly in Section 4.3, we will come back to these two options
for object generalized quantifiers.
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(i)

every student

s/(np\s)

knows
(np\s)/np

some book
((np\s)/np)\(np\s)
np\s [BA]

s [FA]

(ii)
every student

s/(np\s)
knows

(np\s)/np

s/np
[B] some book

(s/np)\s
s [BA]

Let us evaluate the CCG strategy. We notice first of all that a combinator like [B×],
which was used in the derivation of non-peripheral cases of extraction, implicitly in-
volves a form of commutativity. It is obvious that such a combinator, if it would be
available in its full generality, would lead to problems of overgeneration. CCG avoids
such problems by restricting the application of combinatory rules to certain categories.
Different languages could impose their individual restrictions on the rules; also, they
can make their individual choices as to which combinators they allow. As for generative
capacity, it is shown in [VW90] that an appropriately restricted version of CCG is weakly
equivalent to linear indexed grammars, which means CCG belongs to the class of mildly
context-sensitive formalisms. Important questions that remain are: What is the set of
combinatory schemata allowed by Universal Grammar? and: Could we refine schemata
in such a way that side conditions on their applicability can be avoided? (See [Bal02]
for an answer to the last question within the CCG framework.) These questions will be
addressed in the next two sections.

4.2 A Logic of Types

At the beginning of this chapter, we commented on the resemblance between complex
categories and fractions in arithmetic, and between the Application schemata and multi-
plication. The crucial insight of Lambek [Lam58] was that one can also see the categories
as logical formulas. The changes introduced by this logical perspective with respect to
the rule-based approach are summarized in Table 4.1. To start with, categories are seen
as formulas and their type forming operators as connectives, i.e. logical constants. As
a result, the rules for category combination can now be formulated as rules of inference
for these connectives, rather than as the non-logical axiom schemata we had in CG and
CCG. Parsing literally becomes a process of deduction in the logic of the categorial type
formulas.

The logical perspective introduces another important theme: the distinction be-
tween proof theory and model theory. In the logical setup, formulas will be assigned
a modeltheoretic interpretation. The syntactic side of derivations (the prooftheoretic
machinery) can then be judged in terms of its soundness and completeness with respect
to the proposed interpretation. (See Chapter 3 for the formal details.)
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CG & CCG L

Categories Formulas
Type forming operators Logical constants
Rule schemata Inference Rules
Parsing Deduction

Table 4.1: Rules-based approach vs. logical approach.

4.2.1 Parsing as Deduction

Let us look at the syntax of the Lambek calculus (L) first. Lambek himself presented
his type logic in the format of a Gentzen-style Sequent Calculus [Gen38]. An alternative
(equivalent) presentation2, which is closer to the format we have used in the previous
sections, is the Natural Deduction (N.D.) format.

Definition 4.7. [Natural Deduction Rules for L] Let Γ, ∆ stand for finite non-empty
sequences of formulas and A, B, C for logical formulas. The logical rules of L are:

A ` A
[axiom]

∆ ` B/A Γ ` A

∆, Γ ` B
[/E]

Γ ` A ∆ ` A\B
Γ, ∆ ` B

[\E]

∆, B ` C

∆ ` C/B
[/I]

B, ∆ ` C

∆ ` B\C [\I]

The rules of Forward and Backward Application in this format take the form of the
familiar inference patterns of Modus Ponens, where we see the ‘fractional’ categories
now as ‘implicational’ formulas. Compiling in the Cut rule of our definition of the
‘derives’ relation, we obtain the Elimination rules for ’/’ and ’\’. But the elimination
rules capture only one half of the inferential possibilities of these connectives: they tell
us how we can use an implicational formula in a derivation. To obtain the other half, we
need inference rules to derive an implicational formula. These are the Introduction rules
for the ’/’ and ’\’ connectives. As rules of inference, they give our grammar logic access
to hypothetical reasoning : to obtain a formula C/B (B\C), we withdraw a hypothesis
B as the rightmost (leftmost) assumption of the antecedent sequence of formulas.

On the modeltheoretic side, we want to interpret formulas (i.e. syntactic categories)
as sets of expressions, and the ‘derives’ relation as settheoretic inclusion at the inter-
pretive level. In the systems considered so far, categorial combination was intuitively
interpreted as concatenation. We can make this interpretation precise by considering
semigroup models. It was shown by Pentus in [Pen95] that the calculus of [Lam88] is
indeed sound and complete with respect to this interpretation.

Definition 4.8. [Semigroup Interpretation]

2See [Res00] for a detailed comparison of the two presentations.
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A, B = {xy ∈M | x ∈ A ∧ y ∈ B}
C/B = {x ∈M | ∀y(y ∈ B → xy ∈ C)}
B\C = {y ∈M | ∀x(x ∈ B → xy ∈ C)}.

A pleasant consequence of the shift to the logical perspective is that a number of com-
binators that have the status of non-logical axioms in CCG now turn out to be theorems
of our type logic.

Example 4.9. [Hypothetical Reasoning] We show that the combinatory rules [T] and
[B] of CCG considered above are theorems of L.

The combinator T of CCG. The lifting theorem, which raises a type to a higher
order one3, is a typical application of hypothetical reasoning. Its derivation is illustrated
below.

∆ ` A [(A\B) ` (A\B)]1

∆, (A\B) ` B
[\E]

∆ ` B/(A\B)
[/I]1

The derivation proves that if a structure ∆ is of type A, then it is of type B/(A\B) as
well. The proof is given by hypothetical reasoning: Assume a structure of type A\B,
given ∆ ` A, then ∆ composed with A\B is of type B. Then by withdrawing the
hypothesis by means of the coindexed rule, ∆ is proved to be of the higher order type.
Note that the introduction rule can discharge one hypothesis at a time since we are in
a resource sensitive system.

The combinator B of CCG. The forward composition added in CCG to the function
application of CG is derivable in L as shown below:

∆ ` A/B

Γ ` B/C [C ` C]1

Γ, C ` B
[/E]

∆, Γ, C ` A
[/E]

∆, Γ ` A/C
[/I]1

Similarly to the previous derivation, the combinator is inferred by means of the logical
rules of L. In particular, the derivation is based on the hypothetical reasoning: it starts
by assuming a hypothesis C and it withdraws it once the functions are composed.

Let us turn to the examples of our toy fragment, and present some Lambek derivations
in the sequent-style Natural Deduction format introduced above. The leaves of the
N.D. derivations are axioms A ` A. Some of these leaves correspond to lexical assump-
tions, others to hypothetical assumptions that will have to be withdrawn in the course
of the derivation. To make the derivations more readable, we replace the formula on the
left of ` by the lexical item in the case of lexical assumptions.

3The order of the categories is defined as following: order(A) = 0, if A ∈ ATOM, order(A/B) =
max(order(A), order(B) + 1) and the same holds for (B\A).
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Example 4.10. [Function Application in L] Given the lexicon of our toy grammar, the
expression in (4-a), who knows Lori, is shown to be an expression of type n\n as follows.

who ` (n\n)/(np\s)
knows ` (np\s)/np Lori ` np

knows, Lori ` np\s [/E]

who, knows, Lori ` n\n [/E]

As we discussed above, hypothetical reasoning is applied in the derivation of the combi-
nator [B] which is required to account for right-peripheral extraction. We show how the
structure which Sara wrote is proved to be grammatical in L.

Example 4.11. [Right-Peripheral Extraction in L] The string which Sara wrote is de-
rived as an expression of type n\n, by starting from the lexical entries it consists of and
by assuming a hypothetical np taken as object by the transitive verb.

which ` (n\n)/(s/np)

Sara ` np

wrote ` (np\s)/np [np ` np]1

wrote, np ` np\s [/E]

Sara, wrote, np ` s
[\E]

Sara, wrote ` s/np
[/I]1

which, Sara, wrote ` n\n [/E]

First, the string ‘Sara, wrote, np’ is proved to be of category s. Then, the hypothesis np
is withdrawn. This is done by means of [/I] which produces the formula s/np required
by the type assigned to the relative pronoun.

The type logic L does not succeed in producing a derivation for the case of non-peripheral
extraction which Sara wrote there. As we saw in our discussion of Backward Crossed
Composition [B×], this combinator involves a form of commutativity. This combinator,
in other words, is not a valid theorem of L —it would violate the concatenation inter-
pretation. Summing up, by making the shift to a type logic, we have gained a better
understanding of the CCG combinators, seeing which ones are indeed valid given the in-
terpretation of the type-forming connectives and which ones are not. But as a linguistic
framework, L is not expressive enough to deal with the phenomena illustrated by our
toy fragment. The proof by Pentus [Pen93] that L grammars are context free provides
the formal underpinnings for this claim.

4.2.2 Logical Rules and Structural Rules

The presentation of the antecedent part Γ in a sequent Γ ` A as a sequence of formulas
hides an implicit structural assumption about grammatical composition, viz. that it is
an associative operation, which ignores the hierarchical constituent structure of type
formulas. Lambek in his [Lam61] paper was the first to notice that this assumption is
too strong, and that it leads to overgeneration. The formulation of his [Lam61] system
removes the implicit structural assumption, which means that structural rules have to
be introduced in a fully explicit fashion. The type logics so obtained have a combination
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of logical rules for the connectives (Introduction and Elimination rules), plus structural
rules of inference for the manipulation of antecedent configurations. Structures are built
from the set of formulas FORM by means of the binary structural operator ◦ as follows.

i. If A ∈ FORM, then A ∈ STRUCT;
ii. If Γ and ∆ ∈ STRUCT, then (Γ ◦∆) ∈ STRUCT.

The separation of logical and structural rules makes it possible to generate a family of
logics with the same logical rules, but different structural rules. We refer to this family
as Categorial Type Logics (CTLs). The base logic for this family is the system presented
in [Lam61]: the type logic with absolutely no structural rules. It is usually abbreviated
as NL(3), because it is obtained from L by dropping associativity.

Definition 4.12. [The Lambek Family]. Logical rules for the base logic NL(3):

A ` A
[axiom]

∆ ` B/A Γ ` A

(∆ ◦ Γ) ` B
[/E]

Γ ` A ∆ ` A\B
(Γ ◦∆) ` B

[\E]

(∆ ◦B) ` C

∆ ` C/B
[/I]

(B ◦∆) ` C

∆ ` B\C [\I]

As we have shown in Chapter 3, the algebraic structure interpreting these operators
has space for n-ary operators, and in particular for the unary ones studied in [Moo96b,
Moo97]. The non associative Lambek calculus extended with these operators is usually
referred to as NL(3) and is obtained by adding to NL the logical rules below.

Γ ` t2↓A
〈Γ〉 ` A

[2↓E]
〈Γ〉 ` A

Γ ` 2
↓A

[2↓I]

∆ ` 3A Γ[〈A〉] ` B

Γ[∆] ` B
[3E] Γ ` A

〈Γ〉 ` 3A
[3I]

The relation between the unary structural operator, 〈.〉, and the unary logical op-
erator, 3, is the same one holding between the binary structural and logical operator
(◦ and •, respectively). This can be clearly seen by observing rule [3I] where the in-
troduction of the 3 in the right side (i.e. the logical side) of the sequent corresponds
to the introduction of 〈.〉 in the left side (i.e. the structural side). This correspondence
explains also the [3E] rule, which performs a cut (within a structure Γ of the formula A
headed by the diamond operator (where the latter is a logical when occurs in the right
side of the sequent and a structural diamond when it’s on its left side). In the remaining
part of this chapter we will try to give more linguistic intuition on the role of the unary
structural operator and of its interplay with its residual (the 2

↓). As for now, notice
that relation between them is established by means of the [2↓E] and [2↓I].
In CTL, unary operators have been used mainly in two ways: to control structural
reasoning and to encode partial orders among elements of the same domain of interpre-
tation. In this Chapter we will focus attention on the first use by briefly reviewing the
literature, whereas in Chapter 5 we will describe the partial ordering strategy.
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Structural rules. Let us write Γ[∆] for a structure Γ contaning a distinguished occur-
rence of the substructure ∆. Adding a structural rule of Associativity [ass] to NL , one
obtains L . By adding commutativity [per] to L one obtains LP [Ben88]. The picture is
completed with the non associative and commutative Lambek calculus NLP.

Γ[∆1 ◦ (∆2 ◦∆3)] ` C

Γ[(∆1 ◦∆2) ◦∆3] ` C
[ass]

Γ[(∆2 ◦∆1)] ` C

Γ[(∆1 ◦∆2)] ` C
[per]

Γ[〈∆1 ◦∆2〉] ` C

Γ[〈∆1〉 ◦ 〈∆2〉] ` C
dis3

Multimodal systems. The structural rules above apply in a global fashion. While
discussing the linguistic application of L and of CCG, we have noted that we need
control over structural options. In the so-called multimodal version of CTL (introduced
in Chapter 3), the required control is achieved by distinguishing different modes of
composition, which can then live together and interact within one grammatical logic.
In the notation, we keep the different modes apart by indexing the logical and the
structural connectives, i.e. we now write (\i, •i/i) and (3i, 2

↓
i ) and ◦i and 〉〈̇i, where

i ∈ I and I is a set of mode indices. The different modes have the same logical rules, but
they can differ in their structural properties. Thus, one can introduce structural rules
locally by restricting them to a certain family of logical constants. Finally, the addition
of modes increases the number of logics which can be obtained from the base logic.
Besides associativity and/or commutativity options for individual composition modes,
one can formulate inclusion and interaction rules for configurations involving multiple
modes.

i. Inclusion structural rules (also known as entropy principles), e.g. if Γ[∆ ◦1 ∆′] ` A
then Γ[∆ ◦2 ∆′] ` A; if Γ[〈∆〉1] ` A then Γ[〈∆〉2] ` A

ii. Interaction structural rules which mix distinct modes and operators.

For an illustration of interaction principles, we can return to the non-peripheral extrac-
tion example in our toy fragment. Suppose we have the structural rules below for the
interaction between two modes, ◦ and ◦a.

Γ[∆1 ◦ (∆2 ◦a ∆3)] ` C

Γ[(∆1 ◦∆2) ◦a ∆3] ` C
[mixass]

Γ[(∆1 ◦a ∆2) ◦∆3] ` C

Γ[(∆1 ◦∆3) ◦a ∆2] ` C
[diss]

Example 4.13. [Non-Peripheral Extraction] We modify the lexicon in such a way that ◦
is used for regular phrasal composition, and ◦a for extraction. We need a type assignment
to introduce a wh dependency, and a type assignment to eliminate it. In this example,
these are (n\n)/(s/anp) for the relative pronoun, and (np\s)/anp for the transitive verb,
The derivation of which Sara wrote there is then as follows.
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which ` (n\n)/(s/anp)

Sara ` np

wrote ` (np\s)/anp [np ` np]1

wrote ◦a np ` np\s [/aE]
there ` (np\s)\(np\s)

((wrote ◦a np) ◦ there) ` np\s [\E]

Sara ◦ ((wrote ◦a np) ◦ there) ` s
[\E]

Sara ◦ ((wrote ◦ there) ◦a np) ` s
[diss]

(Sara ◦ (wrote ◦ there)) ◦a np ` s
[mixass]

(Sara ◦ (wrote ◦ there)) ` s/anp
[/aI]

1

which ◦ (Sara ◦ (wrote ◦ there)) ` n\n [/E]

Note that the application of the structural rules is lexically anchored. The modes la-
belling the connectives of the types assigned to the transitive verb wrote and the relative
pronoun which drive the structural reasoning in the derivation. The structural rule [diss]
brings the np in the peripheral position and [mixass] makes it available to the abstrac-
tion. The application of these rules is restricted to the environments requiring them.

We have seen that in CCG the above expression is parsed by applying the combinator
[B×]. The latter is derivable in NL extended with the structural rules above. However, the
use of modes to account for long distance phenomena is still not completely satisfactory
since the application of the structural rules is tied to the lexical entries both of the
relative pronoun and the transitive verb, which now gets a special lexical entry that
allows its direct object to be extracted: (np\s)/anp in contrast with the linguistic facts.

Suppose now, we have the interaction structural rule below, in [Moo99], it is shown
that they perform the required task, together with a lexical type assignment (n\n)/(s/32

↓np).

Γ[∆1 ◦ (∆2 ◦ 〈∆3〉)] ` C

Γ[(∆1 ◦∆2) ◦ 〈∆3〉] ` C
[ass3]

Γ[(∆1 ◦ 〈∆3〉) ◦∆2] ` C

Γ[(∆1 ◦∆2) ◦ 〈∆3〉] ` C
[diss3]

(4.1)

Note, that these rules are available only for marked formulas, where the latter are
introduced only due to information stored in the lexical entries. Let us first look at the
derivation of (4-b) where the extraction is performed from a peripheral position.

Example 4.14. [Right-Peripheral Extraction in NL(3) plus [ass3]]

which ` (n\n)/(s/32
↓np)

[32
↓np ` 32

↓np]2

Sara ` np

wrote ` (np\s)/np

[2↓np ` 2
↓np]1

〈2↓np〉 ` np
[2↓E]

(wrote ◦ 〈2↓np〉) ` np\s
[/E]

Sara ◦ (wrote ◦ 〈2↓np〉) ` s
[\E]

(Sara ◦ wrote) ◦ 〈2↓np〉 ` s
[ass3]

(Sara ◦ wrote) ◦ 32
↓np ` s

[3E]1

(Sara ◦ wrote) ` s/32
↓np

[/I]2

which ◦ (Sara ◦ wrote) ` n\n [/E]
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Note how the re-bracketing is controlled by the pronoun type assignment which requires
a sentence missing a noun phrase occurring in a special position 32

↓np. This forces
the assumption of a marked noun phrase 2

↓np. This marker is then passed from the
logical to the structural language by means of [2↓E], to allow the required re-bracketing
[ass3]. However, abstraction can take place only from atomic structural formulas (i.e.
logical formulas). Therefore, once 〈2↓np〉 has fulfilled its task on the structural level, it
is replaced by the corresponding logical formula by means of [3E]1. This rule substitutes
the co-indexed hypothesis with a second one, which is finally discharged building the
type suitable for the pronoun.

The interaction structural rule [ass3] required by the derivation of right-branch ex-
traction in peripheral position in itself is not enough to express the proper structural
generalization of wh-dependencies in English. In particular, this structural rule does
not help deriving (4-c). To account for right-branch extraction from a non-peripheral
position one needs the interaction structural rule [diss3] as well.

Example 4.15. [Non-Peripheral Extraction in NL(3) plus [ass3] and [diss3]]

which ` wh/(s/32
↓np)

[32
↓np ` 32

↓np]2

[2↓np ` 2
↓np]1

....
Sara ◦ ((wrote ◦ 〈2↓np〉) ◦ there) ` s

Sara ◦ ((wrote ◦ there) ◦ 〈2↓np〉) ` s
[diss3]

(Sara ◦ (wrote ◦ there)) ◦ 〈2↓np〉 ` s
[ass3]

(Sara ◦ (wrote ◦ there)) ◦32
↓np ` s

[3E]1

Sara ◦ (wrote ◦ there) ` s/32
↓np

[/I]2

which ◦ (Sara ◦ (wrote ◦ there)) ` n\n [/E]

This derivation can be read in a similar way than the previous one. The only difference
is the application of [diss3] which brings the hypothesis in a peripheral position.

These examples are meant only as an illustration of the method used in CTL to ac-
count for long distance phenomena. A detailed discussion can be found in [Moo99], where
unary operators and structural reasoning are also exploited to deal with crosslinguistic
variations. In particular, the lexical type assignments and structural packages required
to model English relative clauses are compared with the ones required by subject-object-
verb language like Dutch. In a few words, the structural variation between the two lan-
guages with respect to relative clauses is captured by combining a universal base logic
with different structural packages.4

The categorial account of structural control is surprisingly close to ‘feature-driven’
structural reasoning in generative grammar, especially within the minimalism program

4See [Bal02] for a detailed analysis of long distance dependencies in CCG extended with modes.
The reader is invited to compare the two approaches for an understanding of their differences and
similarities. The multi-modal CCG is the topic of the course given at ESSLLI’04 by Geert-Jan Kruijff,
further references to this work will be provided there.
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[Cho95] formalized in [Sta97]. For some discussion of this correspondence and a study of
the connection between Stabler’s Minimalist Grammar and CTL see [Ber02] and [Ver99],
respectively.
The example above illustrates how modes and structural rules can be used to account
for differences among contexts within the same languages. Similarly, these logical tools
are used to account for differences holding across languages. By way of illustration, we
look at Italian and English adjectives.

Example 4.16. [Italian vs. English Adjectives] English and Italian adjectives may differ
in their ordering possibilities with respect to a noun.

(6) a. Sara wears a new dress.

b. *Sara wears a dress new.

(7) a. Sara
Sara

indossa
wears

un
a

nuovo
new

vestito.
dress

tr. Sara wears a new dress.

b. Sara
Sara

indossa
wears

un
a

vestito
dress

nuovo.
new

tr. Sara wears a new dress.

As the examples show, some adjectives in Italian require more freedom with respect
to word order than their English counterparts. This crosslinguistic difference can be
expressed by assigning different logical types to Italian and English adjectives. Since
the exhibited structural property is not shared by all Italian phrases, the structural
freedom of the adjectives must have been lexically anchored. This restriction can be
expressed by means of modes. Let us try to make things more concrete by looking at
the derivation of the relevant structures in (6) and (7). Let qp abbreviate the type of
quantifier phrases.

(i) (ii)

a ` qp/n

new ` n/n dress ` n

new ◦ dress ` n
[/E]

a ◦ (new ◦ dress) ` qp
[/E]

a ◦ (dress ◦ new) ` qp
[per•]

∗

un ` qp/n

nuovo ` n/cn vestito ` n

nuovo ◦c vestito ` n
[/cE]

un ◦ (nuovo ◦c vestito) ` qp
[/E]

un ◦ (vestito ◦c nuovo) ` qp
[per•]

The ∗ on the last step of the derivation in (i) marks where the derivation fails in ac-
counting for (6). On the other hand, the use of a commutative composition operator,
introduced by the lexical assignment of nuovo, allows the permutation required to build
the structures in (7).

Finally, unary operators have also been employed to encode morphological informa-
tion. The type logical analysis of morphological agreement worked out by Heylen [Hey99]
provides a categorial alternative for the unification and subsumption based approach of
framework like Head Driven Phrase Structure Grammar, and Lexicalized Functional
Grammar. In order to recast their mechanisms in logical terms, underspecification and
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overspecification are expressed via inclusion postulates and the law of residuation is ex-
ploited to account for the subsumption relation among expressions of the same syntactic
category. Moreover, interaction postulates involving unary and binary operators govern
the way information is distributed through phrase structure. In our exposition of the
linguistic applications of the unary operators, Heylen’s proposal is of particular interest
for the use of the inclusion postulates and more generally for the application of inclusion
relations among types.

The following postulates exemplify the encoding of underspecification. We indicate
the modes as indexes, where ‘pl’ and ‘sg’ stand for ‘plural’ and ‘singular’, respectively
and ‘num’ identifies underspecification.

Inclusion Postulates

[PL] 3numA −→ 3plA and [SG] 3numA −→ 3sgA

These postulates can be read as saying that a phrase of syntactic category A under-
specified for its number, 3numA, could be either plural 3plA, or singular, 3sgA. The
alternative presentation with structural rules is given below.

Γ[〈∆〉pl] ` C

Γ[〈∆〉num] ` C
[pl]

Γ[〈∆〉sg] ` C

Γ[〈∆〉num] ` C
[sg]

Morphological agreement is required, for instance, for the combination of the definite
article with its noun in Italian. Differently from English, Italian uses definitive arti-
cles sensitive to the number of the noun they combine with, e.g. i pomodori (tr. the
tomatoes) is correct, whereas i pomodoro (tr. the tomato) is not. On the other hand,
transitive verbs are underspecified regarding the number of their object, e.g. both il gatto
mangia i pomodori (tr. the cat eats the tomatoes) and il gatto mangia il pomodoro (tr.
the cat eats the tomato) are correct Italian sentences. When encoding morphological
information into lexical assignments, the relation holding among expressions of the same
syntactic category but with different morphological properties, must be taken into ac-
count. For this specific case, it must be stated that the expression taken as argument by
the transitive verb can be either plural or singular. In [Hey99], this information would
be expressed by the unary operators labelling the lexical type assignments as shown by
the example below.

il ∈ 2
↓
sg
np/2↓

sg
n pomodori ∈ 2

↓
pln

i ∈ 2
↓
plnp/2↓

pln mangia ∈ (2↓
sg
np\s)/2↓

num
np

The type assignment of the article i (resp. il) specifies that it combines with a plural
(resp. singular) noun, to give a plural (resp. singular) noun phrase, whereas the verb
mangia is sensitive to the number of its subject, but is underspecified for the number of
the noun phrase taken as object.

The assembly of the plural article i with the singular noun pomodoro is blocked
simply by the mismatch of their types. On the other hand, the possibility of the verb
mangia to combine both with the plural and singular noun phrases i pomodori and il
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pomodoro, is carried out by means of the inclusion relations [pl] and [sg]. In a top-down
reading the derivation below can be read as saying that a structure which is specified for
its number can also be underspecified if required by the constituent it composes with.

mangia ` (2↓
sgnp\s)/2↓

numnp

i ◦ pomodori ` 2
↓
plnp

〈i ◦ pomodori〉pl ` np
[2↓

plE]

〈i ◦ pomodori〉num ` np
[pl]

i ◦ pomodori ` 2
↓
numnp

[2↓
numI]

mangia ◦ (i ◦ pomodori) ` 2
↓
sg
np\s [/E]

Note how once again the residuation law makes possible a division of labor between the
logical and structural languages; the former takes care of feature checking, whereas the
subsumption relation is checked by the latter. Moreover, notice how in the enforcing
of the agreement relation a crucial role is played by the monotonicity of the binary
operators. This can be better understood by abstracting away from the details of the
derivation and looking at the general schema below. Let C −→ B, then in natural
deduction there is a derivation from Γ ` C to Γ ` B, therefore

∆ ` A/B

Γ ` C....
Γ ` B

∆ ◦ Γ ` A
[/E]

Put differently, one could say that since / is downward monotone in its second argument
position, a structure of type A/B will combine with any structure of a type C smaller
than or equal to B.

4.3 The Composition of Meaning

Linguistic signs have a form and a meaning component. The discussion so far has con-
centrated on the form aspect of grammatical composition. Let us turn now to meaning
assembly and the relation between natural language form and meaning. See [Gam91]
for an introduction to the field of formal semantics. Montague’s Universal Grammar
program [Tho74] provides a general framework to study these issues. The core of this
program is an algebraic formulation of Frege’s principle of compositionality [Fre84]. In-
tuitively, the principle says that the meaning of a complex syntactic expression is a
function of the meaning of its constituent parts and of the derivational steps that have
put them together. Montague formalizes the principle as a mapping between a syntactic
and a semantic algebra. The mapping is a homomorphism, i.e. it preserves structure in
the following sense [Jan97].

Definition 4.17. [Homomorphism] Let A = (A, F ) and B = (B, G) be algebras. A
mapping m : A → B is called a homomorphism if there is a mapping m′ : F → G s.t.
for all f ∈ F and all a1, . . . , am ∈ A holds m(f(a1, . . . , an)) = m′(f)(m(a1), . . . , m(an)).
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4.3.1 Semantic Types and Typed Lambda Terms

The definition above requires the syntactic algebra and the semantic algebra of a gram-
mar to work in tandem. Syntactic combinatorics is determined by the syntactic cate-
gories, similarly the semantic laws of composition are governed by semantic types. To
set up the form-meaning correspondence, it is useful to build a language of semantic
types in parallel to the syntactic type language.

Definition 4.18. [Types] Given a non-empty set of basic types Base, the set of types
TYPE is the smallest set such that

i. Base ⊆ TYPE;

ii. (a, b) ∈ TYPE, if a and b ∈ TYPE.

Note that this definition closely resembles the one of the syntactic categories of CG.
The only difference is the lack of directionality of the functional type (a, b). A function
mapping the syntactic categories into TYPE can be given as follows.

Definition 4.19. [Categories and Types] Let us define a function type : CAT→ TYPE

which maps syntactic categories to semantic types.

type(np) = e; type(A/B) = (type(B), type(A));
type(s) = t; type(B\A) = (type(B), type(A));
type(n) = (e, t).

To represent meaning assembly, we use the tools of the typed λ-calculus. Terms are
built out of variables and constants of the various types.

Definition 4.20. [Typed λ-terms] Let VARa be a countably infinite set of variables of
type a and CONa a collection of constants of type a. The set TERMa of λ-terms of type
a is defined by mutual recursion as the smallest set such that the following holds:

i. VARa ⊆ TERMa,

ii. CONa ⊆ TERMa,

iii. (α(β)) ∈ TERMa if α ∈ TERM(a,b) and β ∈ TERMb,

iv. λx.α ∈ TERM(a,b), if x ∈ VARa and α ∈ TERMb.

We represent with αa a term α of type a.

The relevant items are iii. and iv. The former defines function application, the latter
abstraction over variables. The λ is an operator which binds variables following specific
constraints for which it is important to distinguish free and bound variables.

Definition 4.21. [Free and Bound Variables] The set Free(α) of free variables of the
λ-term α is defined by

i. Free(xb) = {xb} if xb ∈ VARb,

ii. Free(cb) = {} if cb ∈ CONb,

iii. Free(α(a,b)(βa)) = Free(α(a,b)) ∪ Free(βa),

iv. Free(λxa.αb) = Free(αb)− {xa}.
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A variable v′ is free for v in the expression β iff no free occurrence of v in β is within
the scope of λv′.

Reduction rules determine the equivalence among λ-terms.

Definition 4.22. [Reduction Rules] The λ-calculus is characterized by the following
reduction rules, where αb([βa/xa])) stands for the result of substituting a term βa for xa

in αb.

(λxa.αb)(βa)⇒ αb[βa/xa] xa is free for βa in αb β-reduction
λxa.α(a,b)(xa)⇒ α(a,b) xa is not free in α(a,b) η-reduction

These rules reduce a term into a simpler one. Applying this re-writing system we can
determine whether two terms are logically equivalent, viz. whether they reduce to a com-
mon result. An important theorem concerning λ-calculus is that reduction eventually
terminates with a term that can no longer be reduced using the above reduction rules.
Such a term is said to be in β, η normal form.

The main novelty introduced by Montague is that the interpretation of the type-
theoretical logical system may also serve as the interpretation of natural language ex-
pressions. To this end, he adopted a model theoretic semantics. When applied to natural
language, model theory can be thought of as a theory designed to explain entailment
relations among sentences and consequently to account for truth conditions of meanings.
In order to capture these relations, meanings are seen as objects in an abstract model. A
bit more formally, this is expressed by saying that natural language sentences refer to or
denote objects in the model. In other words, the denotation assigned to typed lambda
terms serve as a bridge to interpret linguistic expressions. Models are pairs consisting
of a frame and a valuation. They are defined below.

Definition 4.23. [Frame] A frame D consists of the collection of basic domains, i.e.
∪α∈BaseDomα and the domains for functional types. The latter are as follows

Dom(a,b) = DomDoma

b = {f | f : Doma → Domb}.
In words, expressions corresponding to functional types, like verb phrases, denote in the
set of functions from the domain of their argument to the domain of their value. In
our case, given the set of individuals E, the domains of functions are built up from the
primitive ones below:

Dome = E and Domt = {1, 0}.

Besides the set of typed domains, a model must include an interpretation function I
mapping the items of the lexicon to elements of the domains.

Definition 4.24. [Model] A model is a pair M = 〈D, I〉 in which the interpretation
of the constant terms lex in the lexicon Lexicon of a given language are obtained as
follow
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i. D is a frame;

ii. The interpretation function is I : Lexicon→ D, s.t. if α is of type a, I(α) ∈ Doma.

The interpretation function over lexical expressions is extended by the denotation func-
tion which recursively assigns an interpretation to all expressions.

Definition 4.25. [Denotation] The denotation [[αa]]
f
M of a λ-term αa with respect to

the modelM = 〈D, I〉 and assignment f , where f : VARa → Doma, is given by

i. [[xa]]
f
M = f(xa) if xa ∈ VARa.

ii. [[αa]]
f
M = I(αa) if αa ∈ CONa.

iii. [[α(a,b)(βa)]]
f
M = [[α(a,b)]]

f
M([[βa]]

f
M).

iv. [[λxa.αb]]
f
M = g such that g(d) = [[αb]]

f [xa:=d]
M .

where f [xa := d] stands for the assignment that maps xa to d ∈ Doma and maps ya 6= xa

to f(ya).

Intuitively, the denotation of a term formed by the λ-operator says that applying the
denotation of a functional term λx.α to an object d is the result of evaluating α in an
assignment where x takes the value d.

Remark 4.26. The form and meaning components of linguistic signs are inhabitants of
their corresponding syntactic and semantic types, respectively. The definitions above
say that two signs may differ in their form (belong to different syntactic types) despite
being similar in their meaning (belonging to the same semantic type). Consequently,
the two signs receive the same interpretation denoting the same object in the domain.
For instance, this is the case of signs whose forms are in the syntactic type A/B and
B\A and, therefore, their meanings are in the semantic type (type(B), type(A)) and
are interpreted in the domain Dom(b,a).

4.3.2 Interpretations for the Sample Grammar

Natural language expressions can be interpreted by assuming either a relational or a
functional perspective. We briefly illustrate the two approaches and their connection
by discussing some examples. As a notational convention, we represent the constants in
TERM with special fonts. For the ease of presentation, we do not indicate the semantic
types unless necessary. For instance, the individual Lori is assigned a denotation in
the domain of entities, and is represented by the term lori. The meaning of complex
phrases is built out of the meaning of the lexical items. Thus we must start by adding
the semantic information in the lexicon.

Definition 4.27. [Term Labelled Lexicon] Given a set of basic expressions of a natural
language Σ, a term labeled categorial lexicon is a relation,

LEX ⊆ Σ× (CAT× TERM) such that if (w, (A, α)) ∈ LEX, then α ∈ TERMtype(A)
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This constraint on lexical entries enforces the requirement that if the expression w is
assigned a syntactic category A and term α, then the term α is of the appropriate type
for the category A.

Example 4.28. [Extended Lexical Entries] Labelled lexical entries are for instance the
ones below,
Sara np : sara which (n\n)/(np\s) : λxyz.x(z) ∧ y(z)
Pim np : pim which (n\n)/(np\s) : λxyz.x(z) ∧ y(z)
Lori np : lori some (s/(np\s))/n : λxy.∃z(x(z) ∧ y(z))
knows (np\s)/np : know some ((s/np)\s)/n : λxy.∃z(x(z) ∧ y(z))
student n : student some (tv\(np\s))/n : λxyu.∃z(x(z) ∧ y(z)(u))
professor n : professor every (s/(np\s))/n : λxy.∀z(x(z)→ y(z))
tall n/n : tall every ((s/np)\s)/n : λxy.∀z(x(z)→ y(z))

Notice the different term assignment for the logical (the determiners and the relative
pronoun) and the non-logical constants.

The denotations of the linguistic expressions are illustrated by the examples below.

Example 4.29. [Relational Interpretation of Non-Logical Constants] Let our model be
based on the set of entities E = {lori, ale, sara, pim} which represent Lori, Ale, Sara
and Pim, respectively. Assume that they all know themselves, plus Ale and Lori know
each other, but they do not know Sara or Pim; Sara does know Lori but not Ale or
Pim. The first three are students whereas Pim is a professor, and both Lori and Pim
are tall. This is easily expressed set theoretically. Let [[w]] indicate the interpretation of
w :

[[sara]] = sara;
[[pim]] = pim;
[[lori]] = lori;
[[know]] = {〈lori, ale〉, 〈ale,lori〉, 〈sara, lori〉,

〈lori, lori〉, 〈ale, ale〉, 〈sara, sara〉, 〈pim, pim〉};
[[student]] = {lori, ale, sara};
[[professor]] = {pim};
[[tall]] = {lori, pim}.

which is nothing else to say that, for example, the relation know is the set of pairs 〈α, β〉
where α knows β; or that ‘student’ is the set of all those elements which are a student.

Alternatively, one can assume a functional perspective and interpret, for example, know
as a function f : Dome → (Dome → Domt). The shift from the relational to the
functional perspective is made possible by the fact that the sets and their characteristic
functions amount to the same thing: if fX is a function from Y to {0, 1}, then X = {y |
fX(y) = 1}. In other words, the assertion ‘y ∈ X’ and ‘fX(y) = 1’ are equivalent.5

The interpretation of complex phrases is obtained by interpreting the corresponding
lambda terms. For example, if walk ∈ CON(e,t) and x ∈ VARe, then walk(x) expresses
the fact that x has the property of walking, whereas λx.walk(x) is an abstraction over

5Consquently, the two notations y(z)(u) and y(u, z) are equivalent.
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x and it represents the property itself. Moreover, due to the reduction rules of the
lambda calculus the constant walk(e,t) is equivalent to the term λxe.(walk(x))t. Applying
Definition 4.25 this term is denoted by a function g such that for each entity d ∈ Dome,
gives g(d) = 1 iff [[walk(x)]]

f [x:=d]
M = 1, or in other words iff x has the property expressed

by walk.
The logical constants are interpreted by using set theoretical operations as illustrated

below.

Example 4.30. [Logical Constants] By evaluating the lambda expressions in Exam-
ple 4.28 in a model, one obtains the interpretations below:

[[no N]] = {X ⊆ E | [[N]] ∩X = ∅}.
[[some N]] = {X ⊆ E | [[N]] ∩X 6= ∅}.
[[every N]] = {X ⊆ E | [[N]] ⊆ X}.
[[N which VP]] = [[N]] ∩ [[VP]].

Generalized quantifiers have attracted the attention of many researchers working on the
interaction between logic and linguistics [KF85, Eij85]. We will come back to them in
Chapter 5.

4.4 Putting Things Together

In this section we explain how the syntactic derivations of the formal grammars discussed
in Sections 4.1 and 4.2 are associated with instructions for meaning assembly.

4.4.1 Rule-Based Approach vs. Deductive Approach

In CG and CCG , the syntactic rules for category combination have the status of non-
logical axioms. To obtain a Montague-style compositional interpretation, we have to
associate them with instructions for meaning assembly in a rule-by-rule fashion. Below
are the combination schemata we have been using paired rule-by-rule with their semantic
interpretation.

Forward Application A/B : f B : x⇒ A : f(x) [FA]
Backward Application B : x B\A : f ⇒ A : f(x) [BA]
Lifting A : x⇒ B/(A\B) : λy.yx [T]
Forward Composition A/B : f B/C : g ⇒ A/C : λx.f(gx) [B]
Backward Crossed Composition A/B : g A\C : f ⇒ C/B : λx.f(gx) [B×]

Example 4.31. [Meaning Assembly in CCG ] Given the lexical assignments of the la-
belled lexicon above, CCG builds the meaning of which Sara wrote as follows.

which
(n\n)/(s/np) : λxyu.x(u) ∧ y(u)

Sara
np : sara

s/(np\s) : λz.z(sara)
[T] wrote

(np\s)/np : λyx.wrote(x, y)

s/np : λy.wrote(sara, y)
[B]

n\n : λyu.wrote(sara, u) ∧ y(u)
[FA]
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Note that in the derivation we have hidden the β-conversion rules.

Example 4.32. [Ambiguous Sentences] Let some, some’ and every abbreviate the
lambda terms from our labelled lexicon λx.∃zstudent(z) ∧ x(z), λxu.∃zstudent(z) ∧
x(u, z), and λx.∀zstudent(z) → x(z), respectively. Considered the toy-grammar of
CCG we have given above by way of illustration, the meaning of every student knows
some book is built as following.

(i)

every student

s/(np\s) : every

knows
(np\s)/np : know

some book
((np\s)/np)\(np\s) : some′

np\s : some′(know)
[BA]

s : every(some′(know))
[FA]

(ii)

every student

s/(np\s) : every
knows

(np\s)/np : know

s/np : λx.every(know x)
[B] some book

(s/np)\s : some

s : some(λx.every(know x))
[BA]

The derivation in (i) (resp. (ii)) gives the subject wide (resp. narrow) scope reading.

4.4.2 Curry-Howard Correspondence

In the Lambek calculus framework, syntactic rules are replaced by logical rules of in-
ference. Therefore, the semantic rules are obtained deductively by exploiting the corre-
spondence between proofs and terms. The famous Curry-Howard correspondence tells
us that every proof in the natural deduction calculus for intuitionistic implicational logic
can be encoded by a typed λ-term and vice versa [How80]. The categorial interpretation
of derivations can be modelled directly on the Curry-Howard result, with the proviso
that in the absence of structural rules in the categorial systems, the obtainable terms
will be a sublanguage of the full λ-calculus.

Let us define the correspondence between the logical rules of NL and the applica-
tion and abstraction rules of the lambda calculus. In a few words, the elimination of
the functional connectives \ and / produces functional application terms, whereas the
abstraction over variables corresponds to the introduction of the functional operators.

Definition 4.33. [Term Assignment for Natural Deduction] Let Γ ` t : A stand for a
deduction of the formula A decorated with the term t from a structured configuration
of undischarged term-decorated assumptions Γ.

x : A ` x : A

Γ ` t : A/B ∆ ` u : B

Γ ◦∆ ` t(u) : A
[/E]

(Γ ◦ x : B) ` t : A

Γ ` λx.t : A/B
[/I]

∆ ` u : B Γ ` t : B\A
∆ ◦ Γ ` t(u) : A

[\E]
(x : B ◦ Γ) ` t : A

Γ ` λx.t : B\A [\I]
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The Lambek calculi are fragments of intuitionistic implicational logic [Abr90]. Conse-
quently, the lambda terms computed by it form a fragment of the full language of lambda
terms. First of all, since empty antecedents are not allowed and the Lambek calculi are
resource sensitive, viz. each assumption is used exactly once, the system reasons about
lambda terms with specific properties: (i) each subterm contains a free variable; and (ii)
no multiple occurrences of the same variable are present. The latter could seem to be
too strong constraint when thinking of linguistic applications. However, this is not the
case as we will discuss at the end of this section (Example 4.40). A formal definition of
the lambda calculus fragment corresponding to LP is given below6.

Definition 4.34. [Fragment of the Lambda Terms for LP] Let Λ(LP) be the largest
LAMBDA ⊆ TERM such that

i. each subterm of α ∈ LAMBDA contains a free variable;

ii. no subterm of α ∈ LAMBDA contains more than one free occurrence of the same
variable;

iii. each occurrence of the λ abstractor in α ∈ TERM binds a variable within its scope.

Derivations for the various Lambek calculi are all associated with LP term recipes.
Therefore, we move from an isomorphism to a weaker correspondence. The correspon-
dence between LP proofs and the lambda calculus was given in [Ben87, Bus87, Wan92].

Theorem 4.35. Given an LP derivation of a sequent A1, . . . , An ` B one can find a
corresponding construction αa ∈ Λ(LP), and conversely. A term αa ∈ Λ(LP) is called a
construction of a sequent A1, . . . , An ` B iff α has exactly the free variable occurrences
x1
type(An), . . . , x

n
type(An).

While introducing the lambda calculus we spoke of terms in normal forms. These terms
are obtained proof theoretically by defining normal form derivations as following.

Definition 4.36. [Normal Form for Natural Deduction Derivations)] A derivation in
natural deduction format is in normal form when there are no detours in it. A detour
is formed when

i. a connective is introduced and immediately eliminated at the next step.

ii. an elimination rule is immediately followed by the introduction of the same con-
nective.

The rules eliminating these two detours are called reduction rules.

Remark 4.37. The reductions of the detours in i. and in ii. correspond to β-reduction
and η-reduction, respectively. Moreover, note that the above rewriting rules hold for all
Lambek calculi, regardless of their structural rules.

6Again, for the sake of simplicity here we restrict attention to product-free Lambek calculi.
See [Moo97] for the definition of the full systems.
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By means of example, we give the reduction rule corresponding to η-reduction. The
reader is referred to [Res00] for an extensive presentation of normalization.

[B ` x : B]1

D1....
Γ ` t : B\A

B, Γ ` t(x) : A
[\E]

Γ ` λx.t(x) : B\A [\I]1
rewrites to

D1....
Γ ` t : B\A

in the lambda-calculus the reduction above corresponds to the rewrite rule λx.t(x)⇒η t
The correspondence between proofs and lambda terms is completed by the following
theorem [Pra65, Gir87, GLT89].

Theorem 4.38. [Normalization] If D is a normal form derivation of x1 : A1, . . . xn :
An ` α : C, then α is in β, η normal form.

Let us now check how this framework accounts for the assembly of form-meaning pairs.
Starting from the labelled lexicon, the task for the Lambek derivational engine is

to compute the lambda term representing the meaning assembly for a complex struc-
ture as a by-product of the derivation that establishes its grammaticality. The crucial
distinction here is between the derivational meaning and the lexical meaning. The
derivational meaning fully abstracts from lexical semantics: it is a general recipe for
meaning assembly from assumptions of the given types.

Practically, one can proceed in two ways: (i) either one starts labeling the axioms of
a derivation with the actual lambda terms assigned in the lexicon, or (ii) one labels the
leaves of the derivation with variables, computes the proof term for the final structure
and then replaces the variables by the actual lambda terms assigned in the lexicon to
the basic constituents. We illustrate the two methods below in Examples 4.39 and 4.40,
respectively.

Example 4.39. [Lifting] Starting from the type assignment Lori ∈ np : lori, one de-
rives the higher order assignments as following:

Lori ` np : lori [np\s ` np\s : x]1

Lori ◦ np\s ` s : x(lori)
[\E]

Lori ` s/(np\s) : λx.x(lori)
[/I]1

[s/np ` s/np : x]1 Lori ` np : lori

s/np ◦ Lori ` s : x(lori)
[/E]

Lori ` (s/np)\s : λx.x(lori)
[\I]1

First of all, note how the system assigns a variable to the hypothesis. The latter is
discharged by means of [/I] (or [\I]) which corresponds to the abstraction over the
variable. Moreover, note that the higher order types in the two derivations are different,
but they correspond to the same lambda terms, i.e. the two structures are correctly
assigned the same meaning.

This example shows how in the CTL framework, the assembly of meaning is a byproduct
of the proof theoretical analysis. In particular, the type-lifting, stipulated in the Mon-
tagovian tradition and explicitly expressed by the [T] combinator in CCG, is obtained
simply by means of logical rules. See [Oeh99] for a discussion about the advantages of
having the lifting as a derivable theorem in the system.
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The relative clause examples in our toy fragment offer a nice illustration of the divi-
sion of labor between lexical and derivational semantics. Intuitively, a relative pronoun
has to compute the intersection of two properties: the common noun property obtained
from the n that is modified, and the property obtained from the body of the rela-
tive clause, a sentence with a np hypothesis missing. In the logical form, this would
come down to binding two occurrences of a variable by one λ binder. On the level of
derivational semantics, one cannot obtain this double binding: the Lambek systems are
resource sensitive, which means that every assumption is used exactly once. But on the
level of lexical semantics, we can overcome this expressive limitation (which is syntacti-
cally well-justified!) by assigning the relative pronoun a double-bind term as its lexical
meaning recipe: which ∈ (n\n)/(s/np) : λxyz.x(z) ∧ y(z). In this way, we obtain the
proper recipe for the relative clause which Sara wrote, namely λyz.wrote(Sara, z)∧y(z),
as shown below.

Example 4.40. [Relative Clause]

which ` (n\n)/(s/np) : X4

Sara ` np : X3

wrote ` (np\s)/np : X1 [x ` np : X2]
1

wrote ◦ x ` np\s : X1X2
[/E]

Sara ◦ (wrote ◦ x) ` s : (X1X2)X3
[\E]

(Sara ◦ wrote) ◦ x ` s : (X1X2)X3
[ass]

Sara ◦ wrote ` s/np : λX3.(X1X2)X3
[/I]1

which ◦ (Sara ◦ wrote) ` n\n : X4(λX3.(X1X2)X3)
[/E]

Note that the structural rules do not effect the meaning assembly. By replacing the vari-
ables X1, . . . , X4 with the corresponding lexical assignments, and applying the reduction
rules, one obtains the proper meaning of the analyzed structure.

Generalizing over the different uses of unary operators we have reviewed in Sec-
tion 4.2, one could say that unary operators allow us to express distinctions among
members of the same semantic type which are relevant for the syntactic composition. In
other words, the unary operators express distinctions similar to the ones expressed by
the directional functional implications \ and / at the level of meaning assembly, where
the directionality information plays no role anymore.

In a similar way, the unary operators encode in the type assignments fine-grained
distinctions both within and across languages which are not distinguishable in the mean-
ing assembly. For instance, we have seen them at work to encode the different syntactic
behavior of plural and singular Italian articles. They are both interpreted in the domain
Dom((e,t),e), viz. the set of functions from nouns to noun phrases, however, their con-
tributions to the linguistic composition differ: the plural article i is unable to compose
with a singular noun, whereas the singular il can. The unary operators encode this
difference which is not visible on the level of the domains of interpretation. Similarly,
the crosslinguistic contrast between the way adjectives may combine with nouns in Ital-
ian and in English does not play any role in the assignment of the meaning to their
composition, but it is relevant for their syntactic assembly in the two languages. This
observation about unary operators is at the heart of the analyses presented in the next
Chapter.
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4.5 Key Concepts

The main points of this chapter to be kept in mind are the following:

1. Linguistic signs are pairs of form and meaning, and composed phrases are struc-
tures rather than strings.

2. When employing a logic to model linguistic phenomena, grammatical derivations
are seen as theorems of the grammatical logic.

3. Unary operators and modes can be used to lexically anchor linguistic composition.

4. The correspondence between proofs and natural language models, via the lambda
terms, properly accounts for the natural language syntax semantics interface.



Chapter 5

Modalities for Partial Orderings

Linguistic composition is affected by several aspects of the constituents involved. In this
Chapter, we investigate logico-semantic properties of quantifier phrases (QPs) and the
sensitivity of polarity items (PIs) with respect to a certain semantic property shared by
other expressions called ‘triggers’. We study how these semantic factors influence the
different scope behavior of the items involved and cause ill-formedness. To this end, we
look for a classification of such expressions reflecting distinctions within the domains of
interpretation of the linguistic signs.

By means of CTL we spell out the link between the subset relations holding at
the semantic level and the way the interpreted items behave syntactically. Using our
extended vocabulary of type-forming operators, the subset relations within semantic
domains are captured by syntactic derivability relations between types. As a result,
we gain a proof theoretical understanding of the scope construal of QPs and syntactic
licensing/antilicensing relations of PIs.1

5.1 Zooming in on the Semantic Domains

In this Chapter, we look at items which are in a licensing or antilicensing relation with
a certain property. These items are grammatical only when in construction with the
expressions having this property; or ungrammatical when in construction with these ex-
pressions and grammatical in construction with the signs which do not have the property
they repel.

A first reason to be interested in sorting out these different composition relations
is that they provide a classification of items belonging to the same semantic domain.
The property an item can be sensitive to may be shared by several expressions creating
a net of licensing relations. In other words, the licensing relation, holding between an
item and a trigger having that specific property attracting the item, is inherited by the
other expressions sharing that same property with the (direct) trigger. Semantically,
the connections among phrases sharing some property is expressed in terms of inclusion
relations of the domain of interpretation. Syntactically, the same link can be captured by

1The results on the QP analysis presented in this chapter are partially based on joint work with
Richard Moot [BM03].
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derivability relations among their types and the inheritance relations among the direct
trigger and its relatives is determined deductively.

As in the accounts reviewed in the previous Chapter, here as well we employ unary
operators to zoom in on the domains of interpretation encoding differences not visible
otherwise. However, in this Chapter attention is focused on different sorts of features
distinguishing the members of the same semantic type. Moreover, we will use both
Residuated and Galois unary operators. In particular, we look at the monotonicity and
nonveridicality properties of expressions in the functional domains, as well as at the
difference between, for instance, distributive and non-distributive quantifier phrases.
We will show how NL(3,·0), introduced in Chapter 3, can account for the sentences in
our original checklist (Example 4.3) which the grammars discussed in Chapter 4 fail to
recognize. We repeat those sentences below indicating their interprations by means of
[X > Y], viz. X has scope over Y.

(1) a. Every student knows one book. [Every > One], [*One > Every]
b. Every student knows some book. [Every > Some], [Some > Every]
c. No student knows any book. [No > Any], [*Any > No]

(2) a. No student left yet.
b. Some student left already.

The challenge one has to face to account for these sentences is to have a language
expressive enough to distinguish the scope behavior of the quantifier phrases, and the
different distribution of the adverbs yet and already. Moreover, the grammar has to
account for the ungrammaticality of the sentences below:

(3) a. *A student knows any book.
b. *No student left already.
c. *Some student left yet.

Briefly, we exploit the different compositions of the unary operators to differentiate
the sentential levels on which quantifiers may or may not take scope accounting for
their different ways of scoping. Furthermore, the same property is used to embody
the subset relation holding inside a domain between members enjoying different but
related properties. For instance, in the domain of quantifiers one could distinguish the
antiadditive quantifier nobody and the downward monotone one few n, where the set of
antiadditive functions is a subset of the downward monotone ones. We take advantage of
fine-grained type assignments to model polarity items which are in a licensing condition
with some semantic property. Finally, we show how the downward monotone property
of the Galois operators could have a role in dealing with antilicensing relations.

The Leitmotiv of all these analyses is the simple schema given in the previous Chapter
and repeated here. Let C −→ B,

∆ ` A/B

Γ ` C....
Γ ` B

∆ ◦ Γ ` A
[/E]

An important aspect to underline is that differently from the analysis of morphological
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agreement, in our approach the derivation from Γ ` C to Γ ` B will be carried out
only by logical rules with no application of structural reasoning. Therefore, our analysis
stays within the borders of the base logic given by the algebraic principles of Galois
connections and residuation. In particular, we will exploit the following feature of unary
operators that raised in our investigation of the mathematical structure of CTL, namely
the way residuated and Gaolis operators compose. Recall the patterns

32
↓A −→ A and A −→ 2

↓
3A.

Moreover, NL(3,·0) offers a second pair of unary operators (0·, ·0) which exhibit different
logical behavior

A −→ 0(A0) and A −→ (0A)0

and such that 0(A0) 6←→ 2
↓
3A, and (0A)0 6←→ 2

↓
3A. Finally, the Galois connected

operators introduce a way to reverse the derivability relations holding among types, e.g.
if A −→ B, then 0B −→ 0A. Based on these relations we obtain the cube of derivability
relations given in Chapter 3 that offers a rich hierarchy of types allowing us to make
fine-grained distinctions among expressions of the same domain of interpretation as we
will show in the remaining part of this Chapter. In Figure 5.1 the cube of derivability
relation given by one possible combination of the unary Galois, a symmetric level is
obtained by means of the other pair.
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Figure 5.1: Some derivability patterns in NL(3,·0).

5.2 QP Classification

In this section we focus attention on the differences exhibited by quantifiers with respect
to the ways of scope taking [BS97]. The problem can be exemplified as below,
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(4) a. John didn’t read a book. [Not > A], [A > Not].

b. John didn’t read every book. [Not > Every], [*Every > Not].

(5) a. Every boy read a different book. [Every > A], [*A > Every].

b. *All the boys read a different book.

(6) a. Three referees read few abstracts. [Three > Few], [*Few > Three].

b. Few referees read three abstracts. [Three > Few], [Few > Three].

In (4) the preferred reading is for negation to scope over the existential QP in (4-a) and
over the universal QP in (4-b). However, while the existential QP is free to scope over
negation (4-a), the universally quantified object can scope over negation only if focussed.
The contrast in (5) shows that while every has the distributivity property, all lacks it
as emphasized by the presence of different. Finally, (6) illustrates the inability of few
abstracts to take scope over a QP preceding it in the surface structure (s-structure).

In [BS97] it is shown that (i) scope interaction among quantifier phrases (QPs)
is determined by the need to respect the contribution of distributivity and (ii) the
availability of the inverse scope reading depends on the interaction between the scope
elements involved. Following these criteria, Beghelli and Stowell propose a classification
of quantifier phrases.

First of all, QPs can be distinguished by considering whether they introduce a dis-
course referent or not. Counting quantifier phrases (CQPs) like few referees belong to
the latter class, the other QPs to the former one.

A second distinction concerns the sort of variables introduced: either individual
variables denoting groups, or set variables. Indefinites and definite quantifiers like a
book and the books are instances of the first case referred to as group quantifier phrases
(GQPs); distributive quantifiers like every and each form the second group (DQPs).
These two classes can be further subcategorized by considering the way their members
behave with respect to distributivity and negation.

GQPs are either referentially dependent —they range over individuals whose exis-
tence is presupposed— or they are referentially independent (e.g. the definite quantifier
the books). In the last case, besides introducing a group of referents, they fulfill the
function of being the logical subject of predication. Therefore, one could say that the
latter subclass has an extra feature with respect to the former one. QPs of the sec-
ond group cannot work as a distributed share of DQPs since they introduce discourse
referents which cannot be multiplied (7-a), while members of the first group can (7-b).
Finally, there are indefinites and bare-numeral GQPs which can alternatively be inter-
preted non-specifically, in this case they lack the feature particular to GQPs and take
scope locally like CQPs (7-c).

(7) a. Every student read the books. [The > Every].

b. Every student read a book. [Every > A], [A > Every].

c. Every boys read two books about India. [Every > Two], [Two > Every].

Among the DQPs, Beghelli and Stowell distinguish each from every. The former is
said to introduce a set of variables which must be bound by a distributive operator.
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Hence (8-a) is awkward, and (9-a) does not have a generic reading. On the other hand,
the set of variables introduced by every can be bound by negative (8-b) and generic
operators (9-b) as well as by the distributive operator (7-b). This contrast gives rise to
different scope possibilities.

(8) a. %John didn’t read each book.
b. John didn’t read every book. [Not > Every]

(9) a. Each dog has a tail.
b. Every dog has a tail.

Note that all is similar to every for its universal force, but cannot work as a distribu-
tive operator as emphasized by the presence of different in (10-a,b). Therefore, it is
considered to be part of GQPs group since it behaves like them with respect to nega-
tion (11-a,b), though it differs from the other members for not being able to work as
distributed share of DQPs (7-b) and (11-c).

(10) a. *All the boys read a different book.

b. Every boy read a (different) book. [Every > A book].
c. All the boys read a book. [A > All], [All > A].

(11) a. John didn’t read all the books. [Not > All], [All > Not].

b. John didn’t read a book. [Not > A], [A > Not].

c. Every boy read all the books. [All > Every].

Besides these three groups, Beghelli and Stowell consider negative quantifier phrases
(NQPs) and interrogative quantifier phrases (WhQPs), where the former needs to be
bound by the negative operator and the latter by the interrogative one. The full picture
of the different main groups is shown below.

Group-denoting QPs (GQPs): e.g. a N, some N, all N, the N ;

Interrogative QPs (WhQPs): e.g. what, which N, how ;

Counting QPs (CQPs): e.g. few N, exactely n N, at most n N ;

Distributive-Universal QPs (DQPs): e.g. every N, each N ;

Negative QPs (NQPs): e.g. nobody, no N.

5.2.1 Feature Checking Theory for QP Scope

Beghelli and Stowell’s analysis follows the generative grammar tradition, hence we first
briefly introduce its main aspects. The standard theory of quantifier scope in generative
grammar (see May [May77], Reinhart [Rei97], among others) is based on two central
assumptions: (i) Quantifier scope is determined by the constituent command relation
(c-command) holding at the level of Logical Form (LF)2; (ii) QPs are assigned scope
by undergoing movement to their scope positions in the derivation of the LF repre-
sentations. A generative grammar can produce different LF-structures for the same

2A node a c-commands a node b if the first branching node dominating a dominates b too.
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(ambiguous) well-formed clause. Due to the different c-command relations at the level
of LF the surface structure (s-structure) receives different meanings.

In this approach, lexical elements carry two sorts of information: (i) one regarding
the category they select, and (ii) one about the features they require to be checked.
Consequently, a successful movement must satisfy two requirements: (i) the expression
which moves must land to the specifier Spec of the node dominating the selected sister-
node, and (ii) the Head of the node must be labelled with the appropriate feature,
matching the one carried by the expression to be moved. In the minimalist approach,
these two mechanisms correspond to two different operations: (i) Merge which takes
care of the first request (category selection) and Move driven by features checking.

In the generative grammar tradition, the standard way of controlling movement oper-
ations is by means of features. Beghelli and Stowell [BS97] apply this method to account
for different QP distributions. Scope is seen as the by-product of agreement processes
checked via Spec-Head agreement, and mismatches in agreement give rise to ungram-
matical sentences. They distinguish five classes of QPs and indicate membership to any
of the QP-groups by some syntactic properties which are morphologically encoded in the
determiner position. They claim that for certain combinations of quantifier types the
grammar simply excludes certain logically possible scope construals. Let us summarize
their method.

In order to account for the facts illustrated above, Beghelli and Stowell consider the
clausal structure as including, among others, a hierarchy of functional projections (FP)
which are the landing sites for QPs. Each quantifier acquires its scope by moving into
the specifier of that functional projection which suits its semantic and/or morpholog-
ical properties. For instance, the landing site of DQPs (Spec-DistP) must have the
distributive operator ∀ (hosted in Head-DistP), and the functional category DistP

must select for a distributed share phrase (ShareP) where GQPs can land. In a similar
way, the order among the other FPs is obtained reaching the full functional structure in
Figure 5.2 where the head-positions are compiled in for the ease of presentation.

RefP

GQP CP

WhQP AgrS-P

CQP DistP

DQP ShareP

GQP NegP

NQP AgrO-P

CQP VP

Figure 5.2: Phrase structure for QPs.
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Movement is driven by the need of checking the features carried by the QPs. For
example, negative quantifiers like nobody bear a feature [+Neg] and therefore they must
move to the Spec of the negative phrase (NegP) hosting the negative operator ¬. From
this it follows that NQPs cannot have scope over quantifiers which must land on a level
higher than the functional category NegP, e.g. the definite the books which moves to
the specifier of the referential phrase (Spec-RefP) (12-a.), but can have scope on QPs
which are on a lower level, e.g. few books which stay in its case position, Spec-AgrO-

P (12-b).

(12) a. John didn’t read the books. [The > Not].

b. John didn’t read few books. [Not > Few].

The different positions assigned to the subject agreement phrase (AgrS-P) and the
object agreement phrase (AgrO-P), reflect the asymmetric behavior exhibited by CQPs
when occurring in the two positions (6-a) and (6-b). Notice that since all quantifiers
carry information about their case, they might need to reconstruct under a lower level to
check their scope features after having cancelled their case features at Spec-AgrS-P.

Finally, notice that each of the levels hosts an operator. For example, ¬, ∃, ∀ are
hosted in the heads Neg0, Share0 and Dist0, respectively3. These operators attract the
features carried by the QPs. From this, it follows that the different features which
characterize the classes of QPs carry logico-semantic information and the functional
structure above corresponds to a hierarchy of operators.

5.2.2 Controlling Scope Distribution in CTL

The aim of this section is to obtain the scope constraints discussed above deductively by
means of modally refined type assignments. We start by explaining how QPs are dealt
with in the CTL framework and introducing the q-operator [Moo91]. We then move to
compare the movement operation used within the minimalist framework with the [qE]
rule used in CTL. Via this comparison we learn how to decorate the type assignment of
QPs with unary modalities as to control the scope distribution of the different quantifiers.
Once the method has been explained, we look back at the possible types at our disposal
and start exploring the landscape of natural language quantifiers.

Modalities for Feature Checking

Quantifier Phrases belong to a class of phenomena that are difficult to be analyzed by
means of CTL due to the discrepancies between syntactic and semantic composition they
exhibit. To tackle this problem in the case of problematic binders, Moortgat provides
in [Moo91] a three-place operator q(A, B, C) which captures their behavior “in situ.”
(See [Hen93, DG01] for alternative solutions within the CTL framework.) The intuitive
interpretation is the following. Syntactically, the q-category occupies the position of an

3The existential operator ∃ is hosted in the referential head (Ref0) as well. Ref0 differs from Share0 in
having an extra feature which attracts those quantifiers introducing referentially independent variables,
e.g. definite quantifiers.
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expression of category A within a structural context of category B and while doing so
it turns it into one of category C.

Semantically, the category q(A, B, C) maps to ((type(A), type(B)), type(C)). An ex-
pression of that type binds a variable of type type(A) within a domain of type type(B),
producing a meaning recipe of type type(C) as a result of functional application. The
Natural Deduction rule below encapsules this combined syntactic/semantic behavior.

Γ ` α : q(A,B,C) ∆[x : A] ` β : B

∆[Γ] ` α(λx.β) : C
[qE]

.

In the case of QPs, we obtain q(np, s, s) which can be read as saying that (i) the quantifier
is a binder of an np type variable, (ii) the binding relation is within a sentential domain,
and (iii) the whole resulting structure is a sentence.4

Translating this into the minimalist approach, we have that (i) the QP is an expres-
sion undergoing movement, (ii) its trace is within a sentential phrase, (iii) the landing
site of QP is again a sentential phrase. For the ease of exposition we distinguish the
binding domain s by the resulting one s′: q(np, s, s′). We can think of the [qE] rule of
use as producing the replacement of the np represented below:

S:s’

QP S:s

np

where the s′ and s can be thought of as features carried by the head of the functional
projection. Let us now take a structure containing two quantifiers QPi and QPj and let
q(np, si, s

′
i) and q(np, sj, s

′
j) be their types, respectively. Applying what we have said to

generate the simple tree above, we obtain

S:s’j

QPj S:si’/sj

QPi S:si

npi npj

which can be read as saying QPj selects for s′i and carries a feature which must be
checked against the Head of S : s′j by moving to its Spec position. Notice that though
QPj does not carry the type (feature) s′i in its q-type, one could say that it has a type

4In the multimodal setting of Chapter 3, the q connective of course cannot be a primitive connective:
the challenge is to show how it can be synthesized in terms of logical and structural rules for the
primitive operations 3, 2↓, /, •, \ with appropriate mode distinctions. Such a decomposition of q is
in fact proposed in [Moo96a, AB03, Moo04]. The exact details of the decomposition are not directly
relevant to the issues dealt with in this course. Here, we will use the simple format of [qE] as a derived
rule of inference.
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(feature) sj such that s′i derives (agrees with) it, i.e. s′i −→ sj. In other words, the scope
constraints forced by the functional projection hierarchy are accounted for deductively.

This discussion shows that the different ways of scoping exhibited by QPs can be
controlled by differentiating their sentential types: a QP will have scope over a second
one if a derivability condition among types is satisfied. In Chapter 3, we have presented
the full scale of derivability patterns at our disposal. The simplest cases are repeated in
Figure 5.3.

I �

� I

s1 : 32
↓s

s2 : ss4 : 2
↓
332

↓s

s3 : 2
↓
3s

Figure 5.3: Basic sentential levels.

With these four sentential types, sixteen different QP-types can be obtained. Taking
into consideration what we said above, one can establish a classification of QP-types
based on their scope possibilities. The strongest quantifier type —the one which will
have wide scope in most of the cases— is q(np, 2↓

3s, 2↓
3s): it is able to take scope

over all QP-types (since all sentential types derive 2
↓
3s), and there are only four QP-

types which can take scope over it, those with 2
↓
3s as binding domain. For symmetric

reasons, the weakest QP-type is q(np, 32
↓s, 32

↓s). Let us now see these QP-types at
work by considering the linguistic data presented by Beghelli and Stowell. Our QP-type
hierarchy gives us a way to situate the classification proposed within the minimalist
program. Moreover, it predicts the existence of further subclasses of quantifier phrases.

Types for Beghelli and Stowell’s QP Classification

From the analysis of the linguistic data, it follows that negation and distributivity play
a fundamental role in determining the scope possibilities of QPs. Therefore, we start by
focusing attention on the functional categories NegP and DistP.

Negative quantifiers and negation can have scope over all quantifiers with the excep-
tion of each and the ones landing to RefP, e.g. the books. We repeat the relevant data
below.

(13) a. %John didn’t read each book.
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b. John didn’t read the book. [The > Not].

c. John didn’t read all the books. [Not > All], [All > Not].

d. John didn’t read a book. [Not > A], [A > Not].

e. John didn’t read every book. [Not > Every].

Moreover, as the data show among the QPs considered, every and each are the only two
quantifiers which cannot have scope over negation. Beghelli and Stowell explain this
fact by saying that they need the distributed share phrase ShareP to be filled in, in
order to generate grammatical structures. The sentence below is taken as evidence for
this claim.

(14) One boy didn’t read each book. [Each > One > Not].

The second important borderline in Beghelli and Stowell’s functional projection hierar-
chy is DistP. Not all the QPs can work as distributed share for DQPs, from this fact
scope distinctions follow. In particular, every and each cannot take scope over NQPs,
all and those QPs landing to Spec-RefP.

The scope possibilities, particular to the natural language quantifiers studied so far,
are expressed by the QP-types listed in Table 5.1. We refer to the types using the
corresponding abbreviations si given in Figure 5.3. Recalling what said in Section 5.2.2
about the scoping strength degree of QP-types, the lexical assignments say, for instance,
that definite GQPs will always have wide scope: their QP-type can take scope over all
the other QP-types and none of the ones used in the lexicon manage to take (immediate)
scope over it.

NQPs q(np, s2, s2) e.g. nobody ;
pure DQPs q(np, s4, s4) e.g. each n;
universal DQPs q(np, s4, s1) e.g. every n;
universal GQPs q(np, s3, s2) e.g. all n;
definite GQPs q(np, s3, s3) e.g. the n;
indefinite and bare numeral GQPs q(np, s3, s1) e.g. a n, one n.

Table 5.1: Lexicon.

Let us check how these scope constraints are actually derived in CTL. We start by
considering the interaction of QPs with negation and show how the data in (13) follow
from the lexical assignments in Table 5.1 and the types (np\s2)/(np\s2) and (np\s1)/np
assigned to didn’t and read, respectively. In the derivations in Figure 5.4, the QP-type is
represented by a variable-type q(np, sx, s

′
y) which must be instantiated by the different

QP-types given above to check their scope possibilities. A derivation from ∆ ` si to
∆ ` sj (i.e. si −→ sj) is abbreviated as [Di]. Finally, recall that due to the Curry-
Howard correspondence (see Section 4.3) while determining the grammaticality of the
linguistic structures, the logical rules build their meaning as well and a unique lambda
term is assigned to each syntactic derivation. For instance, the derivation in Figure 5.4
builds the lambda terms as shown in Figure 5.5, where the Q is a variable to be replaced
by the actual term representing the quantifier in the structure.
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[Not > QP]

John ` np

didn’t ` (np\s2)/(np\s2)

QP ` q(np, sx, s
′
y)

[y ` np]2
read ` (np\s1)/np [x ` np]1

read ◦ x ` np\s1
[/E]

y ◦ (read ◦ x) ` s1
[\E]

y ◦ (read ◦ x) ` sx
[D1]

y ◦ (read ◦QP) ` s′y
[qE]1

y ◦ (read ◦QP) ` s2
[Dy]

read ◦QP ` np\s2
[\I]2

didn’t ◦ (read ◦QP) ` np\s2
[/E]

John ◦ (didn’t ◦ (read ◦QP)) ` s2
[\E]

John ◦ (didn’t ◦ (read ◦QP)) ` s3
[D2]

[QP > Not]

QP ` q(np, sx, s
′
y)

[x ` np]1
....

John ◦ (didn’t ◦ (read ◦ x)) ` s2

John ◦ (didn’t ◦ (read ◦ x)) ` sx
[D2]

John ◦ (didn’t ◦ (read ◦QP)) ` s′y
[qE]1

John ◦ (didn’t ◦ (read ◦QP)) ` s3
[Dy]

Figure 5.4: Wide and narrow scope negation.

[Not > QP]

j : np

λP.¬P : (np\s2)/(np\s2)

Q : q(np, sx, s′y)

....
(Read x) y : sx

Q(λx.(Read x) y) : s′y
[qE]1

Q(λx.(Read x) y) : s2
[Dy]

λy.Q(λx.(Read x) y) : np\s2
[\I]2

λz.¬Q(λx.(Read x) z) : np\s2
[/E]

¬Q(λ.x(Read x)j) : s2
[\E]

¬Q(λx.(Read x)j) : s3
[D2]

[QP > Not]

Q : q(np, sx, s
′
y)

[x : np]1
....

¬((Read x)j) : s2

¬((Read x)j) : sx
[D2]

Q(λx.¬(Read x)j) : s′y
[qE]1

Q(λx.¬(Readx)j) : s3
[Dy]

Figure 5.5: Meaning assembly.
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The first derivation in Figures 5.4 and 5.5 gives the direct scope reading [Not >
QP]: the QP is in the semantic scope of the negation and the latter c-commands the
former at the surface structure. The types given in Table 5.1 block this derivation in
case the QP is each book or the book since s′y is instantiated as s4 and s3, respectively
and s4 : 2

↓
332

↓s 6−→ s2 : s, and s3 : 2
↓
3s 6−→ s2 : s. Therefore, the derivations fail in

applying [Dy]. On the other hand, the direct scope is derived when any of the other QPs
occur, since in all the other cases the s′y is instantiated with sentential types deriving
s2. Notice that [D1] will be a correct inference for any type instantiating sx, since s1 is
the lower type in the patterns we are considering.

The second derivation gives the inverse scope reading [QP > Not]: the negation is
in the semantic scope of the quantifier, but the latter does not c-command the former
at the s-structure. First of all notice, that the relevant point here is the derivation
holding between s2 and sx —all the sentential levels we are considering derive s3, hence
the inference [Dy] s′y −→ s3 : 2

↓
3s, holds for any QP-types. This derivation fails at

[D2] in case the QP we are considering is either every book or each book—since sx is
instantiated by s4 and s2 : s 6−→s4 : 2

↓
332

↓s; while it is derivable when considering
the other QPs. We have shown that the derivations in Figure 5.4 correctly account for
the data in (13), and we can now move to consider multiple quantifiers contexts sharing
the structure [QP [TV QP]].

Comparing the derivations in Figure 5.6 with the tree given in Section 5.2.2 one sees
that similar results are obtained: given two quantifiers QPi, QPj , QPi has scope over
QPj [QPj > QPi] iff s′i −→ sj and the s′j is a grammatical sentential level, s′j −→ s3.
Again by replacing the variable-types used in the derivations one can easily check that
the data in (7) and (10-c) are correctly predicted. Now that we have illustrated how
CTL assigns scope to constituents which in the generative grammar undergo movement,
we can consider the class of those QPs which take scope locally.

Accordingly to Beghelli and Stowell, CQPs differ from the other QPs since they
must take scope in their case position. Moreover, they show an asymmetric behavior
when occurring in subject/object position, which motivates the different placements of
AgrS-P and AgrO-P in the phrase structure in Figure 5.2.

(15) a. Some student visited few girls. [Some > Few].

b. Every student visited few girls. [Every > Few].

(16) a. Few girls visited some student. [Few > Some], [Some > Few].

b. Few girls visited every student. [Few > Every].

These sentences show that CQPs are unable to take inverse scope. For instance, we
cannot construe (15-a) to mean that for few girls it is the case that some student visited
her. On the other hand, the structures in (16) with the CQP in subject position do
allow for the reading with few girls having wide scope.

Before studying the type assignment for those QPs, notice that linguistic reality
seems to be more complex than we could express differentiating subject and object
types. In [Swa98] de Swart points out that at least in the case of negative polarity
items, e.g. anything, the difference in the scope possibilities with respect to negation
cannot be explained in terms of subject/object asymmetries as shown by the cases
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[QPsub > QPobj]

QP ` q(np, sx, s
′
y)

QP ` q(np, su, s
′
v)

[x ` np]2 [y ` np]1
....

x ◦ (TV ◦ y) ` s1

x ◦ (TV ◦ y) ` su

[D1]

x ◦ (TV ◦QP) ` s′v
[qE]1

x ◦ (TV ◦QP) ` sx

[Dv]

QP ◦ (TV ◦QP) ` s′y
[qE]2

QP ◦ (TV ◦QP) ` s3
[Dy]

[QPobj > QPsub]

QP ` q(np, su, s
′
v)

QP ` q(np, sx, s
′
y)

[x ` np]2 [y ` np]1
....

x ◦ (TV ◦ y) ` s1

x ◦ (TV ◦ y) ` sx

[D1]

QP ◦ (TV ◦ y) ` s′y
[qE]2

QP ◦ (TV ◦ y) ` su

[Dy]

QP ◦ (TV ◦QP) ` s′v
[qE]1

QP ◦ (TV ◦QP) ` s3
[Dv]

Figure 5.6: Structures with multiple QPs.
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below.

(17) a. Phil would not give me anything.

b. *Anything Phil would not give me.

The fact that CQPs cannot have wide scope over expressions preceding them at s-
structure can be rephrased in CTL terms, by saying that the type of these QPs should
not have the same freedom as the other quantifiers, freedom given by the q-operator.
Therefore, a proper type assignment for them can be given by using the classical func-
tional types. The behavior of CQPs is described by s2/(np\s4) where the directional
implication blocks them to take inverse scope, and the sentential types express their
direct scope possibilities summarized in the example below.5

(18) a. Few students read each book. [Few > Each].

b. Few students read the books. [*Few > The], [The > Few].

c. A student read few books. [A > Few], [*Few > A].

d. John didn’t read few books. [Not > Few].

In order to account for the composition of the verb phrase with these QPs in postverbal
position, transitive verbs are assigned a lifted type which enables them to compose with
local scoping QPs. Given that s2/(np\s4) −→ s2/(np\s1) and np −→ s2/(np\s1) a
proper type for transitive verbs is (np\s1)/(s2/(np\s1)): they will compose with both
CQPs when occurring in a postverbal position and with simple noun phrases. Moreover,
since the types assigned to each n and the n don’t derive s2/(np\s1), the analysis dis-
cussed so far is not modified by the introduction of the new type for the verb phrases.
The quantifiers each n and the n are the only QPs which might cause ungrammaticality
as narrow scope takers.

Exploring the Landscape of QP-types

Now that we have identified the QP-types deriving the behavior of the quantifiers studied
in [BS97], we can start exploring the full set of types generated by the basic derivability
patterns in Figure 5.3 and see which other QP-(sub)classes they predict to exist. We
look back at the types assigned to the subclasses of the GQP group, which is the one
more extensively studied by Beghelli and Stowell.

As we have seen, GQPs can be divided in three subclasses distinguishing (i) the
QP-a n type which can work as the share distributed phrase for DQPs, but can also
have wide scope over them moving to Spec-RefP, (ii) QP-all n type which cannot land
into Spec-ShareP, (iii) the QP-the n which must land into Spec-RefP. These three
subclasses correspond to the QP-types, (i) q(np, s3, s1) (ii) q(np, s3, s2), (iii) q(np, s3, s3),
respectively. From this it follows that the QP-classification we have obtained could

5If our understanding of Beghelli and Stowell’s analysis is correct, we should also have the sentence
Few students didn’t go to the party. with reading [Few > Not]. However, the type assigned to CQP
(p.c. by Anna Szabolsci) does not account for this. A technical solution could be to use the extended
derivability patterns given in Figure 5.1, or to re-think about the behavior of CQPs and each. We
believe this is not effecting the general method we are proposing but rather it raises questions on the
(sub-set) relations holding among the QP types.
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express a fourth type with s3 as sentential binder, namely q(np, s3, s4). This type can be
in the immediate scope of DQPs and CQPs in subject position, since s4 −→ s4, and will
be ungrammatical in the scope of NQPs, since s4 6−→ s2. In minimalist terms, this would
mean that the new GQP can move to Spec-ShareP, but cannot have scope locally in
AgrO-P. This behavior is indeed exhibited by the positive polarity item some n as
illustrated by the example below.

(19) a. Each student read some book. [Each > Some], [Some > Each].
b. No student read some book. [Some > No].
c. Few students read some book. [Few > Some], [Some > Few].
d. At most five students read some book. [At most 5 > Some], [Some > At

most].

The full cases of QP-types with sentential binder s3 are now exhausted and they express
the behavior of the (sub)classes of GQPs. Similarly, one could explore the other classes
and search for quantifiers matching the predicted behavior. For instance, the contrast
in (20) between few n and exactly five n [SZ97] seems to suggest that CQPs should be
further subcategorized.

(20) a. *How did few people think that you behaved?
b. How did exactly five people think that you behaved?

Finally, notice that in Beghelli and Stowell’s QP-classification interrogative phrases are
considered as carrying a feature which must be checked against the Head-CP by mov-
ing to its Spec position. The whole class is referred to as WhQPs and no subclasses
are considered. However, wh-phrases exhibit different behavior with respect to weak
islands. In particular, while who can escape islands formed by negation (21-a), how
cannot (21-b). We repeat the data below [SZ97].

(21) a. Who didn’t Fido see?
b. *How didn’t Fido behave?

Again, these data seem to suggest that a family of WhQP-types could be used to repre-
sent interrogative quantifier behaviors. We now move on to consider the type classifica-
tion obtained by extending the derivability patterns used so far. The whole picture given
in Chapter 3 offers types which do not derive the sentential type assigned to grammatical
sentences s3. Therefore, our analysis predicts the existence of QPs which require to be
in the scope of another scope element returning s3 (or a lower type) for grammaticality.
This is the case of QP-types like q(np, sx, (

0sy)
0) or q(np, sx,

0(s0

y)), where sx and sy

stand for any of the sentential types in our derivability patterns.

Natural languages make use of these sorts of quantifiers. A classical example is given
by negative polarity items like anybody which is ungrammatical in anybody left but
grammatical if the same structure is a subordinate clause preceded by a proper licensor,
e.g. doubts : John doubts that anybody left. In the next Section, we will explore the
whole landscape of polarity items and derive their distribution properties.

Finally, CTL types predict that QPs might behave differently with respect to co-
ordination. In particular, it is predicted that NPIs cannot occur in any of the two
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constituents of the conjunction whereas the other QPs can (22) and (23) (see [Ber02] for
further details). On the other hand, the standard c-command analysis fails to predict
these data as discussed in [Pro00, Hoe00].

(22) a. *No student and any professor came to the party.

b. *Any professor and no student came to the party.

c. *Mary chased nobody and anybody’s dog.

(23) a. No student and no professor came to the party.

b. A student and some professor came to the party.

c. Every student and some professor came to the party.

d. Every student and/but no professor came to the party.

e. Mary chased nobody and nobody’s dog.

5.3 Classification of Polarity Items

The study of negative polarity items (NPIs) started with the work by Klima [Kli64]
who looks at them as expressions which must be ‘in construction with’ a trigger or
licensor , where the latter is either negation or an “affective element”, e.g. a verb like
surprised. Then, Ladusaw [Lad79] gave a precise semantic interpretation to the vague
idea of affective licensors proposed by Klima, identifying them with downward monotone
expressions.

Let us look at some data, to clarify the phenomenon. NPIs can be either in the same
clause of their trigger, or in an embedded sentence while the trigger is in the matrix
sentence (24-c). Moreover, the general claim about the relation of a negative polarity
item and its licensor (or trigger) is that the former is licensed by the latter when occurring
in its immediate scope [Lin81]. However, there are also harmless interveners, like think,
which function as a bridge between the NPI and its licensor (24-f) [ES73].

(24) a. *Anybody left.

b. John didn’t read anything. [Not > Any], [*Any > Not].

c. John doubts anybody left. [Doubt > Any], [*Any > Doubt].

d. *John didn’t doubt that anybody left.

e. *John didn’t shout that anybody left.

f. John didn’t think that anybody left. [Not > Think > Any].

The connection between negation and monotonicity has been deeply studied [KF85,
Zwa83] and it turns out that the set of antimorphic functions (AM) —negation-like
expressions— is a subset of the set of downward monotone functions (DM). Moreover,
it is possible to identify in the set DM the subset of antiaddive functions (AA), satisfing
the first De Morgan law and half of the second one. This classification of downward
monotone expressions is summarized in Table 5.2 together with the part of the De Mor-
gan’s laws they satisfy. Clearly, an inclusion relation holds among the sets of functions
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of different negative strength: AM ⊆ AA ⊆ DM6.

antimorphic antiadditive downward monotone
f(X ∩ Y ) = f(X) ∪ f(Y ) f(X) ∪ f(Y ) ⊆ f(X ∩ Y ) f(X) ∪ f(Y ) ⊆ f(X ∩ Y )
f(X ∪ Y ) = f(X) ∩ f(Y ) f(X ∪ Y ) = f(X) ∩ f(Y ) f(X ∪ Y ) ⊆ f(X) ∩ f(Y )

not nobody, never, nothing few, seldom, hardly

Table 5.2: Monotone functions classification.

In [Wou94], it is shown that a classification of both Dutch positive and negative
polarity items can be given in terms of their sensitivity to (downward) monotonicity
properties.

The whole picture is summarized in Table 5.3 taken from [Wou94]. The + and –
indicate grammaticality and ungrammaticality, respectively.

Negation NPIs PPIs

Minimal (DM)
Regular (AA)
Classical (AM)

strong medium weak
– – +
– + +
+ + +

mals ook maar hoeven
(tender) (anything) (need)

strong medium weak
– + +
– – +
– – –

allerminst een beetje nog
(not-at-all) (a bit) (still)

Table 5.3: Polarity items distribution in Dutch.

Table 5.3 can be read as saying that NPIs are licensed, where PPIs are antilicensed
by a certain property among the ones characterizing downward monotone functions.
From this it follows that a NPI licensed by the property of a function in DM will be
grammatical also when composed with any function belonging to a stronger set. On the
other hand, if a PPI is ‘allergic’ to one specific property shared by the functions of a
certain set, it will be ungrammatical when composed with them, but compatible with
any other function in a weaker set which does not have this property. In the next section
we introduce the general method to reach a CTL analysis of licensing and antilicensing
relations. (See [Ber02] for more details.)

The classification of licensors has been extended to non-veridical contexts in [Zwa95].
Within this larger frame, we obtain the classification given in Table 5.4 that includes
anti-veridical (AV), intentional downward monotone (IDM), intentional upward-monotone
(IUM) and upward monotone (UM) functions. In [Gia97], new distinctions among PI have
been identifies by means of this new lens as we will summarize below after explaining
the general deductive method.

6Notice that the table could include also a fourth subset, namely the one characterized by the second
De Morgan law and half of the first one (antimultiplicative). However, these functions seem to have no
relevant role in the distribution of polarity items in Dutch [Wou94].
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Nonveridical
AV: AM: ⊆ AA: ⊆ DM: ⊇ IDM:
not p not p or not q nobody few p impossible p
without p forbid p
neither p nor q exclude p

UM: ⊇ IUM:
p or q will p
if ·, p may p

suggest p
before p
usually p
perhaps p

Table 5.4: (Non)veridical contexts.

5.3.1 Licensing Relations in CTL

In this section, we show how the unary operators of NL(3,·0) can be used to account
for the linguistic typologies presented in the previous section, and clarify their differ-
ences and similarities. To express the relation between a trigger and a sensitive item
schematically in sequent notation, we use the following convention: ∆dNPIie stands for
∆[NPIi] ` C : α′(δ′), where NPIi is the logical type assigned to the negative polarity
item occuring in the whole structure ∆, α′ is the lambda term representing it and δ′ the
lambda term corresponding to the structure on which the negative polarity has wide
scope. The * marks ungrammatical compositions.

Let Li1, Li2 stand for two functions such that the set of functions represented by Li1
is included in the one formed by the function represented by L2: L1 ⊆ L2. And let NPIi
stand for a negative polarity item which requires the property enjoyed by Lii.

(a) Li1 ◦∆dNPI1e (c) Li2 ◦∆dNPI2e
(b) Li1 ◦∆dNPI2e (d) ∗Li2 ◦∆dNPI1e

Since the polarity item has scope over the structure it occurs in, it determines the
type assigned to it. We represent this fact by assigning npii to the whole structure
∆dNPIie ` npii. The inclusion relation holding among the sets of licensors is expressed
by considering the type of Li1 and Li2 so that the former derives the latter (but not vice
versa). Furthermore, since the Lii can take ∆dNPIie ` npii as argument, Li1 : A/npi1
and Li2 : A/npi2, where A/npi1 −→ A/npi2, and hence, from the monotonicity property
of the functional operator /, npi2 −→ npi1. We leave the general formula A on the value
of the licensors’ type, since it is not relevant for the understanding of the main idea.
Summing up, the derivability relation −→ among the logical types, simply encodes the
inclusion relation ⊆ among the sets of expressions of the same semantic type. From this
encoding the compositions above derive as follows:
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(b) (d)

Li1 ` A/npi1

∆[NPI2] ` npi2....
∆[NPI2] ` npi1

Li1 ◦∆[NPI2] ` A
[/E]

Li2 ` A/npi2

∆[NPI1] ` npi1
∆[NPI1] ` npi2

∗
∗Li2 ◦∆[NPI1] ` A

[/E]

The ∗ marks where the derivation fails. The compositions in (a) and (c) above are
obtained simply by functional application. Let us now make things more concrete by
means of an example and start exploiting the logical properties of NL(3,·0) to model
the analysis sketched above.

The QPs a student, few student and nobody all have their denotation in the domain

D
D(e,t)

t . Hence, their semantic type is ((e, t), t). However, they differ with respect to
monotonicity: a student is an upward monotone function, whereas at most three woman
∈ DM and nobody ∈ AA, where AA ⊆ DM.

In order to account for NPIs distribution, we need to differentiate these expressions
and introduce a sentential level which is ungrammatical. The ungrammatical construc-
tion becomes grammatical if a licensor occurs. We will use s′2 to represent this ungram-
matical sentential level which stand for (0s)0. We repeat below, the derivability relation
involving this type. The box in the figure emphasizes the new derivability relation we
exploit in this section.

I �

� I

s1 : 32
↓s

s2 : s −→ s′2 : (0s)0s4 : 2
↓
332

↓s

s3 : 2
↓
3s

In Section 5.2.2, we have seen that unary operators give us the right expressivity to
account for such distinctions. We can consider nodoby as q(np, s′2, s2), and a student
as q(np, s3, s1). The type of at most three women has to be derivable from the one of
nobody encoding the subset relation; we consider it to be of type q(np, s′1, s2). Hence,
npi2, npi1 are s′1 : (0(32

↓s))0 and s′2 : (0s)0, respectively.
The derivability relations sketched above follow from the logical properties of the

unary operators. These types correctly block a structure containing a strong NPI or
a weaker one to compose with the upward monotone expression a student (25-a-b),
and predict the different behavior between the idiomatic expression say a word and
the weaker negative polarity item anybody with respect to contexts like at most three
women (26-a-b).
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(25) a. *A student saw anybody.

b. *A student said a word.

(26) a. At most three women said anything.

b. *At most three women said a word.

Here we are in the case of an item in a licensing relation with a function. The inference
schema involved is the one given below. Given g −→ f ,

∆[f ] ` C

∆[g] ` C.

For instance, in the case of anybody the type of its direct licensor at most three women is
derivable from the type of nobody, then from (26-a) it follows that Nobody said anything
is derivable as well. Schematically, given that AA : q(np, s′2, s2) −→ DM : q(np, s′1, s2),

∆[q(np, s′1, s2)] ` C

∆[q(np, s′2, s2)] ` C.

5.3.2 Cross-linguistic differences

The distribution of negative polarity items differs within and across languages. Within a
same language, it is possible to reach a classification of negative polarity items based on
the property licensing them. On a crosslinguistic level one can obtain natural language
typologies based on the licensing relations they satisfy. We look at Dutch, Greek and
Italian by way of example and show the differences among them that the CTL analysis
shed lights on.

Types for Dutch Negative Polarity Items

A classification of Dutch NPIs can be given based on the strength of the downward
monotone functions they require as licensor [Wou94]. Strong negative polarity items
(SNPIs) are licensed by functions characterized by the two laws of De Morgan7, i.e.
antimorphic functions (AM); their medium relatives (MNPIs) are felicitous also in ‘less
negative’ contexts, being licensed by functions which satisfy the first De Morgan law and
half of the second —antiadditive functions (AA); finally, their weaker versions (WNPIs)
require half of both laws, hence they are licensed in the scope of all downward monotone
functions (DM). The full array of Dutch NPIs is illustrated below. The idiomatic mals
(tr. ‘tender’), the quantifier ook maar iets (tr. anything) and the predicate hoeven (tr.
need) are taken as representative of SNPIs, MNPIs, and WNPIs, respectively. The
quantifiers weinig n (tr. few n) and niemand (tr. nobody) represent the DM and AA
functions respectively, while niet (tr. not) is an antimorphic function. The data are
summarized in Table 5.5.

7The laws of De Morgan are: 1. f(X ∪ Y ) = f(X) ∩ f(Y ), 2. f(X ∩ Y ) = f(X) ∪ f(Y ).
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(27) a. Weinig
Few

studenten
students

hoeven
need

hard
hard

te
to

studeren.
study

[DM].

Few students need to study hard.

b. Niemand
Nobody

hoeft
needs

te
to

fietsen.
bike.

[AA].

Nobody has to bike.

c. Hij
He

hoeft
needs

niet
not

te
to

roepen.
shout

[AM].

He doesn’t need to shout.

(28) a. *Weinig
Few

monniken
monks

zullen
will

ook maar iets
anything

bereiken.
achieve.

[*DM].

tr. Few monks will achieve something.

b. Niemand
Nobody

zal
will

ook maar iets
anything

bereiken.
achieve.

[AA].

tr. Nobody will achieve anything.

c. Ik
I

denk
think

niet
not

dat er
that

ook maar iemand
anybody

zal
will

komen.
come

[AM > ook maar]

tr. I don’t think that anybody will come.

(29) a. *Van
Of

weinig
few

monniken
monks

was
was

de
the

kritiek
criticism

mals.
tender.

[*DM].

tr. The criticism of few monks was tender.

b. *De
The

kritiek
criticism

van
of

vader
father

abt
abbot

was
was

nooit
never

mals.
tender.

[*AA].

tr. The criticism of father abbot was never tender.

c. De
The

kritiek
criticism

zal
will

niet
not

mals
tender

zijn.
be.

[AM].

tr. The criticism will be harsh.

NPIs

Positive
Minimal (DM)
Regular (AA)
Classical (AM)

strong medium weak
– – –
– – +
– + +
+ + +

mals ook maar hoeven
(tender) (anything) (need)

Table 5.5: Negative polarity items distribution in Dutch.

The analysis of Dutch data shows that the inclusion relation relevant to describe a
classification of NPIs is the one holding among antimorphic, antiadditive and downward
monotone functions: AM ⊆ AA ⊆ DM. The order relation among the sets of NPIs is
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WNPI ⊆ MNPI ⊆ SNPI, where the inclusion should be read in terms of the demands of
the items, e.g. a weak negative polarity item requires a weaker property than a medium
one. Applying the type logical method illustrated above this means that in this case we
need a linear derivability relation among three types. Let us take, s′1 : (032

↓s)0 −→
s′2 : (0s)0 −→ s′3 : (02↓

3s)0. For the sake of simplicity now we do not take into account
the different ways Dutch quantifiers may scope, and assign a uniform output sentential
type s2 : s to all of them; the same holds for the clause negation niet (tr. not). For the
same reason, we take grammatical sentences to be of type s2 : s.

Lexicon

WNPI: q(np, s′1, s
′
1), hoeven (tr. need) DM: q(np, s′1, s2), weinig (tr. few);

MNPI: q(np, s′2, s
′
2), ook maar iets (tr. anything) AA: q(np, s′2, s2), niemand (tr. nobody);

SNPI: np\s′3, is mals (tr. is tender) AM: (np\s2)/(np\s′3), niet (tr. not).

The full derivability patterns expressing the inclusion relations holding among the
sets of downward monotone functions and the ones among the sets of Dutch negative
polarity items are as in Figure 5.7.

I �

� I

s′1: WNPI/DM

s′2: MNPI/AAs′4: Even/Am

s′3: SNPI/AM

Figure 5.7: Types for Dutch NPIs.

Notice, that though the inclusion relation among the licensors’ types seems to be
reversed (e.g. DM −→ AA), this is not the case due to the fact that the sentential types
in point occur in a downward monotone position in the QP-types.

Types for Greek Negative Polarity Items

Greek negative polarity items are shown to be in a licensing condition with nonveridi-
cality [Gia97], where intuitively a nonveridical expression (NV) is such that when com-
posed with a proposition p it does not entail the truth of p. Here as well, a classifi-
cation of negative polarity items can be given based on the inclusion relations holding
among nonveridical functions. In particular, the required distinction, inside the set
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of nonveridical functions, is among negation-like operators referred to as antiveridi-
cal functions (AV), e.g. dhen (tr. not), and the intensional ones creating opaque con-
texts [Qui60, Qui61, Tho74]8, e.g. isos (tr. perhaps) and bori (tr. may). These two
groups of functions form subsets of the set of nonveridical functions, but do not exhaust
it. Examples of nonveridical contexts which are neither antiveridical nor intensional are
questions, or downward monotone functions like few.

In [Gia97], it is shown that a classification of Greek polarity items can be given based
on their different behavior with respect to nonveridical functions. In particular, one can
distinguish (i) ‘emphatic negative polarity items’ which can only occur in AV contexts
and therefore are referred to as NPIs; (ii) ‘Idiomatic expressions’ (or minimizers (Min))
like ipe leksi (tr. say a word) also qualify as NPIs, though they are more flexible as
we will comment when discussing their type; (iii) ‘Affective polarity items’ (APIs), e.g.
kanena (tr. anybody) which are felicitous in construction with (all) NV contexts; and
(iv) free choice items (FCIs) (i.e. items with a universal force) which are ungrammatical
in AV contexts, and felicitous in nonveridical opaque contexts. Differently from English,
Greek employs special words for FCIs, e.g. opjosdhipote (tr. anybody) [Gia01]. For our
comparative purposes and study of licensing conditions the emphatic polarity items are
not interesting since they involve prosodic aspects which interfere with the licensing
relation. Therefore, we concentrate on APIs, FCIs, and Min.

(30) a. Dhen
not

idha
saw.perf.1sg

kanenan.
any-person.

[AV].

tr. I didn’t see anybody.

b. Isos
perhaps

na
subj

irthe
came.perf.3sg

kanenas.
anybody.

[Opaque].

tr. Perhaps somebody came.

c. Pote
when

ekanes
did.2sg

esi
you

tipota
anything

ja
for

na
subj

me
me

voithisis?
help.perf.2sg

[Question].

tr. Have you ever done anything to help me?

(31) a. *Dhen
not

idha
saw.perf.1sg

opjondhipote.
FCI-anybody

[AV].

tr. I didn’t see FCI-anybody.
b. Isos

perhaps
o
the

Pavlos
Paul

milise
subj talked.3sg

me
with

opjondhipote.
anybody-FCI.

[Opaque].

tr. *Perhaps Paul talked to anybody.

c. *Aghorases
bought.perf.2sg

opjodhipote
FCI-any

vivlio?
book

[Question].

tr. Did you buy any book?

8Opaque contexts are those contexts having different denotations depending on the point of reference
(or: situation, possible world, index). They do not satisfy the extensionality principle, where the latter
says that given s = t then |= φ ↔ φ′ where φ = φ′[t/s]. The name ‘opaque’ is meant to distinguish
these contexts from the transparent ones for which this substitution principle holds [Gam91]. Example
of ‘opaque contexts’ are those formed by modal verbs, habituals, generics, imperatives, intensional
verbs, future particle.
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(32) a. Dhen
not

ipe leksi
say word

oli
all

mera.
day

[AV].

tr. He didn’t say.perf a word all day.

b. *Bori
may

na
subj

pi leksi.
say a word

[Opaque].

tr. May say a word.

c. *Pjos
who

ipe leksi?
said.perf.3sg word

[Question].

tr. Who said a word?

The full picture is summarized in Table 5.6.

NPI API FCI Min
Veridical – – – –
Antiveridical + + – +
Opaque – + + –
Nonveridical – + – –

Table 5.6: Negative polarity distribution in Greek.

Note that FCIs must always occur in contexts which provide them alternatives (worlds or
situation). This motivates the fact that they are felicitous in opaque contexts, whereas
are ungrammatical in veridical and episodic contexts [Gia01]. This point can be clarified
by the contrast between (33-a) and (33-b).

(33) a. *Elaxisti
Very few

fitites
students

ipan
say.perf

otidhipote.
FCI-anything.

Few students said nothing.

b. Elaxisti
Very few

fitites
students

lene
say.imp

otidhipote
FCI-anything

sto
in

mathima.
class

Few students usually say anything in class.

The grammaticality of (b) is due to the use of the imperfective lene which gives the
habitual interpretation licensing the FCI.

In contrast to the situation in Dutch, the licensors of negative polarity items in
Greek are not in a linear order relation. The relevant inclusion relations in this case is
among antiveridical functions and nonveridical ones, and among nonveridical intensional
functions and the nonveridical ones: AV ⊆ NV and NVI ⊆ NV, where NVI 6⊆ AV and
AV 6⊆ NVI. This is reflected on the relations among the items licensed by these functions,
namely API ⊆ FCI, and API ⊆ Min: affective polarity items are felicitous in contexts
with less or weaker properties than the others two. Moreover, FCIs are not felicitous in
antiveridical contexts, and minimizers are ungrammatical in opaque contexts. This split
in the demands of the polarity items is captured by the types: s′1 : (032

↓s)0 −→ s′4 :
(02↓

332
↓s)0, and s′1 : (032

↓s)0 −→ s′2 : (0s)0 where s′4 : (02↓
332

↓s)0 6←→ s′2 : (0s)0

(Figure 5.1). Again, we do not pay attention to the different ways quantifiers may take
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scope in Greek and consider s2 : s to be the sentential type of grammatical sentences.
For the sake of simplicity, we give a simplified type for the intensional functions which
does not take into consideration the intensional category.

Lexicon

API: q(np, s′1, s
′
1), kanenan (tr. anybody) Min: np\s′2, ipe leksi (tr. say a word)

AV: s2/(np\s′2), dhen (tr. not) NVI: s2/s
′
4, isos (tr. perhaps)

FCI: q(np, s′4, s
′
4), opjosdhipote (anybody-FCI)

If we look back at the derivability relations holding within the logic, we notice that
the split of the types converges in s′3 : (02↓

3s)0. Therefore, there could be room for a
context where all the different items would be grammatical. This prediction is satisfied
by the if-clauses as illustrated by the following examples from [Gia97].

(34) a. An
if

dhis
see.2sg

kanenan,
anybody,

na
subj

tu
him

pis
say.2sg

na
subj

me
me

permeni.
wait.3sg

tr. If you see anybody, tell him to wait for me.

b. An
if

pis leksi
say.perf.2sg

tha
word

se
will

skotoso.
you kill.perf.1sg

tr. If you say a word, I will kill you.

c. An
if

kimithis
you sleep.2sg

me
with

opjondhipote,
FC-person

tha
fut

se
you

skotoso.
kill.1sg

If you sleep with FCI-anybody, I’ll kill you.

The type for the conditional an (tr. if) is (s2/s
′
3)/s3: it can have any kind of negative

polarity item in its antecedent. Our type logical analysis of the Greek data is summarized
in Figure 5.8.

Negative Polarity Items in Italian

Italian is a negative concord language (NC), viz. it allows double negation. In the
literature there has been an ongoing debate over the exact classification of its negative
constituents. The reason is that they exhibit the behavior of both NPIs and negative
quantifiers (NQs). In other words, Italian uses a single negative constituent nessuno as
both an existential quantifier NPI on par with English anyone and as a NQ on par with
English no one. See [Lad79, Lin81, Lin87, Mug90, Pro94, Gia00], for an approach in
which n-words across languages are considered as NPIs since like other NPIs can occur
in the polarity environments. The problem of this approach is to explain how negative
constituents, like nessuno, can also occur outside the traditional polarity environments
and yield negative context, thereby behaving like NQ. On the other hand [Zan91, Riz82,
Acq92] treat negative constituents of NC languages as negative quantifiers, like English
nobody. The problem this approach has to solve is to explain why n-words can also
occur in NPI environments where they do not yield negative force and are interpreted
existentially.
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I �

� I

s′1: API/NV

s′2: Min./AVs′4: FCI/NVI

s′3: If

Figure 5.8: Types for Greek NPIs.

We do not enter in this discussion here, since what matter to us is the licensing
relation holding among items like nessuno when behaving as NPIs and their licensors,
non (tr. not). In Italian the negative polarity mai (tr. ever) shows a different strength
than the NPIs nessuno, granché (tr. all that much) and mica (tr. at all). Following the
analysis of the Dutch data we can refer to them as WNPI and SNPI, respectively. Fur-
thermore, like in Greek, the quantifier chiunque (tr. anybody) as well as the determiner
qualsiasi (tr. any) express the universal force of FCIs. Similarly to its Greek counter-
part, chiunque and qualsiasi cannot occur in the scope of AV functions, and can be in
opaque contexts like the modal può (tr. can), but they are ungrammatical in questions.
On the other hand, mai which is felicitous in questions is ungrammatical in construction
with può, and in general in opaque contexts.

(35) a. Non
Not

gioco
play

mai.
ever

[AV > WNPI].

tr. I never play.

b. Non
Not

ho visto
saw.1sg1

nessuno.
nobody

[AV > SNPI].

tr. I didn’t seen anybody.

c. *Non
Not

ho visto
saw.sg1p

chiunque.
anybody-FCI.

[*AV > FCI].

tr. I didn’t seen anybody.

(36) a. *Puoi
Can

giocare
play

mai.
ever.

[*Modal > WNPI].

tr. You can never play.

b. *Puoi
Can

prendere in prestito
borrow.1pl

nessun
no

libro.
book

[*Modal > SNPI].
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tr. You cannot borrow any book.

c. Chiunque
Anybody-FCI

può
can

risolvere
solve

questo
this

problema.
problem.

[Modal > FCI].

tr. Anybody can solve this problem.

(37) a. Se
If

verrai
come.sub1pl

mai
ever

a
to

trovarmi,
visit me,

portami
bring me

Sara.
Sara.

[If > WNPI].

tr. If you ever come to visit me, bring me Sara.

b. *Se
If

vedrai
see.sub2sg2

nessuno,
nobody,

torna
come back

qui.
here.

[*If > MNPI].

tr. If you don’t see anybody, come back here.

c. *Se
If

vedrai
see.sub2sg2

chiunque,
anybody-FCI,

torna
come back

qui.
here.

[*If > FCI].

tr. If you see anybody-FCI, come back here.

(38) a. Hai
Have

sognato
dreamed.sg2

mai
ever

la
the

luna?
moon?

[Question].

tr. Have you ever dreamed the moon?
b. Hai

Have
visto
saw.2sg

nessuno?
nobody?

[Question].

Have you seen anybody?

c. *Hai
Have

visto
saw.2sg

chiunque?
anybody-FCI?

[Question].

Have you seen anybody?

Chiunque (FCI) Mai (WNPI) Nessuno (SNPI)
Veridical – – –
AV – + +
Opaque + – –
Conditional – + –
Question – + +

The Italian lexicon items given above are expressed by different types than the ones
used for Dutch and Greek. In particular, they require the use of the third sentential
level given by A −→ 0(A0). Before looking at the type assignments it is interesting
to note that a positive polarity item like qualcuno (tr. somebody) refuses to be in the
scope of non, but is felicitous when composed with the others nonveridical contexts as
exemplified below.

(39) a. *Non
Not

ho
have

visto
seen.sg1

qualcuno.
somebody

[*AV > PPI].

I didn’t see anybody.

b. Se
If

vedrai
see.subjsg2

qualcuno,
somebody,

fallo
let him

venire
come

qui.
here.

[If > PPI].

If you see anybody, let him come here.
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c. Qualcuno
Somebody

di
of

noi
us,

può
can

risolvere
solve

questo
this

problema.
problem.

[Modal > PPI].

Some of us can solve this problem.

d. Hai
Have

visto
you

qualcuno?
seen

[Question].
somebody.

Did you see anybody?

Again, the types are summarized by labelling the cube of the derivability relations and
the lexical assignments are given below using the standard abbreviations.

I �

� I

6

6

6

6

s′4: If

Q

s′2: SNPI/AV

s′1: WNPI

� I

I �

s4: PPI

?

s′′4: FCI/Modal
Lexicon

PPI: q(np, s4, s4), qualcuno AV: (np\s1)/(np\s′2), non
SNPI: q(np, s′2, s

′
2), nessuno If: (s1/s

′
1)/s

′
4, se

FCI: q(np, s′′4, s
′′
4), chiunque Modal: (((s′′4/np)\s′′4)\s1)/(np\s′′4), può

WNPI: (np\s1)\(np\s′1), mai

5.3.3 Antilicensing Relations in CTL

In addition to the composition relations we have been studying so far, in natural lan-
guages there are expressions which are in an antilicensing relation with some semantic
property. In other words, expressions which ‘must not’ occur in construction with some
other items because they are allergic to some of their properties. This relation can hold
either between a functional type sensitive to the property of its argument or between an
item sensitive to the property of a function. In the first case, the sensitive item cannot
have (immediate) scope over its trigger, in the second case the sensitive item cannot
be in the (immediate) scope of its trigger. The schema representing the antilicensing
relation is given below.

Let ∆ be a structure containing a sensitive item in construction with an expression
f which does not have the property the item is allergic to. Let f be the type of this
expression and g the type of an expression g having a weaker property than f. Given
f −→ g
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∆{f} ` C

∆{g} ` C

where {·} stands for a negative context (Section 3.3.2). The distribution of English wh-
phrases [Sza97] and Dutch positive polarity items are an example of these phenomena.
The former are sensitive to the semantic property of the scope element forming a weak
island, whereas the latter are sensitive to the semantic property of the function which
can take them in its scope. We look at Dutch PPIs by means of example.

Positive Polarity Items in Dutch

Dutch positive polarity items are in an antilicensing relation with downward monotone
functions. The following data from [Wou94] illustrate this statement and Table 5.7
summarizes the PPIs’ distribution. The triggers are emphasized, whereas the PPIs are
underlined.

(40) a. *Weinig
Few

monniken
monks

zijn
are

allerminst
not-at-all

gelukkig.
happy.

[*DM > allerminst].

tr. Few monks are not-at-all happy.

b. *Niemand
Nobody

is
is

allerminst
not-at-all

gelukkig.
happy

[*AA > allerminst].

tr. Everybody is at least a bit happy.

c. *De
The

schoolmeester
teacher

is
is

niet
not

allerminst
not-at-all

gelukkig.
happy

[*AM > allerminst].

The teacher is quite happy.

(41) a. Weinig
Few

monniken
monks

zijn
are

een beetje
a bit

gellukkig.
happy.

[DM > een beetje].

tr. Few monks are a bit happy.

b. %Niemand
Nobdy

is
is

een beetje
a bit

gelukkig.
happy.

[%AA > een beetje].

tr. Nobody is a bit happy.

c. *De
The

schoolmeester
teacher

is
is

niet
not

een beetje
a bit

gelukkig.
happy.

[*AM > een beetje].

tr. The teacher is happy.

(42) a. Weinig
Few

kinderen
children

wil
want

nog
still

Donne
Donne

lezen.
read

[DM > nog].

tr. Few children still want to read Donne.

b. Niemand
Nobody

wil
wants

nog
still

Donne
Donne

lezen.
read.

[AA > nog].

tr. Nobody wants to read Donne anymore.

c. *Jan
Jan

wil
wants

niet
not

nog
still

Donne
Donne

lezen.
read.

[*AM > nog].
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tr. Jan does not want to read Donne anymore.

PPIs

Positive
Minimal (DM)
Regular (AA)
Classical (AM)

strong medium weak
+ + +
– + +
– – +
– – –

allerminst een beetje nog
(not-at-all) (a bit) (still)

Table 5.7: Positive polarity items distribution in Dutch.

From Section 5.3, we know that the types of the PPIs’ triggers are logically related.
Moreover, we have seen that the subset relation AM ⊆ AA ⊆ DM is captured by the
derivability relation among the types assigned to antimorphic, antiadditive and down-
ward monotone functions. A PPI antilicensed by a certain property is ungrammatical
when constructed with the functions having such a property, but is compatible with any
functions of a weaker set. In CTL terms this means that the PPIs reverse the subset
relation holding among monotone functions. This requirement must be expressed in
their type logical assignments.

Recall that to account for the licensing relation we have used the downward mono-
tonicity property of the / and \, namely the fact that a function of type A/B (B\A)
composes with any expression of type C −→ B. Now, notice that a function of type
A/0C composes with any expression of type 0B such that C −→ B. This is due to
the downward monotonicity of the Galois operator 0· which reverses the derivability
relation among types. We exploit this logical property to obtain the effect required by
the antilicensing relation.

Let AM, AA, DM be the types of the functions in the sets AM, AA and DM, where
AM −→ AA −→ DM . A weak PPI is antilicensed by antimorphicity, therefore it can
be constructed with any expression in a set equal to or bigger than AA, B/0AA. A
medium PPI is antilicensed by antiadditivity, therefore it can be in construction with
any expression in a set equal to or bigger than DM, B/0DM . From these types the
following inferences derive.

MPPI ` B/0DM
DM ` DM

0DM ` 0DM
[↓ Mon]

MPPI ◦ 0DM ` A

MPPI ` B/0(DM)
AA ` AA

0AA ` 0DM
∗

∗MPPI ◦ 0AA ` B

WPPI ` B/0AA
AA ` AA

0AA ` 0AA
[↓ Mon]

WPPI ◦ 0AA ` A

WPPI ` B/0AA

DM ` DM
0DM ` 0DM....
0DM ` 0AA

[↓ Mon]

WPPI ◦ 0DM ` B

Note that the type of WPPIs derives the one of MPPIs. This correspond to an inclusion
relation among the corresponding sets: WPPI ⊆ MPPI. In line with the interpretation
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assigned to the order holding among NPIs, this inclusion can be read as holding among
sets of expressions allergic to stronger properties. Finally, since the PPIs are sensitive
to the property of the functions they are in the scope of, the lambda terms assigned to
them have to express this relation. Thus, the term, e.g., of a MPPI is λP.(P MPPI).

This linguistic application of the Galois operators seems to be promising. However,
to reach a better understanding of their use to model linguistic composition two aspects
should be further studied. First of all, it is not known yet what would be an appropriate
Curry-Howard interpretation for these connectives. Moreover, the antilicensing analysis
given here seems to suggest the need of an interaction between the accessibility relation
of the binary operators with the one of the Galois connections. We leave these two
problems open for further research.

5.4 Key Concepts

In this chapter, we have given a type logical account of the different scope distribution
of quantifier phrases and of polarity items (PIs). We have seen that

1. Linguistic theories offer classifications of items based on semantic differences or on
the different interactions of syntactic and semantic properties. In particular,

2. Items can deviate in their ways of scope taking, e.g. quantifier phrases.

3. Composition of linguistic signs may be driven by licensing or antilicensing condi-
tions, e.g. negative and positive polarity items with respect to downward monotone
functions. The compositional relation is shown to be inherited by expressions in
subset or superset relation to the (direct) trigger.

4. Semantic types are seen as sets of expressions. Among such sets there can be an
inclusion relations. The grammaticality of constructions involving sensitive items
depends on the inclusion relation holding among the triggers.

Based on these linguistic analyses, we have

1. given modally decorated types to account for the different ways QPs take scope
and shed light on new classes of QPs not considered in the linguistic theory.

2. captured the inclusion relation among the sets of triggers of PIs in terms of deriv-
ability relation among the type assignments achieving a deductive account of li-
censing relations.
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