
Selectively Using Linguistic Resources
throughout the Question Answering Pipeline

Raffaella Bernardia Valentin Jijkounb Gilad Mishneb

Maarten de Rijkeb

aKRDB Research Centre, Faculty of Computer Science, Free University of Bozen-Bolzano,
Piazza Domenicani 3, 39100 Bolzano, Italy

bLanguage & Inference Technology Group, University of Amsterdam, Nieuwe
Achtergracht 166, 1018 WV Amsterdam, The Netherlands

Abstract

It is generally believed that question answering can benefit from natural language process-
ing methods. So far, however, there have been few systematic studies of this conjecture.
We report on ongoing work that is aimed at understanding the contribution of linguisti-
cally informed modules and resources to the overall performance of a generic question
answering system. Specifically, we describe the ways in which currently we use linguisti-
cally motivated techniques, and demonstrate the impact of integrating, or not integrating,
these techniques on the overall performance of our question answering system. Evaluation
results are based on the TREC 2002 and TREC 2003 question sets.

Key words: Question Answering, Natural Language Processing, Evaluation

1 Introduction

For many years, researchers in information retrieval (IR) have tried to improve
retrieval effectiveness through the use of natural language processing (NLP) tech-
niques. By and large, the outcome of these attempts has been that most NLP meth-
ods do not improve IR effectiveness: NLP is often domain-specific and non-portable
and effective IR depends upon properties of documents and queries that obviate
some NLP techniques. Some have claimed that NLP errors hurt more than NLP
techniques help [8], and that NLP is likely to be more useful for problems other
than strict document retrieval [2].Question Answering(QA) is believed to be such
a domain.

In this paper we report on ongoing work aimed at gaining insights into the poten-
tial contribution of linguistically informed modules and resources to the question



answering process, and, in particular, to the performance of our QA system. We ex-
ploit natural language regularities at different levels. For instance, at the syntactic
level, we use part-of-speech (POS) tagging of questions for identifying the question
type. At the semantic level, we use hypernyms in WordNet both for question clas-
sification and off-line information extraction. Furthermore, for our participation in
the TREC 2003 QA track we used POS information to transform list questions into
factoid questions.

We provide three types of discussion on the usage of linguistic resources in our
QA efforts. For some subtasks, such as classifying questions and pre-processing
list questions, linguistic knowledge is absolutely essential to obtain reasonable per-
formance, so we will not try to compare the end-to-end accuracy of the whole
system with and without using NLP methods for such components; instead, we
give a detailed description of the ways in which we use language resources in these
components. A second type of discussion concerns modules (including off-line in-
formation extraction, table lookup, and answer pattern generation) where we do
evaluate the performance of the QA system with different settings, to see the im-
pact of using NLP techniques. And the third type concerns a comparison of the
streams that together make up our QA system; each of these streams is a small QA
system in itself, the main differences being the amount of linguistic information
employed by the individual streams.

The remainder of this paper is organized as follows. We start by pointing to some re-
lated work, and describing our experimental set-up. Then, in Section 4 we describe
modules for question classification and list question tranformations that cannot do
without linguistic knowledge in our architecture. Then, in Section 5 we evaluate
the impact of linguistic informedness on off-line answer extraction (and lookup)
and search pattern generation. In Section 6 we compare the performance of differ-
ent streams (embodying different QA strategies) for different question types. We
conclude in Section 7.

2 Related Work

The belief that QA is an application in which sophisticated linguistic techniques
will make a significant positive contribution has not undergone wide empirical
verification so far. One system consistently manages to achieve high scores at the
TREC QA task, using a complex architecture heavily employing NLP and AI tech-
nology [6]. But so far any attempts to replicate its results have failed. In general,
though, linguistically-impoverished systems have outperformed those that attempt
syntactic or semantic analysis. In support of those techniques, Katz and Lin [3] have
looked closer at two linguistic phenomena in which syntactic relations do prove to
be effective. In contrast, we don’t restrict ourselves to questions potentially affected
by specific linguistic phenomena, but eventually aim to understand the impact of

51



using linguistically informed techniques throughout the QA pipeline. In that sense,
our paper is similar in spirit to [4] where the authors (amongst many other things)
systematically explore the use of word overlap as a metric for ranking answers.

3 Experimental Setting

Most open domain QA systems implement some variation of a pipeline architecture
with the following components: question analyzer (identifying the type of entity the
question is looking for, along with the question focus), retrieval component (identi-
fying documents that are likely to contain an answer), answer extraction (extracting
entities of the appropriate type), and answer selection (filtering and reranking can-
didate answers, and selecting the best one).

Some answering strategies are beneficial to all question types, and others only for
a subset. For this reason we implemented amulti-streamsystem: a system that
includes a number of separate and independent subsystems, each of which is a
complete standalone QA system that produces ranked answers, but not necessarily
for all types of questions. The system’s final answer is then taken from the com-
bined pool of candidates. Our question answering system consists of several inde-
pendent streams, ranging from linguistically informed to pattern-based to mostly
data-driven:

Table Lookup: use pre-constructed specialized knowledge bases;
Pattern Match: search for answer patterns generated from a question (against the

Web or against the TREC ACQUAINT corpus);
Tequesta: use Tequesta [7], a linguistically informed QA system for English; and
N-grams: generate multiple queries from the input question, using permutations of

word n-grams, and retrieve snippets of relevant documents, either from the Web
or from the corpus.

While each of the streams in our multi-stream architecture is a question answering
system in its own right, they share a number of components, including a POS-tagger
(we use Helmut Schmidt’s TreeTagger), an NE-tagger, and filtering and reranking
modules.

4 Using POS tags for Question Classification and List Questions

Question classification plays an important role in the performance of our QA sys-
tem since it effects all subsequent steps. E.g., the type assigned to a question deter-
mines the table where we look for an answer, and also directs the pattern matching

52



and web answer streams, as well as Tequesta. Moreover, in the case of list ques-
tions, it also effects the question transformation rules, as we explain below. There-
fore, it is essential to obtain optimal results for the question classification task and
minimize the number of questions classified asunknown . Due to the limited com-
plexity of natural language questions (compared to the full texts where the answers
should be found), to tackle this problem we can exploit natural language syntax and
semantics regularities. We use POS tagging and WordNet hypernyms, respectively.

Question Classification. The system associates an incoming question with one
of the 31 question types. The question classification is done in two steps: first, using
pattern matching rules and second, using POS tags and WordNet. Here we concen-
trate on the latter step, since this is where linguistic knowledge is at work. We
identified a set of syntactic regularities which allowed us to extract the question’s
targetand then search in WordNet for the corresponding type. For instance, using
rules based on POS sequences we extractcompanyfrom the question1600. What
automobile company makes the Spider?, look for WordNet hypernyms ofcompany
matching one of our predefined types, and then classify the question asorga-
nization . As a case study we consider the performance of the POS-WordNet
combination on a subset of the TREC 2002 questions. In total, 64 questions out
of 500 were typed asunknown by the pattern matching strategy. Most of these
questions werewhat/which-questions. All 64 questions received a type in the sec-
ond classification step, and furthermore, 52 questions (81%) were typed correctly.
The system failed to classify questions like1572. For whom was the state of Penn-
sylvania named?and1633. What roller coaster is the fastest in the world?, since
it detected “state” and “coaster” as target words and assigned the incorrect types
organization andperson , respectively.

In general, pattern matching by itself is quite accurate in assigning fine-grained
question-types corresponding to some fixed patterns. For instance, it correctly clas-
sified questions of types “also-known-as”, “known-for”, “date-of-birth”, “date-of-
death”, “abbreviation”. On the other hand, the combination of syntactic and seman-
tic information performed well with respect to more general types such as “capital”,
“language”, “organization”, “person” and similar.

List questions. As of TREC 2003, list questions are part of the main task. An-
swering such questions is more difficult than answering general factoids, because
the number of items to be returned is unknown and the system does not know when
to stop searching. As a first step towards answering list questions, we reduce the
problem to the problem of answering factoids, since a correct answer to a list ques-
tion can be thought of as the list of the answers to a single “equivalent” factoid
question. For instance, question2034. List female astronauts or cosmonautscan be
answered by combining the answers given to the questionWho is a female astro-
naut or cosmonaut?To this end, we use POS tagging to transform list questions into

53



factoid. A preliminary type is assigned to the list-questions by means of the POS-
WordNet strategy explained above. Then, different transformation rules are applied
to different types. For instance, questions typed asperson are transformed into
who-questions, whereas the ones typed asorganization are transformed into
which-questions. Furthermore, morphological transformation rules are applied to
preserve number agreement. The factoid questions generated in this way are then
treated as usual.

Summing up, linguistic knowledge proved to be of help in determining the focus
words and the type of the questions. However, as for the latter task, it is not clear
yet whether it can completely replace the moread-hocbut safer pattern matching.
In particular, it seems that the latter strategy performs better with respect to fine-
grained question types, such as “date-of-birth” and “abbreviations.” And in general,
these two approaches to the question classification task appear to be complemen-
tary.

5 To Become Linguistically Informed or Not

We now describe some modules that can operate with or without being linguisti-
cally informed: off-line answer extraction, table lookup, and answer pattern gener-
ation. We evaluate the end-to-end performance of the system using these modules
either with or without activating linguistic resources. By comparing the overall ac-
curacy in these two settings, we aim to identify components that benefit from lin-
guistically informed techniques.

Off-line Answer Extraction. One of the streams of our multi-stream QA system
(Table Lookup) uses tables containing specific information extracted from the col-
lection. Below, we describe the table lookup mechanism in detail. First, though, we
focus on the impact of using linguistic knowledge during thecreationof the tables.
As a case study we consider the performance of theTable Lookupstream on the sub-
set of the TREC 2002 questions asking about persons (e.g.,1440. Who was the lead
singer for the Commodores?, 1424. Who won the Oscar for best actor in 1970?or
1565. What is Karl Malone’s nickname?). In total, 95 questions out of 500 are iden-
tified by the system (sometimes erroneously) as possibly referring to persons. For
these questions the system tries to find answers in one of two relevant tables:Roles
andLeaders. These tables have been generated automatically (and off-line) from
the TREC collection by looking at some specific surface patterns around person
names (as identified by the Named Entity Recognition module), such as apposition
(. . . Yusupha Ceesay, the manager of Elephant Walk, . . .). While theLeaderstable
is populated solely based on part-of-speech and named entity information and on
a small hand-built set of phrases identifying leadership (e.g.,head of state, queen,
premier), during the creation of theRolestable we have used WordNet to obtain a

54



fairly long list (2590 entries) of possible references to professions or occupations.
The primary purpose of this list is as a filter to remove noise that might cause wrong
answers.

Sophisticated machine learning methods [1] have recently been proposed for clean-
ing up the results of off-line information extraction in the QA setting. The question
we are addressing, however, is whetherlexically informed filteringcan improve the
performance of the whole QA system. We evaluated the performance of ourTa-
ble Lookupstream in two ways: with WordNet-based filtering and without. Table 1
shows the evaluation results for the relevant 95 TREC 2002 questions.

Table 1
Evaluation of filtering forRolestable on 95 ‘person’ questions.

Filtering Facts in the table Total answers Correct answers

On 396558 41 (43%) 16 (17%)
Off 1614309 49 (52%) 17 (18%)

Not surprisingly, running the system on a version of theRolestable without Word-
Net filtering increases the number of answers given by theTable Lookupstream.
While the overall accuracy of theTable Lookupstream (i.e., the number of correct
answers divided by the number of questions) decreases from 39% for the filtered
table to 35% for the non-filtered table, turning the filtering off allows us to answer
one question more.

The reason why WordNet-based table clean-up does not help to improve (and even
hurts) performance of the whole system, is that we use a separate module for answer
filtering and selectionafter all streams have provided their answer candidates. We
use both statistical and content-based methods to filter our strings that are not likely
to contain the answer and to re-rank the remaining answer candidates, in a way
similar to [5]. This post-filtering makes the system quite robust to noise among
answer candidates. Hence, in the presence of such post-filtering methods, it is better
to do off-line extraction in a lexically uninformed way: the increased recall helps
more than the decreased precision hurts.

Table Lookup. As mentioned before, the format of the knowledge bases we
extracted from the documents was simple text, where every line contains a few
columns of unstructured text. We now describe the lookup process in these tables.
We also indicate how lexical knowledge was used to improve the performance of
this lookup.

When a question is classified as possibly having an answer in a table, we first iden-
tify the question keywords that will be used in the table search. Once the keywords
have been identified, a line matching all of the words in the order they appeared

55



in the question is searched; if no line matches, we look again for a line containing
all words, this time in any word order. If there is still no match, we start remov-
ing words from the list of words to match; the order of removal is based on the
frequency of words in the language (i.e., common words are removed first) and
POS tags (e.g. superlatives likefastest, largestare removed last). We do this until
some threshold is reached (percentage of lookup words out of total keywords in the
question). When a matching line is found, the text in the column that is declared to
contain the information required as the answer is returned.

To identify the question keywords, we remove all stopwords from the question, us-
ing a standard English stopword list. Certain words should be treated differently
in different table contexts, however: some words should be removed when looking
up in a specific table but not from others, and so on. We therefore developed table
specific hand-crafted lists of stopwords andkeepwords— words which should not
be removed when looking up. For example, for the Leaders table, words such as
viceandformerwere considered keepwords, since removing them would alter the
lookup meaning completely, while words such asresidentsor populationwere con-
sidered stopwords for the Inhabitants table, because we do not expect to find them
in the table. Superlatives and numerals, such aslargestandthird were found to be
keepwords for all tables. Table 2 presents results for the Table Lookup stream for a
subset of 347 questions out of the 500 questions from TREC 2002; these questions
were identified by the system as possibly having an answer in one of the tables.

Table 2
Evaluation of the Table Lookup with and without lexical knowledge

Stopwords, Keepwords Correct answers MRR

Without 97 (28%) 0.24
With 103 (30%) 0.25

Even with the relatively small manually created lists of stopwords and keepwords,
using this heuristics allowed the system to answer 6 questions more. In our ongoing
work we aim to generate table-specific stopwords and keepwords automatically,
using a frequency analysis of words in the tables and comparing them to standard
distributions of words in the language. Morever, we plan to use synonyms from
WordNet to expand the original words from the question.

Pattern Generation The Pattern Matchstream of our QA system uses words
from the question to formulate regular expressions that could match possible an-
swers in the text. For example, for the question1400. When was the telegraph
invented?one possible pattern would bethe telegraph invented in ANSWER, where
ANSWERdenotes the actual place the answer should be taken from. Our system
uses a manually built set of rules for transforming questions into possible answer

56



patterns. To evaluate the applicability of a linguistically informed transformation
procedure, we used two different sets of pattern formulation rules: one based only
on the question type and actual question words, and another also using POS tags of
the words of the question and a database of morphological variants of words. Table
3 shows the patterns generated using both sets of transformation rules for question
1419. What year did Alaska become a state?.

Table 3
Patterns for question1419. What year did Alaska become a state?

Question type, words

Alaska become a state ANSWER

Alaska become a state (in|on) ANSWER/

Question type, words, part-of-speech tags, word forms

Alaska becomes a state (in|on) ANSWER

Alaska becomes a state ANSWER

Alaska became a state (in|on) ANSWER

Alaska became a state ANSWER

Since our pattern generation rules use only “shallow” information about the ques-
tion (POS tags), in cases when syntactic structure of the question is complicated the
resulting patterns may be ungrammatical. However, this does not add any noise to
the system because these ill-formed answer patterns simply do not match and thus
do not lead to incorrect answers.

We compared the performance of thePattern Matchstream with the two different
set of question transformation rules on 500 TREC 2002 questions. The results are
summarized in Table 4:

Table 4
Pattern Matchstream with different pattern generation rules

Use PoS, wordforms Total answers Correct answers

No 30 4
Yes 39 13

As expected, using linguistically informed pattern generation method increases
both the number of answer candidates and the number of the correct answers found
by the pattern stream. At the same time, the number of incorrect answers remains
the same, which means that this approach does not cause additional noise.

57



6 Comparison of Streams

In the previous section we took a close look at the use of linguistic resources at
various specific stages in the QA process. In this section, we adopt a more global
perspective and compare the results of some of the separate streams of our QA sys-
tem. That is, to see the difference between linguistically-informed vs. redundancy-
based approaches, we looked at the performance (the number of correctly answered
questions) of different streams for different question types. The results of the com-
parison for four streams and several question types are shown in Table 5.

Table 5
Performance of different streams on different question types

Questions Correct Answers
Type # questions Web N-grams Web Patterns Table Lookup Tequesta

date 82 21 (26%) 15 (18%) 20 (24%) 22 (27%)
location 101 21 (21%) 14 (14%) 7 (7%) 19 (19%)
agent 35 10 (29%) 2 (6%) 4 (12%) 3 (9%)
object 24 2 (8%) 1 (4%) 0 (0%) 0 (0%)
pers-ident 54 19 (35%) 5 (9%) 5 (9%) 7 (13%)
thing-ident 59 9 (15%) 2 (3%) 0 (0%) 0 (0%)

Whereas theWeb N-gramsstream relies entirely on data redundancy on the Web,
the other three streams in the Table 5 make use of linguistic information, in one
way or another (POS tagging, Named Entity Recognition, Wordnet, dependency
parsing).

Interestingly, for some question types (date, location in Table 5) different streams
perform quite similarly, and there are no clear “outsiders.” For other question types
(agent, thing-ident) Web-based aproaches easily outperform deeper methods.

It seems that linguistic processing can help for those questions where both the struc-
ture of the question (e.g., focus words) and the type of the answer (e.g.,location,
person) are clear and easily identifiable. On the other hand, for more syntactically
and/or semantically “vague” questions likeWhat is the Stanley Cup made of?(clas-
sified asthing-ident) or Who makes viagra?(classified asagent), the system cannot
extract enough information to perform a meaningful linguistic analysis, and zero-
knowledge statistical methods prove more useful. This suggests that linguistic and
redundancy-based methods are to a large extent complementary, and that, ideally,
the two approaches should be deployed in parallel.

58



7 Conclusions

Modern QA systems have a complex architecture and usually consist of a large
number of inter-connected components. Complex dependencies between compo-
nents make it very difficult to predict how a change in one module will affect the
performance of the system as a whole. In this paper we studied the impact of bring-
ing more linguistic knowledge into various components of our QA engine.

Our evaluations show that for some modules (question classification, answer pat-
tern generation) using linguistically informed methods helps to significantly im-
prove the overall accuracy, but making other components language-aware does not
change the performance of the system or may be even harmful. Moreover, when ex-
amining the accuracy of the QA streams of our multi-stream architecture, we found
that for different classes of questions either linguistically informed or redundancy-
based methods can give better results, and for some question classes they perform
at about the same level.

This suggests that a good system should cleverly combine both approaches. A care-
ful study of the impact of each component on the end-to-end performance of the
whole system (sometimes on specific subsets of input questions) is essential in or-
der to choose the best architecture for different components in an informed way.

Acknowledgements

We would like to thank Stefan Schlobach for help and advice. This research was
supported by the Netherlands Organization for Scientific Research (NWO) under
project number 220-80-001. Maarten de Rijke was also supported by NWO under
project numbers 612-13-001, 365-20-005, 612.069.006, 612.000.106, 612.000.207,
and 612.066.302.

References

[1] M. Fleischman, E. Hovy, and A. Echihabi. Offline strategies for online question
answering: Answering questions before they are asked. InProceedings of the
41st Annual Meeting of the Association for Computational Linguistics, pages
1–7, 2003.

[2] K. Sparck Jones. What is the role of NLP in text retrieval? In T. Strzalkowski,
editor,Natural Language Information Retrieval. Kluwer, 1999.

[3] B. Katz and J. Lin. Selectively using relations to improve precision in question
answering. InProceedings EACL 2003 Workshop on NLP for QA, 2003.

59



[4] M. Light, G. Mann, E. Riloff, and E. Breck. Analyses for elucidating current
question answering technology.Natural Language Engineering, 7:325–342,
2001.

[5] B. Magnini, M. Negri, R. Prevete, and H. Tanev. Comparing statistical and
content-based techniques for answer validation on the web. InProceedings of
the VIII Convegno AI*IA, Siena - Italy, 2002.

[6] D. Moldovan, S. Harabagiu, R. Girju, P. Morarescu, A. Novischi, F. Lacatusu,
A. Badulescu, and O. Bolohan. LCC tools for question answering. InProceed-
ings TREC 2002, 2003.

[7] C. Monz and M. de Rijke. Tequesta: The University of Amsterdam’s Textual
Question-Answering System. InProceedings TREC-10, 2002.

[8] E. Voorhees. Natural language processing and information retrieval. In M.T.
Pazienza, editor,Information Extraction: Towards Scalable, Adaptable Sys-
tems, volume 1714 ofLNCS. Springer, 1999.

60


