
Continuation Semantics for Symmetric
Categorial Grammar

Raffaella Bernardi1 and Michael Moortgat2,�

1 Free University of Bozen-Bolzano, Italy
bernardi@inf.unibz.it

2 Utrecht Institute of Linguistics OTS, The Netherlands
moortgat@let.uu.nl

Abstract. Categorial grammars in the tradition of Lambek [1,2] are
asymmetric: sequent statements are of the form Γ ⇒ A, where the succe-
dent is a single formula A, the antecedent a structured configuration of
formulas A1, . . . , An. The absence of structural context in the succedent
makes the analysis of a number of phenomena in natural language
semantics problematic. A case in point is scope construal: the different pos-
sibilities to build an interpretation for sentences containing generalized
quantifiers and related expressions. In this paper, we explore a symmet-
ric version of categorial grammar based on work by Grishin [3]. In addi-
tion to the Lambek product, left and right division, we consider a dual
family of type-forming operations: coproduct, left and right difference.
Communication between the two families is established by means of
structure-preserving distributivity principles. We call the resulting system
LG. We present a Curry-Howard interpretation for LG(/, \, �, �) deriva-
tions. Our starting point is Curien and Herbelin’s sequent system for λμ
calculus [4] which capitalizes on the duality between logical implication
(i.e. the Lambek divisions under the formulas-as-types perspective) and
the difference operation. Importing this system into categorial grammar
requires two adaptations: we restrict to the subsystem where linearity con-
ditions are in effect, and we refine the interpretation to take the left-right
symmetry and absence of associativity/commutativity into account. We
discuss the continuation-passing-style (CPS) translation, comparing the
call-by-value and call-by-name evaluation regimes.We showthat in the lat-
ter (but not in the former) the types of LG are associated with appropriate
denotational domains to enable a proper treatment of scope construal.

1 Background

Lambek-style categorial grammars offer an attractive computational perspective
on the principle of compositionality: under the Curry-Howard interpretation,
� We thank Chris Barker and Ken Shan for sharing their view on continuation seman-

tics with us at an earlier presentation of Lambek-Grishin calculus at the workshop
Proof Theory at the Syntax-Semantics Interface (LSA Institute, Harvard/MIT, July
2005). Special thanks to Peter Selinger, for helpful discussion on the duality be-
tween call-by-value and call-by-name during GEOCAL’06 (Marseille-Luminy, Feb-
ruary 2006) and to Philippe de Groote for bringing Curien and Herbelin’s work to
our attention. All errors remain our own.

D. Leivant and R. de Queiroz (Eds.): WoLLIC 2007, LNCS 4576, pp. 53–71, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

54 R. Bernardi and M. Moortgat

derivations are associated with instructions for meaning assembly. In natural lan-
guage semantics, scope construal of generalized quantifier expressions presents an
ideal testing ground to bring out the merits of this approach. Scope construal ex-
emplifies a class of phenomena known as in situ binding. An in situ binder syntac-
tically occupies the position of a phrase of type A; semantically, it binds an A-type
variable in that position within a context of type B, producing a value of type C
as a result. The inference pattern of (1) (from [5]) schematically captures this be-
haviour in the format of a sequent rule. The challenge is to solve the equation for
the type alias q(A, B, C) in terms of the primitive type-forming operations.

Δ[x : A] ⇒ N : B Γ [y : C] ⇒ M : D

Γ [Δ[z : q(A, B, C)]] ⇒ M [y := (z λx.N)] : D . (1)

It is a poignant irony that precisely in the area of scope construal, the
performance of the original Lambek calculus (whether in its associative or non-
associative incarnation) is disappointing. For a sentence-level generalized quan-
tifier (GQ) phrase, we have A = np, B = C = s in (1). The type-forming
operations available to define q(np, s, s) are the left and right slashes. A first
problem is the lack of type uniformity. Given standard modeltheoretic assump-
tions about the interpretation of the type language, an assignment s/(np\s) to
a GQ phrase is associated with an appropriate domain of interpretation (a set
of sets of individuals), but with such a type a GQ is syntactically restricted to
subject positions: for phrase-internal GQ occurrences, context-dependent extra
lexical type assignments have to be postulated. Second, this lexical ambiguity
strategy breaks down as soon as one considers non-local scope construal, where
the distance between the GQ occurrence and the sentential domain where it
establishes its scope can be unbounded.

The solutions that have been proposed in the type-logical literature we con-
sider suboptimal. The type-shifting approach of Hendriks [6] and the multimodal
accounts based on wrapping operations of Morrill and co-workers [7,8] each break
the isomorphic relation between derivations and terms that is at the heart of the
Curry-Howard interpretation. Hendriks introduces a one-to-many dichotomy be-
tween syntactic and semantic derivations. Morrill makes the opposite choice: a
multiplicity of syntactically distinct implicational operations which collapse at
the semantic level.

The approach we develop in the sections below sticks to the minimal categorial
logic: the pure logic of residuation. We overcome the expressive limitations of the
Lambek calculi by lifting the single succedent formula restriction and move to a
symmetric system where the Lambek connectives (product, left and right division)
coexist with a dual family (coproduct, right and left difference). The communica-
tion between these two families is expressed in terms of Grishin’s [3] distributiv-
ity principles. Figure 1 schematically presents the outline of the paper. In §2 we
present LG in algebraic format and discuss the symmetries that govern the vo-
cabulary of type-forming operations. In §3 we present a ‘classical’ term language
for the LG type system, and we discuss how a term τ of type A is obtained as
the Curry-Howard image of an LG sequent derivation π. In §4 we then study the

Continuation Semantics for Symmetric Categorial Grammar 55

CPS interpretation of types and terms, comparing the dual call-by-value �·� and
call-by-name �·� regimes. Under the CPS interpretation, the classical terms for
LG derivations are transformed into terms of the simply typed lambda calculus
— the terms that code proofs in positive intuitionistic logic. The λ→ terms thus
obtained adequately reflect NL meaning composition, and (unlike the terms for
Multiplicative Linear Logic or its categorial equivalent LP) they are obtained in
a structure-preserving way. In §5 we illustrate the approach with a discussion of
scope construal. We investigate under what conditions the lexical constants of the
original Lambek semantics can be lifted to the call-by-value �·� and/or call-by-
name �·� level, and study how the λ→ terms one obtains after this transformation
and β normalisation encode the different possibilities for scope construal. In the
concluding section §6, we point to some directions for future work.

π ≈ τA
cbv ��

cbn

��

�τ� : �A�

�·�

��·∞

�����������

������
��

���
β

��
�τ� : �A�

�·�
��

β
�� λ→

Fig. 1. Outline of the paper

Relation to previous work. Lambek [9] was the first paper to bring Grishin’s
work under the attention of a wider public. Lambek’s bilinear systems are both
stronger and weaker than what we propose here: they have hard-wired associa-
tivity for ⊗, ⊕, which means that control over constituent structure is lost; in
addition, only half of the Grishin laws are taken into account (G1, G3 in Fig-
ure 2), an omission that precludes the account of non-peripheral scope construal
presented here. De Groote [10] introduced λμ calculus and continuations into the
linguistic discussion of scope construal; Barker and Shan, in a series of papers
([11,12,13] among others), have been advocating this approach for a variety of
semantic phenomena. We discuss the relation of our proposal to theirs in §6. Du-
ality between the call-by-value and call-by-name evaluation strategies has been
obtained in [14,4,15], among others. Our starting point is the Curien/Herbelin
system because, in contrast to the other cited works, it has implication and
difference as primitive operations.

2 The Lambek-Grishin Calculus

The calculus that we will use in this paper is presented in Figure 2. We refer to
this system as LG. In (2), one finds the extended vocabulary of LG: the famil-
iar Lambek operators ⊗, \, / are complemented with a family ⊕, 	, �. In verbal
communication, we pronounce B\A as ‘B under A’, A/B as ‘A over B’, B � A

56 R. Bernardi and M. Moortgat

as ‘B from A’ and A	B as ‘A less B’. As usual under the formulas-as-types per-
spective, we can view the expressions of (2) as types with ⊗, \, /, ⊕, 	, � as type-
forming operations, or as logical formulas, with ⊗, \, /, ⊕, 	, � as
connectives.

A, B ::= p | atoms: s sentence, np noun phrases, . . .

A ⊗ B | B\A | A/B | product, left vs right division (types)
tensor, left vs right implication (formulas)

A ⊕ B | A 	 B | B � A coproduct, right vs left difference (types)
cotensor, left vs right coimplication (formulas)

(2)

The LG type system exhibits rich symmetries, discussed in full in [16]. In the
present paper, two kinds of mirror symmetry will play an important role. The
first ·�� is internal to the ⊗ and ⊕ families and is order-preserving; the second
·∞ relates the ⊗ and ⊕ families and is order-reversing. We have p�� = p = p∞

and the (bidirectional) translation tables of (3).

�	
C/D A ⊗ B B ⊕ A D � C

D\C B ⊗ A A ⊕ B C 	 D
∞

C/B A ⊗ B A\C

B � C B ⊕ A C 	 A
(3)

(pre-order) A ≤ A

A ≤ B B ≤ C

A ≤ C

(residuation) A ≤ C/B iff A ⊗ B ≤ C iff B ≤ A\C

(dual residuation) C � B ≤ A iff C ≤ A ⊕ B iff A � C ≤ B

(grishin interaction)

(G1) (A � B) ⊗ C ≤ A � (B ⊗ C) C ⊗ (B � A) ≤ (C ⊗ B) � A (G3)

(G2) C ⊗ (A � B) ≤ A � (C ⊗ B) (B � A) ⊗ C ≤ (B ⊗ C) � A (G4)

Fig. 2. LG: symmetric Lambek calculus with Grishin interaction principles

Algebraically, the Lambek operators /, ⊗, \ form a residuated triple; likewise,
the �, ⊕, 	 family forms a dual residuated triple. The minimal symmetric cate-
gorial grammar consists of just the preorder axioms (reflexivity and transitivity
of ≤) together with these (dual) residuation principles.1

Grishin’s interaction principles. The minimal symmetric system is of limited use
if one wants to address the linguistic problems discussed in the introduction. In
a system with just the (dual) residuation principles, for every theorem of the
(non-associative) Lambek calculus, one also has its image under ·∞: A ≤ B iff

1 For a comprehensive overview (from a Display Logic perspective) of the substruc-
tural space of which LG is an inhabitant, the reader can consult [17]. De Groote
and Lamarche [18] present sequent calculus and proof nets for a negation-tensor-
par formulation of Classical Non-associative Lambek Calculus, of which LG is the
subsystem given by the polarities of the operators in (2).

Continuation Semantics for Symmetric Categorial Grammar 57

B∞ ≤ A∞. Interaction between the ⊗ and the ⊕ family, however, is limited to
gluing together theorems of the two families via cut. This limited interaction
means that a formula from the ⊕ family which is trapped in a ⊗ context (or
vice versa) will be inaccessible for logical manipulation.

The interaction principles proposed in [3] address this situation. Consider first
G1 and G2 in Fig 2. On the lefthand side of the inequality, a coimplication A�B
is hidden as the first or second coordinate of a product. The postulates invert
the dominance relation between ⊗ and �, raising the subformula A to a position
where it can be shifted to the righthand side by means of the dual residuation
principle. G3 and G4 are the images of G1 and G2 under ·��. Similarly, a left or
right implication trapped within a ⊕ context can be liberated by means of the
·∞ images in (4). Combined with transitivity, the Grishin postulates take the
form of inference rules (G1: from A � (B ⊗ C) ≤ D conclude (A � B) ⊗ C ≤ D,
etc.)

(G3)∞ A\(B ⊕ C) ≤ (A\B) ⊕ C
(G4)∞ A\(C ⊕ B) ≤ C ⊕ (A\B)

(C ⊕ B)/A ≤ C ⊕ (B/A) (G1)∞;
(B ⊕ C)/A ≤ (B/A) ⊕ C (G2)∞.

(4)
The Grishin laws manifest themselves in many forms. The key observation for
their usefulness in the analysis of scope construal lies in the fact that (B 	 C)�
A ≤ C/(A\B) is a theorem of LG. This means that a Lambek type s/(np\s) is
derivable from a (s	s)�np type; what can be done with the former can also be
done with the latter, but the coimplication type also has non-local capabilities
thanks to the Grishin interactions.

Apart from the interaction principles G1–G4 (and their duals) which will be
at the heart of our analysis of scope construal, Grishin considers other options
for generalizing Lambek calculus. The reader is referred to [16] for a discussion
of these options and their potential linguistic uses. Also in [16] one finds a de-
cision procedure for LG based on the monotonicity laws for the type-forming
operations, together with the residuation principles and the Grishin principles
in rule form.

3 Proofs and Terms

The term language we will use for LG derivations is a directional version of
Curien/Herbelin’s classical λμμ̃ terms which takes the ·�� symmetry into account.
The term language distinguishes terms, coterms (contexts) and commands. We
give the syntax of the term language in (5). For terms, we use x, M, N ; for
coterms (contexts) α, K, L; commands are cuts M ∗ L between a term M and
a coterm L. We overload the notation, writing x \ M versus M /x for the left
and right abstraction constructs; similarly for coabstraction. As discussed in §1,
the familiar lambda abstraction of λ→ will be reinstalled as a result of the CPS
transformation on the terms of (5).

58 R. Bernardi and M. Moortgat

x ∈ TermA if x ∈ VarA

(l abstraction) x\M ∈ TermB\A if x ∈ VarB , M ∈ TermA

(r abstraction) M/x ∈ TermA/B if x ∈ VarB , M ∈ TermA

(l coapplication) K � M ∈ TermB�A if K ∈ CoTermB , M ∈ TermA

(r coapplication) M � K ∈ TermA�B if K ∈ CoTermB , M ∈ TermA

(r shift) μα.(x ∗ K) ∈ TermB if α ∈ CoVarB , x ∈ VarA, K ∈ CoTermA

α ∈ CoTermA if α ∈ CoVarA

(l application) M � K ∈ CoTermB\A if K ∈ CoTermA, M ∈ TermB

(r application) K � M ∈ CoTermA/B if K ∈ CoTermA, M ∈ TermB

(l coabstr) α � K ∈ CoTermB�A if α ∈ CoVarB , K ∈ CoTermA

(r coabstr) K 	 α ∈ CoTermA�B if α ∈ CoVarB , K ∈ CoTermA

(l shift) μ̃x.(M ∗ α) ∈ CoTermA if x ∈ VarA, M ∈ TermB , α ∈ CoVarB

(5)

As in the case of the Lambek calculus, for LG we are interested in the resource-
sensitive sublanguage. This means that the (co)abstraction and (co)application
cases are subject to a linearity condition: the (co)variable bound in a (co)
abstraction occurs free exactly once in the body; in the (co)application case
the sets of free (co)variables of the term and coterm involved are disjoint. Our
use of cut is restricted to patterns x∗K (M ∗α) in the shift right (left) construct,
where μ (μ̃) obeys the single-bind restriction.

The dualities we discussed for the type system extend to the term language:
(6) and (7). The latter acts on the directional constructs; identity otherwise.

x∞ = α
(x \ M)∞ = M∞ 	 α
(M /x)∞ = α � M∞

(M � K)∞ = K∞
� M∞

(K � M)∞ = M∞
� K∞

(μβ.(x ∗ K))∞ = μ̃y.(K∞ ∗ α)

α∞ = x;
(K 	 α)∞ = x \ K∞;
(α � K)∞ = K∞ / x;
(M � K)∞ = K∞ � M∞;
(K � M)∞ = M∞ � K∞;

(μ̃y.(M ∗ α))∞ = μβ.(x ∗ M∞).
(6)

(M � K)�� = K�� � M�� (M � K)�� = K��
� M��;

(x \ M)�� = M�� / x (K 	 α)�� = α � K��.
(7)

3.1 LG Sequent Calculus

In Lambek calculus, sequents are statements Γ ⇒ B, where Γ is a binary tree
with formulas A1,. . . ,An at the yield, and B is a single formula. The structure-
building operation which puts together the antecedent tree is the counterpart
of the ⊗ logical operation. In LG, sequents Γ ⇒ Δ can have structures both
in the antecedent and in the succedent. The sequent interpunction (which we
write · ◦ ·) is the structural counterpart of ⊗ in the antecedent, and of ⊕
in the succedent. Notice that in the absence of associativity, ◦ is a binary
operation.

In the rules below, we decorate LG derivations with the terms of (5). We distin-

guish sequents Γ
M−−→ Δ[B] and cosequents Γ [A] K−−→ Δ with proof term M and

Continuation Semantics for Symmetric Categorial Grammar 59

coterm K respectively. A sequent (cosequent) has precisely one active succedent
(antecedent) formula. The active formula is unlabeled. The passive antecedent
(succedent) formulas are labeled with distinct variables xi (covariables αi).

For the axiomatic case, we distinguish two versions, depending on whether
the succedent or the antecedent is the active formula. The rules (�) and (�)
make it possible to shift the focus from antecedent to succedent or vice versa.
These rules are in fact restricted cuts, where one of the premises is axiomatic
(Axiom or Co-Axiom).

x : A
x−−→ A

Ax
A

α−−→ α : A
Co-Ax

. (8)

Γ [A] K−−→ Δ[α : B]

Γ [x : A]
μα.(x ∗ K)−−−−−−−−→ Δ[B]

(�)
Γ [x : A] M−−→ Δ[B]

Γ [A]
�μx.(M ∗ α)−−−−−−−−→ Δ[α : B]

(�)
.

(9)

Let us now consider the sequent left and right rules for the connectives. We
restrict attention to the (co)implication fragment, i.e. we only cater for ⊗ and
⊕ in their ‘structural’ form ◦ as antecedent resp. succedent punctuation. The
rules of use for the (co)implications are given in (10): these are two-premise
rules, introducing an implication (coimplication) in the antecedent (succedent).
Notice that we find the ·�� and ·∞ symmetries here at the level of the in-
ference rules, with ·∞ (·��) relating pairs of rules in the horizontal (vertical)
dimension.

B
K−−→ Δ Δ′ M−−→ Γ [A]

Δ′ M � K−−−−−→ Γ [(A 	 B) ◦ Δ]
(R)

Δ
M−−→ B Γ [A] K−−→ Δ′

Γ [Δ ◦ (B\A)] M � K−−−−−→ Δ′
(\L)

(R) ← ·∞ → (\L)
↑ ↑

·�� ·��
↓ ↓

(�R) ← ·∞ → (/L)

B
K−−→ Δ Δ′ M−−→ Γ [A]

Δ′ K � M−−−−−→ Γ [Δ ◦ (B � A)]
(�R)

Δ
M−−→ B Γ [A] K−−→ Δ′

Γ [(A/B) ◦ Δ] K � M−−−−−→ Δ′
(/L)

(10)

The rules of proof for the (co)implications are given in (10): these are one-
premise rules, introducing an implication (coimplication) in the succedent
(antecedent).

60 R. Bernardi and M. Moortgat

x : B ◦ Γ
M−−→ Δ[A]

Γ
x \ M−−−−→ Δ[B\A]

(\R) Γ [A] K−−→ Δ ◦ α : B

Γ [A 	 B] K � α−−−−−→ Δ
(L)

(\R) ← ·∞ → (L)
↑ ↑

·�� ·��
↓ ↓

(/R) ← ·∞ → (�L)

Γ ◦ x : B
M−−→ Δ[A]

Γ
M / x−−−−→ Δ[A/B]

(/R) Γ [A] K−−→ α : B ◦ Δ

Γ [B � A] α � K−−−−−→ Δ
(�L)

(11)

Observe that to prove the soundness of the coimplication (implication) rules of
proof from the algebraic presentation, one uses the Grishin interaction principles
to move the B subformula upwards through the ⊗ context (⊕ context), and then
shifts it to the succedent (antecedent) part via the residuation principles. The
Grishin interaction principles, in other words, are absorbed in these rules of proof.
We illustrate this in (12) for (\R), writing Γ • (Δ◦) for the formula equivalent of
an antecedent (succedent) structure. The vertical dots abbreviate a succession
of Grishin interaction steps.

B ⊗ Γ • ≤ Δ◦[A]
Γ • ≤ B\Δ◦[A]....
Γ • ≤ Δ◦[B\A] (12)

As indicated in §2, we will use the formula (B 	 C)� A to do the work of the
in situ binder schema q(A, B, C). (Alternatively, we could have used its ·�� dual
A	(C�B).) The (qL) and (qR) rules of Fig 3 have the status of derived inference
rules. We will use them in §5 to present proofs and terms in a more compact for-
mat. In §A we give a worked-out derivation of (B	C)�A ⇒ C/(A\B), together
with further abbreviatory conventions. The reader may want to check that a cut
of (qR) against (qL) can be rewritten with cuts on the subformulae A, B, C, as
required: cobind(MA, KB, βC)∗bind(xA, NB, LC) −→β M∗μ̃x.(μβ.(N∗K)∗L).
One should keep in mind that (qL) and (qR) are short-cuts, i.e. ways of abbrevi-
ating a sequence of n inference steps as a one-step inference. For some theorems
of LG, one cannot take a short-cut: their derivation requires the individual in-
ference rules for the connectives involved. The type transition (B 	 C) � A ⇒
((D\B) 	 (D\C)) � A is an example. Its derivation is given in [16].

4 Interpretation: Continuation Semantics

We turn now to an interpretation for LG derivations in the continuation-passing-
style (CPS). In the semantics of programming languages, CPS interpretation has

Continuation Semantics for Symmetric Categorial Grammar 61

C
L−−→ Δ Γ [x : A] N−−→ B

Γ [(B � C) � A]
bind(x, N, L)

−−−−−−−−−−−→ Δ

(qL)

�

C
L−−→ Δ Γ [x : A] N−−→ B

Γ [x : A] N � L−−−−−→ (B � C) ◦ Δ

(�R)

Γ [A]
eμx.((N � L) ∗ γ)

−−−−−−−−−−−−−→ γ : (B � C), Δ

�

Γ [(B � C) � A]
γ � (eμx.((N � L) ∗ γ))

−−−−−−−−−−−−−−−−−−→ Δ

(�L)

B
K−−→ Δ′ ◦ β : C Γ

M−−→ Δ[A]

Γ
cobind(M, K, β)

−−−−−−−−−−−−−→ Δ[Δ′ ◦ ((B � C) � A)]

(qR)

�

B
K−−→ Δ′ ◦ β : C

B � C
K � β−−−−−→ Δ′

(�L)
Γ

M−−→ Δ[A]

Γ
(K � β) � M

−−−−−−−−−−→ Δ[Δ′ ◦ ((B � C) � A)]

(�R)

Fig. 3. Derived inference rules for (B � C) � A ≈ q(A,B, C)

been a fruitful strategy to make explicit (and open to manipulation) aspects of
computation that remain implicit in a direct interpretation. In the direct in-
terpretation, a function simply returns a value. Under the CPS interpretation,
functions are provided with an extra argument for the continuation of the com-
putation. This explicit continuation argument is then passed on when functions
combine with each other. Key concepts, then, are “computation”, “continua-
tion” and “value” and they way they relate to each other for different evaluation
strategies.

Curien and Herbelin [4] develop the CPS interpretation for a classical system
with an implication and a difference operation; call-by-value (cbv) �·� and call-
by-name (cbn) �·� regimes are related by the duality between the implication
and difference operations. For LG we refine the Curien/Herbelin continuation
semantics to accommodate the left/right symmetry. We first consider the effect
of the CPS interpretation on the level of types, comparing a call-by-value (cbv)
and a call-by-name (cbn) regime; then we define the CPS interpretation on the
level of the terms of (5).

Types: call-by-value. The target type language has a distinguished type R of
responses, products and functions; all functions have range R. For each type A
of the source language, the target language has values VA = �A�, continuations
KA = RVA (functions from VA to R) and computations CA = RKA (functions
from KA to R).2 Notice that given the canonical isomorphism A × B → C ∼=
A → (B → C), one can also think of a VA\B as a function from A values to
B computations. For p atomic, �p� = p. In (13), the �·� translations for the
(co)implications are related in the vertical dimension by left/right symmetry ·��
and in the horizontal dimension by arrow reversal ·∞: right difference is dual to
left division, left difference dual to right division.

2 In the schemas (13) and (14) we use exponent notation for function spaces, for com-
parison with [4]. In the text, we usually shift to the typographically more convenient
arrow notation, compare AB versus B → A.

62 R. Bernardi and M. Moortgat

�A\B� = R�A	×R�B� �B 	 A� = �B� × R�A	;

�B/A� = RR�B�×�A	 �A � B� = R�A	 × �B�.
(13)

Types: call-by-name. Under the call-by-name regime, for each type A of the
source language, the target language has continuations KA = �A� and com-
putations CA = RKA . The call-by-name interpretation �·� is obtained as the
composition of the ·∞ duality map and the �·� interpretation: �A� � �A∞�. For
atoms, �p� = �p∞� = p. For the (co)implications, compare the cbv intepretation
(left) with the cbn interpretation (right) in (14).

�A\B� = R�A	×R�B�
R
A�×R�B�

= �B 	 A�;
�B 	 A� = �B� × R�A	 �B� × R
A� = �A\B�;

�B/A� = RR�B�×�A	 RR�B�×
A� = �A � B�;
�A � B� = R�A	 × �B� R
A� × �B� = �B/A�.

(14)

Notice that for the call-by-name regime, the starting point is the level of
continuations, not values as under call-by-value. Let’s take the definition of
B 	 A by means of example. For call-by-value, one starts from �B 	 A� (i.e.,
VB�A) that is a pair VB × KA; hence its continuation is KB�A = (VB ×
KA) → R and its computation is CB�A = ((VB × KA) → R) → R. On
the other hand, the call-by-name interpretation starts at the level of contin-
uations: �B 	 A� = (KA × CB) → R and from this the computation is obtained
as usual, viz. CB�A = ((KA × CB) → R) → R, hence obtaining a higher
order function than the one computed under the call-by-value strategy. This
difference will play an important role in the linguistic application of the two
strategies.

Terms: cbv versus cbn. Given the different CPS types for left and right (co)
implications, we can now turn to their interpretation at the term level. In (15),
we give the cbv interpretation of terms, in (16) of coterms. We repeat the typing
information from (5) to assist the reader. The call-by-name regime is the com-
position of call-by-value and arrow reversal: �·� � �·∞�. This CPS interpretation
of terms is set up in such a way that for sequents with yield A1, . . . , An ⇒ B,
the cbv interpretation represents the process of obtaining a B computation from
A1, . . . , An values; the cbn interpretation takes A1, . . . , An computations to a B
computation. See Propositions 8.1 and 8.3 of [4].

A �x� = λk.k x x : A

B\A �x \M� = λk.(k λ〈x, β〉.�M� β) x : B, M : A

A/B �M / x� = λk.(k λ〈β, x〉.�M� β) x : B, M : A

B � A �M � K� = λk.(�M� λy.(k 〈y, �K�〉)) M : A, K : B

A 	 B �K � M� = λk.(�M� λy.(k 〈�K�, y〉)) M : A, K : B

B �μα.(x ∗ K)� = λα.(�K� x) α : B, x, K : A

(15)

Continuation Semantics for Symmetric Categorial Grammar 63

A �α� = α α : A

B � A �α � K� = λ〈α, x〉.(�K� x) α : B, K : A

A 	 B �K 	 α� = λ〈x, α〉.(�K� x) α : B, K : A

B\A �M � K� = λk.(�M� λx.(k 〈x, �K�〉)) M : B, K : A

A/B �K � M� = λk.(�M� λx.(k 〈�K�, x〉)) M : B, K : A

A �μ̃x.(M ∗ α)� = λx.(�M� α) x : A, α, M : B
(16)

5 Application: Scope Construal

In this section we turn to the linguistic application. Our aim is twofold. First we
show that a type assignment (s	s)�np for generalized quantifier phrases solves
the problems with s/(np\s) mentioned in §1: the type (s 	 s) � np uniformly
appears in positions that can be occupied by ordinary noun phrases, and it gives
rise to ambiguities of scope construal (local and non-local) in constructions with
multiple GQ and/or multiple choices for the scope domain. Second, we relate
the CPS interpretation to the original interpretation for Lambek derivations
by defining translations �·�, �·� lifting the lexical constants from the type they
have in the original Lambek semantics to the type required by the cbv or cbn
level. To realize this second aim, we assume that the result type R is the type
of truth values. For the rest our modeltheoretic assumptions are standard. The
domain of interpretation for np values is E (the set of individuals), for s values
it is {0, 1} (the set of truth values). Out of E and {0, 1} one then constructs
complex domains in terms of function spaces and Cartesian products. In the
case of the original Lambek semantics (or Montague grammar) these domains
of interpretation are obtained indirectly, via a mapping between syntactic and
semantic types where np′ = e, s′ = t and (A\B) = (B/A) = A′ → B′, with
Dome = E and Domt = {0, 1}.

We start with a fully worked-out example of a ‘S goes to NP VP’ combina-
tion, ‘Alice left’. The official sequent derivation is given in (17). Consulting the
dictionary of Table 1, we fill in the lexical items alice and left of type np and
np\s respectively for the x and y parameters of the proof term. Call the resulting
term M . We now compare the CPS transformation of M under the cbv and cbn
execution regimes as defined in (15) and (16).

x : np
x−−→ np s

α−−→ α : s

x : np ◦ np\s
x � α−−−−→ α : s

(\L)

x : np ◦ y : np\s
μα.(y ∗ (x � α))−−−−−−−−−−−−→ s

(�)
(17)

Consider first cbv, on the left in Figure 4. Recall that under the cbv regime
a sequent with yield A1, . . . , An ⇒ B maps the Ai values to a B computation.
A value of type np\s (Vnp\s), as we see in Table 1, is a function taking a pair
of an np value and an s continuation to the result type R, i.e. Vnp × Ks → R.

64 R. Bernardi and M. Moortgat

μα.(y ∗ (x � α))

lex

��
μα.(left ∗ (alice � α)) (= M)

�M�
cbv

�������������������
�M�=�M∞�

cbn
������������������������

λc.(�left� 〈�alice�, c〉)

�·�
��

λc.(�left� 〈c, �alice�〉)

�·�
��

λc.(λ〈x, c′〉.(c′ (left x)) 〈alice, c〉)

β �������������������
λc.(λ〈c′, q〉.(q λx.(c′ (left x))) 〈c, λc.(c alice)〉)

β		��������������������

λc.(c (left alice))

Fig. 4. ‘Alice left’: cbv versus cbn

Combining Vnp and Vnp\s we obtain an s computation, i.e. (s → R) → R,
by giving the Vnp\s function the pair it requires, and abstracting over the Ks

component. This is what we see in �M� = λc.(�left� 〈�alice�, c〉). The next step
is to relate the cbv CPS interpretation to the original semantics of the Lambek
calculus. In the original semantics, ‘Alice’ and ‘left’ would be interpreted in
terms of constants of type e and e → t respectively. The mapping �·� in Table 2
produces terms of type Vnp and Vnp\s from constants alice and left of type e
and e → t. Substituting these in �M� (and β conversion) gives λc.(c (left alice)).
Combined with the trivial s continuation (the identity function on {0, 1}) one
obtains (left alice).

On the right in Figure 4 we have the cbn interpretation. Under the cbn regime,
a sequent with yield A1, . . . , An ⇒ B maps Ai computations to a B computation.
We obtain the cbn interpretation by duality: �M� = �M∞� = �μ̃x.((x � alice) ∗
left)�, i.e. we read off the cbn interpretation from the mirror image derivation
(np◦np\s ⇒ s)∞, which is s ⇒ s	np◦np. For the lexical items involved, Table 1
gives the continuation types �A� corresponding to the source language types A.
To obtain the required types for A computations, we take functions from these
continuations into R. Specifically, the verb �left� in this case is interpreted as a
function taking a pair Ks × Cnp into R; the noun phrase argument �alice� also
is of type Cnp, i.e. (Vnp → R) → R. Combining these produces a result of type
Cs again by abstracting over the Ks component of the pair given to the verb:

Table 1. Lexical entries. �A� is a value of type A; �A� is a continuation of type A.

word type alias �·� cbv �·� cbn
alice, lewis np �np� �np�

left np\s iv R�np�×R�s� �s� × R�np�

teases (np\s)/np tv RR�iv�×�np� R�np� × �iv�
thinks (np\s)/s tvs RR�iv�×�s� R�s� × �iv�

somebody s/(np\s) su RR�s�×�iv� R�iv� × �s�

Continuation Semantics for Symmetric Categorial Grammar 65

Table 2. Lifting lexical constants: cbv regime

�alice� = alice
�lewis� = lewis
�left� = λ〈x, c〉.(c (left x))

�teases� = λ〈v, y〉.(v λ〈x, c〉.(c ((teases y) x)))
�somebody� = λ〈c, v〉.(∃ λx.(v 〈x, c〉))

�M� = λc.(�left� 〈c, �alice�〉). The mapping �·� in Table 3 produces terms of
type �np� → R and �np\s� → R (i.e. computations) from constants alice and
left of type e and e → t. Substituting these in �M� (and β conversion) gives the
same result as what we had under the cbv regime.

Table 3. Lifting lexical constants: cbn regime

�alice� = λc.(c alice)
�lewis� = λc.(c lewis)

�left� = λ〈c, q〉.(q λx.(c (left x)))
�teases� = λ〈q, 〈c, q′〉〉.(q′ λx.(q λy.(c ((teases y) x))))

�somebody� = λ〈v, c〉.(∃ λx.(v 〈c, λc′.(c′ x)〉))

The reader is invited to go throught the same steps for ‘Alice teases Lewis’.
The term for the derivation is μα.(teases ∗ ((alice � α) � lewis)) (= M), with
the CPS interpretations in (18). The variable v is of type Knp\s, a verb phrase
continuation. Consulting the cbv and cbn dictionaries of Tables 2 and 3, we
can substitute the required lambda terms for the lexical constants. After this
substitution and β reduction, the cbv and cbn interpretations converge on λc.
(c ((teases lewis) alice)).

�M� = λc.(�teases� 〈λv.(v 〈�alice�, c〉), �lewis�〉);
�M� = λc.(�teases� 〈�lewis�, 〈c, �alice�〉〉). (18)

In Fig 5 we highlight the type structure of the CPS interpretations for this
sentence, showing that (i) call-by-value produces terms consisting of function
applications of values to pairs of values and continuations (left tree), whereas
(ii) call-by-name produces terms consisting of the application of computation to
pairs of computations and continuation types. The observed difference will be
relevant for the interpretation of generalized quantifiers expressions to which we
now turn.

Scope construal: simple subject GQ. In Table 1, one finds the CPS image un-
der cbv and cbn of a Lambek-style s/(np\s) type assignment for a GQ expres-
sion such as ‘somebody’. The corresponding lexical recipes for the cbv and cbn
regimes is given in Tables 2 and 3, respectively. We leave it as an exercise for the
reader to work through a derivation with these types/terms and to verify that a
type assignment s/(np\s) is restricted to subject position and to local scope, as

66 R. Bernardi and M. Moortgat

Kt → R = Ct

R

V(e→(e→t))

teases

Ke→t × Ve

Ke→t

R

v : Ve→t Ve × Kt

Ve

alice

c : Kt

Ve

lewis

Kt → R = Ct

R

C(e→(e→t))

teases

Ce × (Kt × Ce)

Ce

lewis

Kt × Ce

c : Kt Ce

alice

Fig. 5. Type schemas for cbv (left) versus cbn (right)

we saw in §1. Let us turn then to derivations with the type assignment we have
proposed: (s 	 s) � np (alias: gq) — a type assignment that will accommodate
both local and non-local scope construals. In (19) we compute the term for the
derivation of ‘somebody left’, using the abbreviatory conventions discussed in
the Appendix (e.g., the 1 in step 2. stands for the proof term computed at
step 1.); in (20) its CPS transformation under cbv and cbn. (z : Vs, q : Cnp,
y : Ks�s)

1. μα.(left∗(x�α)) s◦

np

x

(np\s)

left

2. μβ.(somebody∗bind(x, 1 , β))) s◦

gq

somebody

(np\s)

left

(19)

2 = N �N� = λc.((�left� 〈π2�somebody�, λz.(π1�somebody� 〈z, c〉)〉);
�N� = λc.((�somebody� λ〈q, y〉.(y 〈c, λc′.(�left� 〈c′, q〉)〉)).

(20)
The difference between cbv and cbn regimes observed above with respect to

�·�, �·� in the term in (18) turns out to be of particular interest here. In (21) we
give Vgq and Kgq for the cbv and cbn interpretations respectively. For cbv, this
is a pair of an s	s continuation and an np value. This np value would have to be
realised as the variable bound by the (logical) constant ∃ (of type (e → t) → t) in
the �·� translation. Such a binding relation cannot be established from the Ks�s

component of the pair. For cbn, the situation is different: �gq� has the required
structure to specify the lifted lexical recipe of (22). Q is a function taking a pair
of a np computation and an (s 	 s) continuation to the result type R. In the
body of the term, we apply Q to the Cnp term λk.(k x), where x is the e type
variable bound by ∃, and to the closed term λ〈c, p〉.(p c) obtained by applying

Continuation Semantics for Symmetric Categorial Grammar 67

the Cs variable p to the Ks variable c. In combination with �left� given above,
�N� simplifies to λc.(∃ λx.(c (left x))) as required. From here on, we stay with
the cbn regime.

�gq� = R�s	×R�s� × �np� �gq� = RR�np�×R�s�×R�s�

. (21)

�somebody� = λQ.(∃ λx.(Q 〈λk.(k x), λ〈c, p〉.(p c)〉)). (22)

Ambiguous scope construal. First, compare ‘Alice teases Lewis’ with ‘everyone
teases somebody’ involving two GQ expressions. Starting from 1 μα.(teases ∗
((x�α)�y)), the derivation can be completed in two ways, depending on whether
we first bind the object variable y, then the subject variable x, or vice versa.
On the left the subject wide scope reading, on the right the object wide scope
reading.

1. s◦

np

x

tv

teases

np

y
μα.(teases ∗ ((x � α) � y))

2a. s◦

np

x

tv

teases

gq

somebody

μβ.(somebody ∗ bind(y, 1 , β))

3a. s◦

gq

everybody

tv

teases

gq

somebody

μγ.(everybody ∗ bind(x, 2a , γ)))

2b. s◦

gq

everybody

tv

teases

np

y

μγ.(everybody ∗ bind(x, 1 , γ))

3b. s◦

gq

everybody

tv

teases

gq

somebody

μβ.(somebody ∗ bind(y, 2b , β)))

By applying the method described with previous examples, one obtains the
∀/∃ reading for (3a) and the ∃/∀ reading for (3b). First, the terms are interpreted
by means of the definitions in (15) and (16) obtaining the following results:

�3a� = λc.(�evro.� λ〈q, y〉.(�smo.� λ〈p, z〉.(y 〈c, λc′.(z 〈c′, λc′′.(�teases� 〈p, 〈c′′, q〉〉)〉)〉)));
�3b� = λc.(�smo.� λ〈p, z〉.(�evro.� λ〈q, y〉.(z 〈c, λc′.(y 〈c′, λc′′.(�teases� 〈p, 〈c′′, q〉〉)〉)〉))). (23)

where the variables p, q of type Cnp are for the object and subject respec-
tively. The y, z variables are s 	 s continuations, the (primed) c are s con-
tinuations. Secondly, the �·� translation is applied, and the readings reduce
to λc.(∀ λx.(∃ λy.(c ((teases y) x)))) and λc.(∃ λy.(∀ λx.(c ((teases y) x)))),
respectively.

68 R. Bernardi and M. Moortgat

Local versus non-local scope. Consider the two readings for the sentence ‘Alice
thinks somebody left’. The ambiguity arises here from the fact that in this con-
text the GQ can non-deterministically select the embedded or the main clause
s as its scope domain. We give the terms for these two derivations (local (a)
versus non-local (b) scope) in (24), reusing the components 1 and 2 of (19),
and the cbn interpretations of these terms in (25). These can be further reduced
to (26) via a lexical recipe �thinks� = λ〈p, 〈c, q〉〉.(q λx.(c ((thinks (p λc.c)) x)))
expressed in terms of a constant thinks of type t → (e → t).

a. μγ.(thinks ∗ ((alice � γ) � 2));
b. μγ.(somebody ∗ bind(x, μγ′.(thinks ∗ ((alice � γ′) � 1)), γ)).

(24)

�a� = λc.(�thinks� 〈λc′.(�somebody� λ〈q, y〉.(y 〈c′, λc′′.(�left� 〈c′′, q〉)〉)), 〈c,�alice�〉〉);
�b� = λc.(�somebody� λ〈q, y〉.(y 〈c, λc′.(�thinks� 〈λc′′.(�left� 〈c′′, q〉), 〈c′,�alice�〉〉)〉)). (25)

�a� �β λc.(c ((thinks (∃ left)) alice));
�b� �β λc.(∃ λy.(c ((thinks (left y)) alice))). (26)

6 Conclusions, Further Directions

In this paper we have moved from asymmetric Lambek calculus with a single
succedent formula to the symmetric Lambek-Grishin calculus, where both the
antecedent and the succedent are formula structures, configured in terms of ⊗
and ⊕ respectively, and where the ⊗ and ⊕ environments can interact in a
structure-preserving way. This move makes it possible to import into the field of
natural language semantics the powerful tools of λμ-calculus. The main attrac-
tion of the proposed continuation semantics, in our view, lies in the fact that LG
allows us to fully exploit the duality between Lambek’s directional /, \ implica-
tions and the corresponding directional �, 	 difference operations, at the level of
syntax and at the level of semantics. We thus restore Curry’s original idea of an
isomorphism between proofs and terms, rather than the weaker homomorphic
view of standard Lambek (or Montagovian) semantics.

Our approach differs in a number of respects from the related work cited in
§1. Abstracting away from the directionality issue, de Groote’s original applica-
tion of λμ calculus to scope construal syntactically types generalized quantifier
phrases as np with meaning representation μαKe(∃ α). As a result, a sentence
with multiple GQ phrases is associated with a unique parse/term; the multi-
ple readings for that term are obtained as a result of the non-confluence of λμ
calculus, which is considered as a feature, not a bug. Our approach in contrast
is true to the principle that multiple readings can only arise as the images of
distinct proofs, given the Curry-Howard isomorphism between proofs and terms.
Barker [19,11] uses a simplified continuation semantics, which lifts types A to
(A → R) → R ‘externally’, without applying the CPS transformation to the
internal structure of complex types. This breaks the symmetry which is at the
heart of our dual treatment of /, \ vs �, 	. The structural-rule account of scope
flexibility in [12,13] suffers from commutativity problems.

Continuation Semantics for Symmetric Categorial Grammar 69

The approach described here, like Hendriks’s type-shifting approach, creates
all combinatorial possibilities for scope construal. However, it is well known that,
depending on the choice of particular lexical items, many of these construals will
in fact be unavailable. Bernardi [20] uses the control modalities ♦, � to calibrate
the scopal behaviour of particular classes of GQ expressions. Adding ♦, � and
a pair of dually residuated modalities to LG is straightforward. In a follow-up
paper, we plan to study the continuation semantics of these operations, relating
them to the shift and reset constructs one finds in the theory of functional
programming languages and that have been considered in [11,13].

Finally, the interpretation given here construes scopal ambiguities in a static
setting. In a recent paper, de Groote [21] develops a continuation-based approach
towards dynamic interpretation. A natural topic for further research would be to
investigate how to incorporate this dynamic perspective in our setting, and how
to extend the approach of [21] with the difference operations and the concomitant
Grishin interaction principles.

References

1. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154–170 (1958)

2. Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure of
Language and Its Mathematical Aspects. American Mathematical Society, 166–178
(1961)

3. Grishin, V.: On a generalization of the Ajdukiewicz-Lambek system. In: Studies
in Nonclassical Logics and Formal Systems. Nauka, Moscow, pp. 315–334 [Eng-
lish translation in Abrusci and Casadio (eds.) Proceedings 5th Roma Workshop,
Bulzoni Editore, Roma, 2002] (1983)

4. Curien, P., Herbelin, H.: Duality of computation. In: International Conference on
Functional Programming (ICFP’00), pp. 233–243 [2005: corrected version] (2000)

5. Moortgat, M.: Generalized quantifiers and discontinuous type constructors. In:
Bunt, H., van Horck, A. (eds.) Discontinuous Constituency, pp. 181–207. Walter
de Gruyter, Berlin (1996)

6. Hendriks, H.: Studied flexibility. Categories and types in syntax and semantics.
PhD thesis, ILLC, Amsterdam University (1993)

7. Morrill, G.: Discontinuity in categorial grammar. Linguistics and Philosophy. 18,
175–219 (1995)

8. Morrill, G., Fadda, M., Valentin, O.: Nondeterministic discontinuous Lambek cal-
culus. In: Proceedings of the Seventh International Workshop on Computational
Semantics (IWCS7), Tilburg (2007)

9. Lambek, J.: From categorial to bilinear logic. In: Schröder-Heister, K.D.P. (ed.)
Substructural Logics, pp. 207–237. Oxford University Press, Oxford (1993)

10. de Groote, P.: Type raising, continuations, and classical logic. In: van Rooy, R.,
(ed.) Proceedings of the Thirteenth Amsterdam Colloquium, ILLC, Universiteit
van Amsterdam, pp. 97–101 (2001)

11. Barker, C.: Continuations in natural language. In: Thielecke, H. (ed.) CW’04: Pro-
ceedings of the 4th ACM SIGPLAN continuations workshop, Tech. Rep. CSR-04-1,
School of Computer Science, University of Birmingham, pp. 1–11 (2004)

70 R. Bernardi and M. Moortgat

12. Barker, C., Shan, C.: Types as graphs: Continuations in type logical grammar.
Language and Information 15(4), 331–370 (2006)

13. Shan, C.: Linguistic side effects. PhD thesis, Harvard University (2005)
14. Selinger, P.: Control categories and duality: on the categorical semantics of the

lambda-mu calculus. Math. Struct. in Comp. Science 11, 207–260 (2001)
15. Wadler, P.: Call-by-value is dual to call-by-name. In: ICFP, Uppsala, Sweden (Au-

gust 2003)
16. Moortgat, M.: Symmetries in natural language syntax and semantics: the Lambek-

Grishin calculus (this volume). In: Leivant, D., de Queiros, R. (eds.) WoLLIC’07.
Proceedings 14th Workshop on Logic, Language, Information and Computation.
LNCS, vol. 4576, Springer, Heidelberg (2007)

17. Goré, R.: Substructural logics on display. Logic Journal of IGPL 6(3), 451–504
(1997)

18. de Groote, P., Lamarche, F.: Classical non-associative Lambek calculus. Studia
Logica 71, 335–388 (2002)

19. Barker, C.: Continuations and the nature of quantification. Natural language se-
mantics 10, 211–242 (2002)

20. Bernardi, R.: Reasoning with Polarity in Categorial Type Logic. PhD thesis,
Utrecht Institute of Linguistics OTS (2002)

21. de Groote, P.: Towards a Montagovian account of dynamics. In: Proceedings SALT
16, CLC Publications (2006)

A Shorthand Format for Sequent Derivations

As an example of the LG term assignment, (27) gives the derivation showing
how one obtains a Lambek-style GQ type C/(A\B) from a (B 	 C) � A source.

C
α−−→ α : C

z : A
z−−→ A B

γ−−→ γ : B

z : A ◦ A\B
z � γ−−−−→ γ : B

(\L)

z : A ◦ y : A\B
μγ.(y ∗ (z � γ))−−−−−−−−−−−→ B

(�)

z : A ◦ y : A\B
(μγ.(y ∗ (z � γ))) � α−−−−−−−−−−−−−−−→ B 	 C ◦ α : C

(R)

A ◦ y : A\B
eμz.((μγ.(y ∗ (z � γ))) � α) ∗ β)−−−−−−−−−−−−−−−−−−−−−−→ β : B 	 C ◦ α : C

(�)

(B 	 C) � A ◦ y : A\B
β � (eμz.((μγ.(y ∗ (z � γ))) � α) ∗ β))−−−−−−−−−−−−−−−−−−−−−−−−−−−→ α : C

(�L)

x : (B 	 C) � A ◦ y : A\B
μα.(x ∗ (β � (eμz.((μγ.(y ∗ (z � γ))) � α) ∗ β)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ C

(�)

x : (B 	 C) � A
(μα.(x ∗ (β � (eμz.((μγ.(y ∗ (z � γ))) � α) ∗ β)))) / y−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ C/(A\B)

(/R)
(27)

This example shows that except for the most simple derivations, the sequent
tree format soon becomes unwieldy. Below we introduce a more user-friendly
line format, which graphically highlights the tree structure of the antecedent
and succedent parts. In the line format, each row has (a) a line number, (b) the
(co)term for the currently active formula, and the antecedent (c) and succedent
(d) structures in tree format. The cursor singles out the currently active formula.
It takes the form ·• in the antecedent, and ·◦ in the succedent. With n we re-
fer to the (co)term at line n. Compare (27) with the derivation for a sentence
‘Somebody left’ in line format.

Continuation Semantics for Symmetric Categorial Grammar 71

line (co)term lhs tree rhs tree
1. x np

x

np◦

2. α s• s

α

3. 1 � 2
np

x

(np\s)•
s

α

4. μα.(left ∗ 3)
np

x

(np\s)

left

s◦

5. β s• s

β

6. 4 � 5
np

x

(np\s)

left

(s 	 s)◦ s

β

7. μ̃x.(6 ∗ γ)
np• (np\s)

left

(s 	 s)

γ

s

β

8. γ � 7
((s 	 s) � np)• (np\s)

left

s

β

9. μβ.(somebody ∗ 8)
((s 	 s) � np)

somebody

(np\s)

left

s◦

We reduce the length of a derivation further using the (qL) and (qR) rules of
inference discussed in the main text and folding: a sequence of n (/, \R) (re-
spectively (, �L)) one-premise inferences is folded into a one-step one-premise
inference; a (�) step (or (�) respectively) followed by a sequence of n (/, \L)
(respectively (, �R)) two-premise inferences is folded into a one-step n + 1
premise inference; an n premise inference with m non-lexical axiom premises is
contracted to an n−m premise inference. Where the succedent (antecedent) tree
is just a point, we write the highlighted formula as the root of the antecedent
(succedent) tree. The result of applying these conventions for the example sen-
tence ‘somebody left’ is (19) in the main text.

	Background
	The Lambek-Grishin Calculus
	Proofs and Terms
	LG Sequent Calculus

	Interpretation: Continuation Semantics
	Application: Scope Construal
	Conclusions, Further Directions
	Shorthand Format for Sequent Derivations

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

