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Abstract. With traditional Question Answering (QA) systems having
reached nearly satisfactory performance, an emerging challenge is the de-
velopment of successful Interactive Question Answering (IQA) systems.
Important IQA subtasks are the identification of a dialogue-dependent
typology of Follow Up Questions (FU Qs), automatic detection of the
identified types, and the development of different context fusion strate-
gies for each type. In this paper, we show how a system relying on shallow
cues to similarity between utterances in a narrow dialogue context and
other simple information sources, embedded in a machine learning frame-
work, can improve FU Q answering performance by implicitly detecting
different FU Q types and learning different context fusion strategies to
help re-ranking their candidate answers.

1 Introduction

It is widely acknowledged that answering Follow Up Questions (FU Qs), viz.,
questions uttered after some other interaction, is a different task than answer-
ing isolated questions. Hence, Interactive Question Answering (IQA) systems
have to tackle different challenges than Question Answering (QA) systems. The
latter can rely only on the question to extract the relevant keywords. The for-
mer should take the previous interactions into consideration and achieve some
form of context fusion, i.e., identify the information in the previous interactions
that are relevant for processing the FU Q and answering it properly [1]. A first
crucial context-dependent distinction is among topic shift and topic continua-
tion FU Qs. These types of FU Qs might require different processing strategies.
Hence, important sub-tasks within the IQA community are the identification
of a typology of questions, automatic detection of the identified types, and the
development of different context fusion strategies for each type [2, 3, 1].

In this paper, we aim to show how a system based on shallow cues to similar-
ity between utterances in a narrow dialogue context and other simple information
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sources, embedded in a machine learning framework, can improve FU Q answer-
ing performance, and how such system can also implicitly detect different FU Q
types and learn different answer ranking strategies to cope with them.

A further innovative aspect of our work is that instead of using the artificial
Text Retrieval Conference (TREC) data most IQA systems are evaluated on
(TREC 2001, TREC 2004), we train and test our system on real user questions
collected via an on-line chatter Bot on a closed domain.

Section 2 places our proposal in the broader picture of IQA research. We
describe our dialogue corpus in Section 3, and we introduce our general modeling
framework and the features we use in Section 4. Versions of the model that do and
do not take context into account are evaluated in Section 5. We conclude with
an error analysis that points at directions for future improvements in Section 6.

2 Related Work

The importance of evaluating IQA against real user questions and the need to
consider preceding system answers has already been emphasized [2–4, 1]. In these
earlier studies, dialogue corpora were collected via Wizard of Oz experiments
and/or by giving specific tasks to the users. The corpus of dialogues we deal
with consists of real logs in which the users were chatting with a Bot to obtain
information in a help-desk scenario.

[4] and [5] look for salient transitions among utterances in a given context.
To this end, they exploit deep semantic analyses to detect Argument-Predicate
structure [4] and Centering Theories features [5]. Both [4] and [2] take Argument-
Predicate structures as the base of semantic networks used to model context
interaction and guide context fusion. In [2], the system relies also on deep and
chunk reasoning on an external ontology. In this paper, we avoid any form of
deep analysis of this sort.

Fine grained typologies of questions have been suggested [2, 3, 5], and differ-
ent processing strategies have been proposed for the identified types. We consider
the basic distinction between topic shift and topic continuation, and we propose
a generalized linear model framework in which this distinction is automatically
detected and used to improve the answering performance.

Our work is closely related to [1], that presents a question classifier that
detects topic shifts and topic continuations by exploiting utterance similarity
measures. However, we go two steps further by not requiring training data an-
notated for question type, and directly using the question classification cues to
improve answer re-ranking performance.

Similarly to other work in QA [6, 7], we use corpus-based similarity measures,
with the important innovation that we extend them to similarity with previous
utterances in the context. Finally, there is a large literature on using supervised
machine learning for various aspects of QA, including question re-ranking [8].
Again, as far as we know we are the first to propose a supervised classifier that
takes the previous dialogue into account for answering FU Qs.
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3 Data

Most IQA systems have been trained and evaluated over the TREC (2001, 2004)
data-sets, that consist of several sessions of related questions, the first of which
sets the topic. Hence, there are no topic shifts, apart from the artificial ones
at the first question of each session, if one considers the whole set as a single
interaction [1]. Furthermore, there are no answers to rely on, and the questions
were collected by TREC evaluators, i.e. they are not questions asked by users
genuinely interested in the interaction. Hence, their nature is rather artificial. To
overcome these limitations, we have been collecting a corpus of human-machine
interactions with a Bot that provides information about a university library, pick-
ing a canned-text answer from a set of 484 information statements produced by
the librarians (thus, the system faces the task that is often called answer/passage
re-ranking in the QA literature).

The corpus consists of 139 4-turn snippets of human-machine interactions.
We limit ourselves to four turns since there is evidence [2, 9] that in most cases
the previous two turns (Q1 and A1) contain enough information to process the
FU Q (Q2) and select its answer (A2). Moreover, this makes our classifier well
suited for practical applications, as it only relies on cues extracted from a fixed
window of 3 utterances (Q1, A1 and Q2). We refer to these 3 utterances as “the
context”. Note that A1 correctly answers Q1 in all snippets kept for this study.

Contexts in the corpus were manually classified by one of the authors as
either topic shifts or topic continuations (57 and 82 cases, respectively). Below
we report two sample topic continuation and one topic shift snippet examples.
In a closed domain, the difference between the two types is rather fine-grained.
We have considered topic continuations all those cases where the FU Qs are
natural continuations of the conversation. The interactions are “task-related”
information seeking dialogues, hence if two questions pertain to tasks where one
is a typical development of the other, they are counted as “topic continuations”
(example 1, where the actions are “borrow” and “search”). Questions that are
about an entity introduced in Q1 or A1 (example 2) are also topic continuations.
Shift/continuation annotation is a delicate task, making unsupervised, implicit
detection of context (as in the experiments below) particularly desirable.

Example 1: Topic continuation (related tasks)
User How many items can I borrow at once? (Q1)

System You may borrow up to 40 items at time, independently of the type of
medium. (A1)

User Is there a help for searching books? (Q2)

System To find books I’d recommend searching in our on-line catalogue (OPAC).
(A2)

Example 2: Topic continuation (entities in A1)
User How can I borrow a book? (Q1)

System You can either get the item yourself or request it via our delivery ser-
vice. (A1)
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User What are the requirements for it? (Q2)

System If you want an item to be sent to another Library branch simply click
on the blue ORDER button to reserve it [. . . ] (A2)

Example 3: Topic shift
User Where can I find a public phone? (Q1)

System Public phones are situated in the main entrance area. (A1)

User I have lost the Library Card. What can I do? (Q2)

System If you’ve lost your Library Card please tell my colleagues at the infor-
mation desk. They will lock your account. (A2)

Like in TREC data, the topic continuation FU Qs can contain ellipses, e.g.,
Q1: Where can I find design books? Q2: and dvd?. Differently from TREC, both
Q1 and Q2 could be just keywords, may contain noisy information such as typos
or bad grammar, and could be very similar: either the user is trying to refine the
question (the answer is correct but not what they want to know) or the topic
is further explored by moving the focus of attention on a new related entity or
a new related action: Q1: Could you recommend me some book? Q2: Could you
recommend me some novel?. These kinds of interactions seem typical of real user
data and they have been noticed also in other corpora of this type [2, 1].

4 Model

Our goal is, given a FU Q (Q2 in our dialogue snippets), to pick the best answer
from the fixed A2 candidate set, by assigning a score to each candidate, and
ranking them by this score. Different context types might require different answer
picking strategies. Thus, we specify both A2 (identification) features, aiming at
selecting the correct A2 among candidates, and context (identification) features,
that aim at characterizing the context. The A2 identification features measure
the similarity between an utterance in the context (e.g., Q2) and a candidate
A2. Context features measure the similarity between pairs of utterances in the
context (e.g., Q1 and Q2). They do not provide direct information about A2,
but might cue a special context (say, an instance of topic shift) where we should
pay more attention to different A2 identification features (say, less attention to
the relation between Q2 and A2, and more to the one between A1 and A2).

We implement these ideas by estimating a generalized linear model from
training data to predict the probability that a certain A2 is correct given the
context. In this model, we enter A2 features as main effects, and context features
in interactions with the former, allowing for differential weight assignment to the
same A2 features depending on the values of the context features.

4.1 A2 features

Most of our A2 features measure the similarity between a context utterance and
A2. The intuition is that the correct A2 is similar to the context.
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Lexical Similarity (lexsim): If two utterances (e.g., Q2 and A2) share some
terms, they are similar; the more discriminative the terms they share, the more
similar the utterances. Implemented by representing the utterances as vectors
with the words they contain as dimensions. The value of each dimension is the
tf.idf [10] of the corresponding word in the general ukWaC corpus,4 calculated
as:

tf.idf(w) =
√

count(w)

√

log
|D|

|Dw|

where count(w) returns the number of occurrences of the word in the corpus,
|D| is the number of corpus documents, and |Dw| the number of documents
containing the word. Weighting by tf.idf favours more discriminative terms,
that occur in a restricted number of documents (e.g., library is less frequent but
more discriminative than long). Similarity is quantified by the cosine of the angle
between the vectors representing the two utterances being compared:

cos(u1, u2) =
u1 · u2

||u1|| ||u2||

Distributional Similarity (distsim): Two utterances are similar not only if
they share the same terms, but also if they share similar terms (e.g., book and
journal). Term similarity is estimated on the ukWaC corpus, by representing
each content word (noun, verb, adjective) as a vector that records its corpus co-
occurrence with other content words within a 5-word span. Raw co-occurrence
counts are weighted by pointwise mutual information, that dampens the impact
of frequent words [10]:

mi(w1, w2) = log2

p(w1&w2)

p(w1) p(w2)

where p(w1&w2) is estimated by the proportion of w1&w2 co-occurrences over
the total co-occurrence count for all pairs, and p(w∗) from the marginal frequen-
cies. Distributionally similar words, such as book and journal will have similar
vectors [11]. An utterance is represented by the sum of the normalized distri-
butional vectors of the words it contains. Similarity between utterances is again
quantified by the cosine of their vector representations. We tried a few variants
(20-word spans, raw frequency or log-likelihood ratio instead of mutual informa-
tion, max similarity between nouns or verbs instead of summed vectors), but the
resulting models were either highly correlated to the one we are reporting here,
or they performed much worse in preliminary experiments. We leave it to fur-
ther work to devise more sophisticated ways to measure the overall distributional
similarity among utterances [12].
Semantic similarity (semsim): We try to capture the same intuition that
similar utterances contain similar words, but we measure similarity using Word-
Net [13].5 We experimented with most of the WordNet similarity measures that

4 http://wacky.sslmit.unibo.it/
5 We use the WordNet::Similarity package: http://wn-similarity.sourceforge.net/.
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were used by [1], settling for the Lin measure, that gave the best results across
the board:

linsim(w1, w2) =
2 ic(lcs(w1, w2))

ic(w1) + ic(w2)

where lcs(w1, w2) is the lowest common subsumer of synsets containing the two
words in the WordNet hierarchy (we pick the synsets maximizing the score),
and ic(x) (the information content) is given by − log(p(x)). Probabilities are
estimated from the sense-annotated SemCor corpus coming with the Word-
Net::Similarity package. Following [1], the similarity between two utterances is
determined by matching the words so as to maximize pairwise similarities, while
normalizing for sentence length.
Action sequence (action): The binary action feature indicates whether two
turns are associated with the same action, and thus represent an action sequence.
For identifying the action associated with each A2, we hand-annotated each of
the 484 answer candidates with one of 25 relevant actions (borrowing, delivering,
etc.). The action(s) associated with the other turns (Q1, A1, Q2) are automat-
ically assigned by looking for strings that match words that we think represent
one of the 25 actions.

For each feature type, we compute its value for both the A1.A2 and Q2.A2

interplays: we will refer to them below as the far and near features, respectively
(far and near in terms of distance of the compared utterance from A2. We ignore
Q1.A2 features for now). By crossing the measure types and the considered
interplays, we obtain 8 A2 features (far.lexsim, near.lexsim, far.distsim, etc.).

4.2 Context features

Topic shifts across turns have been generally recognized as the main contextual
factor affecting the relative role of context in FU Q answering [1]. If Q2 continues
the previous topic, then the previous context should still be relevant to A2. If
the topic shifted, the A2 selection strategy should focus on the most recent turn
only (i.e., Q2 itself).

In order to verify that adding topic continuation information to the model
does indeed help A2 prediction, we used our manual coding of contexts for
whether they contain a topic shift or not (topshift). This feature is of limited
practical utility in a real life system: topic change or persistence should be de-
tected by automated means.

A simple way to capture the notion of topic continuity is in terms of similarity
between Q2 and each of the preceding utterances (the less similar Q2 is to Q1

or A1, the more likely it is that the topic shifted). Thus, the same utterance
similarity measures that, when used to compare other utterances to A2, serve
as A2 identification features, can be treated as continuous approximations to a
topic shift when applied to the Q1.Q2 and A1.Q2 interplays. Since we defined
3 similarity measures (lexsim, distsim and semsim), we obtain 6 more context
identification features (Q1.Q2.lexsim, A1.Q2.lexsim, Q1.Q2.distsim, etc.).
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We tried various strategies to combine the topic approximation cues into
composite measures (e.g., by defining “profiles” in terms of high and low Q1.Q2

and A1.Q2 scores, or by defining multiple interaction terms), but they did not
improve on the simpler context features, and we do not report their performance
here.

4.3 Logistic regression

Logistic regression models (LRMs) are generalized linear models that describe
the relationship between features (independent variables) and a binary outcome
[14]. Our logistic regression equations, which specify the probability for a partic-
ular answer candidate A2 being correct, depending on the learned intercept β0,
the other β coefficients (representing the contribution of each feature to the total
answer correctness score), and the feature values x1, . . . , xk (which themselves
depend on a combination of Q1, A1, Q1 or A2) have the form:

Prob{answerCorrect} =
1

1 + exp(−Xβ̂)

where Xβ̂ = β0 + (β1x1 + · · · + βkxk)

Context typology is implicitly modeled by interaction terms, given by the
product of an A2 feature and a context feature (when we enter an interaction
term with a context feature, we also always introduce the corresponding main
effect). An interaction term provides an extra β to assign a differential weight
to an A2 feature depending on the value(s) of a context feature. In the simplest
case of interaction with a binary 0-1 feature, the interaction β weight is only
added when the binary feature has the 1-value.

We estimate the model parameters (the beta coefficients β1, . . . , βk) using
maximum likelihood estimation. Moreover, we put each model we construct un-
der trial by using an iterative backward elimination procedure that takes off all
those terms whose removal does not cause a significant drop in goodness-of-fit.
All the results we report below are obtained with models that underwent this
trimming procedure.

5 Evaluation

We match each of the 139 contexts (Q1, A1 and Q2 sequences) in our dialogue
corpus with each of the 484 A2s in our pre-canned answer repository. Since
the corpus had been pre-annotated for what is the (single) correct A2 for each
context, this produces 483 negative examples and 1 positive example for each
context, that can be used to estimate a LRM.6 We rank the Q1.A1.Q2.A2 4-
tuples constructed in this way in terms of the probability they are assigned by

6 Our experiments with random sampling of the majority class (i.e., the negative
training examples) did not improve model performance.
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the estimated LRM, and we look at the rank of the correct A2 for each context.
We use “leave-one-out” cross validation by predicting the ranks of the A2s given
each context with a model that was trained on the remaining 138 contexts.
The lower the average rank of the correct A2 across contexts, the better the
model predictions. In the tables below, we report these average ranks. When we
report statistical results about the relative quality of models, these are based on
paired Mann-Whitney tests across the 139 ranks. Statistical significance claims
are based on the p < 0.05 level, after correction for multiple comparisons.

We will first look at models that only look at the relation between context
utterances and A2 (“main effects only” models), and then at models that also ex-
ploit information about the relation between context utterances, to approximate
a typology of contexts (“interaction” models).

5.1 Main effects only models

We enter each feature from Section 4.1 at a time in separate models (e.g., the
*.semsim models) and combine them (the *.combined models). Moreover, we
look at Q2.A2 features (near.*, in the sense that we look at the nearest context
element with respect to A2), A1.A2 features (far.* ), and both (complete.* ). Ta-
ble 1 summarizes our first set of experiments. All near and far single feature
models, except far.action, perform significantly better than baseline, and in gen-
eral the near context is more informative than the far one (group 1 vs. group 2).
Combining different knowledge sources helps: near.combined is significantly bet-
ter than the best non-combined model, near.distsim. Combining features only
helps marginally when we look at the far setting (compare groups 2 and 4). The
complete.combined model (group 6) significantly outperforms the corresponding
best single feature model of group 5 complete.distsim, but its performance is
not distinguishable from the one of near.combined.

This first batch of analyses shows that the proposed features have a significant
impact on correct A2 prediction, that combining different knowledge sources
considerably improves performance and that, if we do not consider an interaction
with context type, the far features (comparing A1 and A2) are not helpful. In
the next step, we will work with the two best main-effects-only models obtained
so far, namely near.combined and complete.combined (groups 3 and 6 in Table
1), and we will investigate their behaviour when we add interaction terms that
try to capture different context types.

5.2 Models with an interaction

Table 2 reports the results obtained with models that add an interaction term
that should capture contextual development patterns, and in particular the pres-
ence of a topic shift. As discussed in Section 4.2 above, depending on whether
there is a topic shift, we should assign different weights to near and far features.
Thus, we predict that the presence of an interaction term marking topic develop-
ment should help complete.∗ models (that encode both near and far features),
but not near.∗ models.
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Group Description Model name Mean rank SD

0 A2 picked at random baseline 235.0 138.2

1 Single Q2.A2 feature near.lexsim 80.4 106.0
near.distsim 74.4 113.5
near.semsim 101.2 115.2
near.action 178.1 156.8

2 Single A1.A2 feature far.lexsim 164.6 138.3
far.distsim 157.3 145.3
far.semsim 152.3 135.3
far.action 231.5 153.5

3 Combined Q2.A2 features near.combined 57.6 93.4

4 Combined A1.A2 features far.combined 141.7 130.5

5 Single Q2.A2 and A1.A2 features complete.lexsim 75.3 109.4
complete.distsim 72.6 108.9
complete.semsim 103.2 111.0
complete.action (= near.action)

6 Combined Q2.A2 and A1.A2 features complete.combined 58.6 97.4

Table 1. Mean ranks of correct A2 out of 484 answer candidates in main effects only
models

Group Description Model name Mean rank SD

7 near.combined: near.combined × topshift 57.5 93.4
int. with manual top-
shift

(= near.combined)

8 complete.combined:
int. with manual
topshift

complete.combined × topshift 54.3 93.2

9 complete.combined: complete.combined × Q1.Q2.lexsim 55.5 91.7
interaction with complete.combined × A1.Q2.lexsim 56.7 93.8
approximation fea- complete.combined × Q1.Q2.distsim 57.1 98.2
ture complete.combined × A1.Q2.distsim 58.4 96.4

complete.combined × Q1.Q2.semsim 60.0 100.8
complete.combined × A1.Q2.semsim 54.3 90.9
complete.combined × Q1.Q2.action 55.8 94.4
complete.combined × A1.Q2.action 56.9 96.1

Table 2. Mean ranks of correct A2 out of 484 answer candidates in interaction models

Predictor β coef. SE z value Pr(>|z|) Predictor (cont’d) β coef. SE z value Pr(>|z|)

intercept -11.6 0.7 -15.9 0.000 far.distsim 2.7 1.1 2.3 0.019
near.lexsim 6.5 1.0 6.4 0.000 far.action 0.0 0.3 -0.1 0.923
near.distsim 1.5 0.9 1.7 0.092 topshift 1.1 1.1 1.0 0.317
near.semsim 2.3 0.5 4.8 0.000 topshift × near.distsim 2.7 1.2 2.4 0.018
near.action 0.9 0.2 4.3 0.000 topshift × far.distsim -3.2 1.6 -2.0 0.040
far.lexsim 3.2 0.6 5.1 0.000 topshift × far.action -1.4 0.6 -2.5 0.014

Table 3. Retained predictors, model complete.combined ∗ topshift (Table 2, group 8)
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The prediction is fully confirmed by comparing the model in group 3 of Table
1 to the one in group 7 of Table 2, on the one hand, and the model in group 6
of Table 1 to the model in group 8 of Table 2 on the other. In both cases, we are
adding interaction terms for each of the main effects (the A2 prediction features)
crossed with the binary feature recording manual annotation of the presence of
a topic shift. For the near model (that only takes the Q2.A2 relations into ac-
count), there is no improvement whatsoever from adding the interaction. Indeed,
the backward elimination procedure we use when estimating the model drops all
interaction terms, leading to an estimated model that is identical to the one in
group 3 (main effects only). Vice versa, some interaction terms are preserved
in the model of group 8, that improves from the corresponding interaction-less
model, from a mean rank of 57 to a mean rank of 54 (although the rank im-
provement itself is not statistically significant).

Table 3 reports the coefficients of the estimated group 8 model (trained, for
these purposes only, on the complete corpus). The four near features have a
major positive effect on the odds of an answer candidate being correct. Also, the
first two far features listed in the table have positive effects. We interpret the
retained interaction terms with topshift (the last three rows) as follows. If Q2 is
a topic shift, the weight given to near.distsim (a term measuring the similarity
with Q2) has an extra positive effect, while the weight given to semantic simi-
larity and the repetition of the same action between A1 and A2 is significantly
decreased, since in a topic shift the earlier context should be (nearly) irrelevant.
These effects are in line with our hypothesis about topic shift FU Q process-
ing. Thus, we confirm that knowing about topic shifts helps, and that it helps
because we can assign different weights to far and near relations depending on
whether the topic continues or changes.

Having established this, we now ask whether the manually coded topshift
variable can be replaced by an automatically computed feature that captures
topic shifting in terms of the similarity between context utterances (Q1 vs. Q2

or A1 vs. Q2). By looking at the results in group 9 of Table 2, we see that
in fact one of these models (interaction with A1.Q2.semsim) performs as well
as the model using the hand-annotated topshift feature, while outperforming
the complete.combined model (barely missing full statistical significance, with
p = 0.05457). Interpretation of the coefficients is harder in this case, since we deal
with a continuous interaction term, but the main patterns are as for the model in
group 8. Not only keeping track of topic development helps answer (re-)ranking,
but a simple automatically assigned feature (WordNet-based similarity between
A1 and Q2) is as good as manual annotation to cue basic topic development.

6 Conclusion

From our quantitative evaluation via LRM we can conclude that to answer FU
Qs asked in a real help-desk setting, some form of shallow context detection and
fusion should be considered. In particular, the system answer preceding the FU
Q seems to play an important role, especially because its similarity to the FU
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Q can cue a topic shift, that in turn requires a different context fusion strategy
(more weight to FU Q, less to the preceding context).

Our shallow cues, though promising, need further refinement, in particular
to deal with the following problems particular to real user interactions: (I) some
Q1 and Q2 are quite similar, which could happen for example when users are
not satisfied with the answer (even if it was correct for the question that was
asked) and hence rephrase the question by, e.g., using a more specific entity, or
they even repeat the same question in the hope to obtain a better answer; (II)
Q2 contains only WH VERB ENTITY, and the verb is a factotum verb. Both
(I) and (II) require further investigation and seem to ask for more structured
cues than those explored in this paper.
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