
English Querying over Ontologies: E-QuOnto�

Raffaella Bernardi1, Francesca Bonin1,2, Diego Calvanese1,
Domenico Carbotta1, and Camilo Thorne1

1 Faculty of Computer Science
Free University of Bozen-Bolzano, Italy

lastname @inf.unibz.it
2 Dipartimento di Linguistica - Università di Pisa

Abstract. Relational database (DB) management systems provide the
standard means for structuring and querying large amounts of data. How-
ever, to access such data the exact structure of the DB must be know,
and such a structure might be far from the conceptualization of a human
being of the stored information. Ontologies help to bridge this gap, by
providing a high level conceptual view of the information stored in a
DB in a cognitively more natural way. Even in this setting, casual end
users might not be familiar with the formal languages required to query
ontologies. In this paper we address this issue and study the problem
of ontology-based data access by means of natural language questions
instead of queries expressed in some formal language. Specifically, we
analyze how complex real life questions are and how far from the query
languages accepted by ontology-based data access systems, how we can
obtain the formal query representing a given natural language question,
and how can we handle those questions which are too complex wrt the
accepted query language.

1 Introduction

Relational database management systems (RDBMs) provide the standard means
for structuring, modeling, declaring, updating and querying large amounts of
structured data. The interfaces of these systems are based on formal query lan-
guages, such as SQL, that combine both declarative and imperative features
(cf. [1]). Crucially, the expressive power of these formal languages is well-known,
and query answering in relational databases (DBs) can be carried out efficiently
in the size of the data. More precisely, the data complexity (i.e., the complexity
measured in the size of the DB) of answering SQL (or First-Order) queries is in
LogSpace [1], and it is precisely this property that allows RDBMSs to handle
in practice very large amounts of data. However, access to these data requires
knowledge of the exact structure of the DB, which might be far from the concep-
tualization that human beings have of the represented information. Ontologies
� This research has been partially supported by FET project TONES (Thinking ON-

tologiES), funded within the EU 6th Framework Programme under contract FP6-
7603.

R. Basili and M.T. Pazienza (Eds.): AI*IA 2007, LNAI 4733, pp. 170–181, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

@inf.unibz.it

English Querying over Ontologies: E-QuOnto 171

help to overcome these limitations by providing a high level conceptual view
of the stored information in a cognitively more natural way[12]. Recently, the
problem of ontology based access to DBs has been studied. This problem poses
particular challenges since on the one hand, it requires to deal with the large
amount of information stored in DBs, and on the other hand, it requires to cope
with incomplete knowledge1. In fact, the ontology encodes constraints on the do-
main of interest w.r.t. which data in the DB might be incomplete. For instance,
the ontology might require that all instances of some class have to participate
to a relation, but for some instance the DB does not contain the correspond-
ing facts. For a concrete example, let’s assume, that the ontology requires that
each student attends at least one course, but the DB happens not to have any
information about the course attended by the student John.

Against this background, a family of ontology languages has been proposed
recently that is based on Description Logics [3], namely the DL-Lite family [9,8].
The kind of constraints that can be expressed in variants of DL-Lite tightly cor-
respond to constraints typically encountered in conceptual data models used
in DBs and software engineering. A distinguishing feature of the logics of the
DL-Lite family is that they allow for efficiently answering queries posed to an
ontology with an underlying DB, taking into account that the latter may be
incomplete with respect to the constraints expressed by the ontology. The kind
of queries supported in DL-Lite are unions of conjunctive queries (UCQs): con-
junctive queries (CQs) correspond to the fragment of First-Order Logic (FOL)
whose formulas are conjunctions of atoms over constants, existentially quantified
variables that may be shared across the atoms, and free variables (also called
distinguished variables)2. An UCQ corresponds to a disjunction of CQs, all with
the same number of distinguished variables.

This paper builds on these results and considers a further problem, namely
the fact that using formal query languages requires some previous training and
can prove counter-intuitive to a casual end user. For such a user the intuitive
appeal and understanding of the machine interface can be crucial. It would thus
be suitable in such cases to shift to natural language (NL) and to use natural lan-
guage questions instead of queries expressed in some formal language. In order
to reach this goal, in this paper we try to answer the following questions: (i) how
complex are natural language questions a user would ask to access data in a DB;
(ii) how far are these real life questions from conjunctive queries; (iii) given a
natural language question how can we obtain the formal query (in a suitable
query language) representing it; (iv) how can we handle those questions which
cannot be represented by conjunctive queries. Question (i) is addressed in Sec-
tion 3 whereas (ii)–(iv) are the focus of Section 4. Before presenting our results,
we introduce in Section 2 some preliminary technical notions. The paper presents
work in progress, the ideas we are planning to further explore are summarised
in Section 5.

1 A further important issue that may arise in the presence of an ontology is inconsis-
tency w.r.t. the ontology. However, we do not deal with inconsistency here.

2 In terms of SQL, CQs correspond to the select-project-join fragment.

172 R. Bernardi et al.

2 Preliminaries

We provide now the technical preliminaries underlying languages used in the con-
text of ontology-based data access, both for the specification of the ontology, and
for specification of queries over the ontology to access underlying data sources.
When asking ourselves which are the formalisms most suited to represent the
information about a domain of interest in an ontology, we can draw on the large
body of research carried out in the last twenty years in structured knowledge
representation, and specifically in the area of Description Logics. Description
Logics (DLs) [3] are logics that allow one to structure the domain of interest by
means of concepts, denoting sets of objects, and roles, denoting binary relations
between (instances of) concepts. Complex concepts and role expressions are con-
structed starting from a set of atomic concepts and roles by applying suitable
constructs. The domain of interest is then represented by means of a DL knowl-
edge base (KB), consisting of a TBox, storing intensional information, and an
ABox, storing assertional information about individual objects of the domain of
interest.

We start by defining the ontology language we make use of, which is based
on the recently introduced DL-Lite family of DLs [9,8]. Such a family of DLs
is specifically tailored for an optimal tradeoff between expressive power and
computational complexity of inference in the context of ontology-based data
access. In the logics of the DL-Lite family, the TBox is constituted by a set of
assertions of the form

Cl � Cr (concept inclusion assertion) (funct R) (functionality assertion)
R1 � R2 (role inclusion assertion)

In the above assertions, Cl and Cr denote concepts that may occur respectively
on the left and right-hand side of inclusion assertions, and R, R1, R2 denote
roles, constructed according to the following syntax:

Cl −→ A | ∃R | Cl1 � Cl2 R −→ P | P−

Cr −→ A | ∃R | Cr 1 � Cr 2 | ∃R.A | ¬A | ¬∃R

where A denotes an atomic concept, and P denotes an atomic role.
The ∃R construct is called unqualified existential quantification, and intu-

itively denotes all objects that are connected through role R to some (not further
specified) object. The ∃R.A construct, called qualified existential quantification,
allows one to further qualify the object connected through role R as being an
instance of concept A. Also, � denotes conjunction, and ¬ negation (or com-
plement). Finally, P− denotes the binary relation that is the inverse of the one
denoted by P .

We formally specify the semantics of DL-Lite, by providing its translation
to FOL. Specifically, we map each concept C (we use C to denote an arbitrary
concept, constructed applying the rules above) to a FOL formula ϕ(C, x) with
one free variable x (i.e., a unary predicate), and each role R to a binary predicate
ϕ(R, x, y) as follows:

English Querying over Ontologies: E-QuOnto 173

ϕ(A, x) = A(x) ϕ(∃R,x) = ∃y(ϕ(R,x, y))
ϕ(¬C, x) = ¬ϕ(C, x) ϕ(∃R.C, x) = ∃y(ϕ(R,x, y) ∧ ϕ(C, y))
ϕ(C1 � C2, x) = ϕ(C1, x) ∧ ϕ(C2, x)
ϕ(P, x, y) = P (x, y) ϕ(P −, x, y) = P (y, x)

An inclusion assertion Cl � Cr of the TBox corresponds then to the univer-
sally quantified FOL sentence ∀x(ϕ(Cl , x) → ϕ(Cr , x)). Similarly, R1 � R2
corresponds to ∀x∀y(ϕ(R1, x, y) → ϕ(R2, x, y)). Instead, a functionality as-
sertion (funct R), imposes that the binary predicate R is functional, i.e.,
∀x∀y∀z(ϕ(R, x, y) ∧ ϕ(R, x, z) → y = z).

In DL-Lite, an ABox is constituted by a set of assertions on individuals, of
the form A(c) or P (a, b), where A and P denote respectively an atomic con-
cept and an atomic role, and a, and b denote constants. As in FOL, each con-
stant is interpreted as an element of the interpretation domain, and we assume
that distinct constants are interpreted as distinct individuals, i.e., we adopt the
unique name assumption (UNA). The above ABox assertions correspond to the
analogous FOL facts, or, by resorting to the above mapping, to ϕ(A, x)(c) and
ϕ(R, x, y)(a, b), respectively.

A model of a DL-Lite KB is a FOL model of the conjunction of FOL formulas
representing its semantics.

It is worth noticing that, by means of the constructs present in DL-Lite,
one can capture almost all features of conceptual data models used in DBs and
software engineering, such as the Entity-Relationship model [4] or UML class
diagrams3 Hence, the DLs of the DL-Lite family are well suited also to represent
data stored in commercial DBMSs.

Indeed, in the setting where such data are accessed through an ontology, the
DL ABox is actually represented by the DB. Alternatively, the ABox may be
reconstructed from the data present in the DB through suitable mappings, that
allow one also to overcome the impedance mismatch between the data values
stored in the DB and the objects at the conceptual level [7].

Reasoning has been studied for several variants of logics of the DL-Lite fam-
ily. Specifically, the logic obtained by dropping functionality assertions is called
DL-LiteR, and has already been adopted in the context of natural language spec-
ification of ontologies [6,5]. Instead, the logic obtained by dropping role inclusion
assertions and also the construct for qualified existential quantification is called
DL-LiteF , and is quite close to formalisms used in conceptual modeling, such
as the Entity-Relationship model. A combination of all constructs and types of
assertions considered above, with some restriction on the possible interaction of
functionality and role inclusions, has also been studied [7].

It has been shown in [9,8] that for the above mentioned variants of DL-Lite all
relevant reasoning services (e.g., KB satifiability, subsumption, ecc.), are poly-
nomial in the size of the knowledge base, and LogSpace in the size of the ABox
only, i.e., in data complexity (cf. [1]).

3 Complete (also called covering) hierarchies are an exception, since they require some
form of disjunction, which is not present in DL-Lite (see [8] for motivations).

174 R. Bernardi et al.

Given an DL-Lite KB K, queries over K are unions of conjunctive queries
(UCQs), which are expressions of the form {x | ∃y1conj 1(x, y1) ∨ · · · ∨
∃ynconj n(x, yn)}, where x is a (possibly empty) finite sequence of distinguished
variables, each yi is a finite sequences of (existentially quantified) variables and
constants, and each conj i is a conjunction of atoms whose predicates are the
concept and role symbols of the KB. If there is only one disjunct (i.e., n = 1),
the query is called a conjunctive query (CQ). The FOL formula following | is
called the body of the query. Each distinguished variable must appear also in
the body of the query. A boolean query is one where sequence of distinguished
variables is empty.

As an example, consider the natural language questions “Which are the red
books”?, corresponding to the CQ {x | book(x) ∧ red(x)}, and “Which are the
books read by John?”, corresponding to the CQ {x | book(x) ∧ read(john, x)}.
Also, CQs may allow one to represent complex dependencies coming from relative
pronouns, e.g., “which are the students who attend a course which is taught by
their father?” can be represented by {x | ∃y1∃y2(student(x) ∧ attend(x, y1) ∧
teach(y2, y1) ∧ father(y2, x))}.

Note that UCQs may contain no negation, no universal quantification, and
that disjunction may appear only at the outermost level. Hence, CQs and UCQs
constitute a proper fragment of FOL (in particular, we lack a complete set of
boolean operators). In terms of SQL, it is well known that CQs correspond to
the select-project-join fragment of SQL.

As an example, the questions “What is causing all the joint pain?” and “What
is the chance that aspirating a joint effusion that is not red will help the patient?”
cannot be translated into CQs or UCQs.

Given an interpretation I of K, the semantics of a UCQ q(x), denoted qI ,
is given by the set of tuples c of constants, such that, if each constant in c is
assigned to the corresponding variable in x, the formula that constitutes the
body of q evaluates to true in I. Notice that for a boolean query q, qI is either
empty or constituted by the empty tuple only.

It is well-known (cf. [1]) that given a finite interpretation I (that in our setting
plays the role of a traditional database), qI can be computed in LogSpace in
the size of I, i.e., in data complexity. However, the setting we are considering here
is complicated by the fact the we are usually not given a single interpretation I,
but rather a DL KB K, and are interested in reasoning with respect to all models
of K. In other words, we are interested in the answers to queries in the presence
of incomplete information in the ABox/database with respect to the constraints
specified by the TBox. Formally, given K and a UCQ q(x), we are interested in
computing the so-called certain answers to q over K, which are defined as the
set of tuples c of constants that are in qI for every model I of K. The problem
of computing certain answers has been studied for various variants of DL-Lite,
and it has been shown that is polynomial in the size of K and LogSpace in
data complexity, i.e., in the size of the data constituted by the ABox (or the
database representing it) [9,8]. However, this property crucially depends on the

English Querying over Ontologies: E-QuOnto 175

constructs in the DL and on the adopted query language, and does not carry
over if we e.g., allow for negation or universal quantification in queries.

Recently, the system QuOnto [2] has been developed, which implements
(sound and complete) algorithms for computing certain answers to UCQs over
DL-Lite ontologies, by relying on the underlying DBMS for the actual execution
of the queries and retrieval of the data.

3 Analysis of Questions Asked by Users

We are interested in understanding which natural language questions can be
expressed by CQs (and UCQs) and which ones cannot. “How” and “why” ques-
tions are clearly outscoping CQs, which return only sets of tuples of objects. On
the other hand, both boolean (i.e., yes/no) questions and the wh-questions built
out of “which”, “what”, “when”, “where”, and “who” could be expressed as
CQs if their semantic representation does not contain any of the operations not
admitted in CQs, specifically disjunction, negation, and universal quantification.
The question we try to address in this section is how frequent this happens and
how complex are the structures of these questions. To this end, we have analysed
several corpora of questions on different domains and asked in different settings:

Clinical Questions: contains users’ questions on the clinical domain, mostly
asked by doctors to colleagues; 435 questions, vocabulary: 3495, total tokens:
40489 (questions with introduction).

Answer.com: contains questions on different topics (e.g., art, sport, comput-
ers) asked by internet users; 444 questions4, vocabulary: 1639, total tokens:
5791 (without introduction)5.

TREC: we have used the TREC 2004 corpus that contains 408 questions.

Table 1. Searched Terms

Operator Linguistic terms

Universal quantification all, both, each, every, everybody, everyone,
any (in positive context), none, nothing

Disjunction or
Negation not (and its abbreviations), without
Existential quantification any, anything, anyone, anybody, some, something,

someone, somebody, there is a, there are a, there was a

To understand how often FOL constructs outside the CQ fragment occur in
real life questions, we have checked the occurrences of universal quantification,
negation and disjunction in the corpora listed above, by searching for the fre-
quency of the terms shown in Table 1. We are aware that these terms might
not cover all the possible ways of expressing the operations under investigation,
4 http://clinques.nlm.nih.gov/
5 http://wiki.answers.com/Q/WikiFAQs:Finding Questions to Answer

http://clinques.nlm.nih.gov/
http://wiki.answers.com/Q/WikiFAQs:Finding_Questions_to_Answer

176 R. Bernardi et al.

universal existential disjunction negation

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

Comparing corpora

Clinical

Answer.com

Faq-TREC

structures

re
lat

ive
 fr

eq
ue

nc
ies

Fig. 1. Summary of the analysis

however, we believe the results do help revealing features of natural language
questions with respect to the problem we are trying to tackle. To have a more
general picture of the occurrences of logical operators in questions, we consid-
ered also the frequency of existential quantifiers. This was also needed in order
to check whether the latter were negated, hence resolving into universal quantifi-
cation. Similar studies have been conducted on other corpora containing declar-
ative sentences and the results were different than those reported here, which
highlights the peculiarity of questions.

In Figure 1, we report the results of such analyses. The chart shows the
frequency of each class of terms in the three corpora. Frequency values refer to
the normalized relative frequency (number of tokens/total word count multiplied
by 100). As the figure shows, the use of the “forbidden” constructs is particularly
frequent in natural questions even in a free text access to data. The details about
the number of questions in which these operators occur are given in Table 2.

More specifically, the comparison among the corpora shows that: (i) universal
quantifiers are rare in all the analysed questions; they are slightly more frequent
in the Clinical Questions corpus where, anyway, they mostly occur in the declar-
ative sentences preceding the question; (ii) existentials do occur in questions but
never negated; (iii) negation and disjunction are more frequent particularly in
real free text access, but still rare in questions like those in TREC.

Table 2. Number of questions

Clinical Questions Answer.com TREC
Tot: 435 Tot: 444 Tot: 408

universal 12 6 2
existential 111 22 1
disjunction 132 15 2
negation 52 13 1

Though rare, still there is the need of handling those questions that outscope
the expressivity of CQs. Therefore, we now turn to analyse them in detail.

Universal quantification. Universal quantifiers have been found to occur in any
syntactic position: as subject (1a) or object (1b) as well as in prepositional

English Querying over Ontologies: E-QuOnto 177

phrases (1c), as exemplified by the following questions taken from the Clinical
Questions corpus:

(1a) Should all pregnant women take a test for human immunodeficiency virus?
(1b) What is causing all the joint pain?
(1c) Can we use Energix for all five doses of DPT?
Negation. In the analysed corpora, “negation” is used only to negate the verb of
an embedded clause (2a) (never the main verb of the question or the auxiliary),
or to negate adjectives (2b) or in the form of without (2c), as exemplified again
by the Clinical Questions corpus:

(2a) Should you give a full series of tetanus shots to an adult who does not know
their immunization history?

(2b) What is the chance that aspirating a joint effusion that is not red or tender
will yield anything diagnostically?

(2c) Is it possible for someone to get recurrent pelvic disease without a new
exposure?

Disjunction. Finally, disjunction occurs only coordinating nouns and really
rarely between propositions. See the examples below taken from Answer.com.

(3a) What is the word for the fear if viewing sports or playing sports?
(3b) Is Liberia considered a rural or a urban country?

In such rare cases, we would need to resort to a UCQ, rather than a CQ, obtained
by splitting up the query at each occurrence of a disjunction.

The analysed corpora contain questions whose structure is rather simple and
not too far away from CQs’ constructs. This could be claimed even strongly
if we focus on questions asked by users to DBs. For English, we have looked
into Geoquery6 (304 questions on the geographical domain) where there is only
one question of the “forbidden” class, namely one containing negation –though
the corpus contains several (75) questions falling outside CQs, viz. aggregation
questions (how high, how many, etc.). Similar studies have been carried out for
Italian obtaining similar results.

In the remainder of the paper, we show how to build the CQ representation
of a given question, and propose a method, based on semantic weakening, that
allows us to extend the kinds of natural language questions that query answering
tools over ontologies can handle.

4 Answering Natural Language Questions over Ontologies

Our third question, namely “how can we obtain a formal query (in a suitable query
language) representing a given natural language question?”, can be re-phrased in
how well current Computational Semantics tools will perform when their output
is used as input for query answering tools, as e.g., QuOnto, which accepts
UCQs. Hence, we start from off-the-shelf wide-coverage parsing tools producing

6 http://www.cs.utexas.edu/users/ml/geo.html

http://www.cs.utexas.edu/users/ml/geo.html

178 R. Bernardi et al.

FOL meaning representation of the parsed questions. In this paper we are consid-
ering a CCG parser (paired with Boxer) [11] which outputs questions of the form7:

{x | ∃y(ϕ(y) ∧ D(x) ∧ ∃z(ψ(x, y, z)))} (1)

where x represents the answer to the question, D is the domain of the question,
ψ represents the body of the question, and ϕ represents the knowledge that
is presupposed by the user posing the question. We consider wh-questions and
boolean questions. In the first case, if the wh-phrase is where, who/whom, how,
when, what, or why, then D refers to location, person, manner, unit of time,
thing and reason, respectively. If the wh-phrase is which, then the domain is the
head noun of the noun phrase. For example, in the question “Which services are
offered by the library?” the domain is services. If the question is boolean, then
the domain of the question is empty. In both cases the body of the question
contains a conjunction of conditions.

For instance, the question “Who may use the Interlibrary Loan service?” is
represented as follows:

{x | ∃y1∃y2(loan(y1) ∧ interlibrary(y2) ∧ service(y2) ∧ nn(y1, y2) ∧ person(x) ∧
∃z(use(z) ∧ event(z) ∧ agent(z, x) ∧ patient(z, y2)))}

As the example shows, besides the predicates introduced by the words in the
question, the meaning representation produced by Boxer contains information
about thematic roles too, namely agent, patient, theme, whose first argument
appears also as argument of the unary predicate event, which in itself is intro-
duced by a verb. Also, the formula in the example contains the predicate nn,
which relates nouns that in the question occur as multi words (e.g., interlibrary
loan).

In short, Boxer produces formulas of the fragment of FOL with equality and
without function symbols, where predicate symbols are either unary or binary.
This output must be translated into queries suitable for query answering tools.
Here we focus on the structure of the logical form rather than on the predicates
to be used for properly matching the ontology vocabulary.

4.1 Translation

The translation to an UCQ starts from the FOL representation of the question,
as calculated by Boxer, and hence in form (1). We deal first with the easy case
where both ϕ and ψ in that formula contain conjunctions and disjunctions only.
Let dnf(ϕ) = α1 ∨ · · · ∨ αn and dnf(ψ) = β1 ∨ · · · ∨ βm be the disjunctive normal
form (DNF) expansions of ϕ and ψ, respectively. Query (1) is then expanded
into an UCQ as follows:

7 Boxer actually outputs such open FOL formulas as closed formulas in which the free
variable is universally quantified and the second conjunction is represented by an im-
plication.

English Querying over Ontologies: E-QuOnto 179

q(x) = {x | ∃y∃z(ϕ(y) ∧ D(x) ∧ ψ(x, y, z))}
= {x | ∃y∃z((α1(y) ∨ · · · ∨ αn(y)) ∧ D(x) ∧ (β1(x, y, z) ∨ · · · ∨ βm(x, y, z)))}
= {x | ∃y∃z((α1(y) ∧ D(x) ∧ β1(x, y, z)) ∨ · · · ∨ (α1(y) ∧ D(x) ∧ βm(x, y, z)) ∨

· · ·
(αn(y) ∧ D(x) ∧ β1(x, y, z)) ∨ · · · ∨ (αn(y) ∧ D(x) ∧ βm(x, y, z)))}

= {x | ∃y∃z(α1(y) ∧ D(x) ∧ β1(x, y, z)) ∨ · · · ∨ ∃y∃z(αn(y) ∧ D(x) ∧ βm(x, y, z))}

4.2 Semantic Weakening

Though rarely, universal quantifiers do occur in questions asked by users. Here
we discuss a way to deal with this kind of questions. Techniques (and systems
for) query answering in the setting of incomplete information provide the certain
answers to a query – i.e., given a query in the form q(x) = {x | ∃y(ϕ(x, y)),
it returns the tuples of constants c that are guaranteed to satisfy the formula
∃y(ϕ(c, y)) in all models of the ontology. Certain answers can also be charac-
terized by resorting to the minimal knowledge operator K [14,15], where Kϕ
denotes that “ϕ is known to hold by the ontology”. In this way, the answers to
the query q above can be defined as the tuples c of constants that satisfy the
epistemic formula K∃y(ϕ(c, y))).

A question containing universal quantification results in a query of the form:

ϕ(x) ∧ ∀y(D(y) → ∃z(ψ(x, y, z)))

Its intended semantics are captured by the equivalent epistemic query:

K(ϕ(x) ∧ ∀y(D(y)→∃z(ψ(c, y, z)))) ≡ Kϕ(x) ∧ K ∀y(D(y)→∃z(ψ(c, y, z)))

The occurrence of a universal quantification in the scope of the K operator
leads to a query that cannot be handled directly by systems like QuOnto. In
order to make the query answerable, we can apply to it some kind of semantic
weakening. The intuition behind the proposed weakening follows from the fact
that all the system can do is try to find a counterexample to the given implica-
tion: if it fails, then the implication can be assumed to hold. Hence, the key step
consists in substituting the knowledge operator K enclosing the universal quan-
tification with the belief operator B, i.e., Kϕ(x)∧B ∀y(D(y) → ∃z(ψ(x, y, z))).

The derived formula expresses the fact that all the system can do is test
whether the universally quantified subformula is consistent with the knowledge
base – i.e., the knowledge base does not entail the existence of a counterexample.
Making use of the standard equivalence Bϕ ≡ ¬K¬ϕ, the whole query can be
rewritten as follows (in NNF), i.e., Kϕ(x) ∧ ¬K ∃y(D(y) ∧ ∀z(¬ψ(x, y, z))).

This newly introduced universal quantification poses the same problem with
respect to query answering. We apply the same kind of weakening, replac-
ing again the knowledge operator with the belief operator, i.e., Kϕ(x) ∧
¬K ∃y(D(y)∧B ∀z(¬ψ(x, y, z))), which is equivalent to the final query Kϕ(x)∧
¬K ∃y(D(y) ∧ ¬K ∃z(ψ(x, y, z))).

Queries in this form correspond to the SELECT/FROM/WHERE/NOT IN fragment
of SQL, which can be efficiently answered by systems for query answering over

180 R. Bernardi et al.

ontologies such as QuOnto, by combining the computation of certain answers
with the computation of a set difference (cf. [10])

Going back to natural language, this process would correspond to answer a
question like “What is causing all the joint pain?” with “I am not aware of any
joint pain that is not caused by the following diseases”, when the system does
retrieve some disease.

5 Conclusions and Future Work

The analysed corpora have shown that (i) the natural language questions a user
would ask in order to access data in a DB are rather simple (compared to other
forms of free text); (ii) often these real life questions are actually representable
by CQs; (iii) given a natural language question, its corresponding query can be
obtained by translating FOL representation outputs of state-of-the-art (wide cov-
erage) parsers; (iv) questions that cannot be represented by CQs (or UCQs) could
be handled via some form of semantic weakening, as illustrated by the case of uni-
versal quantifier. A similar method could be used to answer questions contain-
ing negation. Also, strategies for handling aggregations could be considered in the
described framework. The observed data have also shown that quite often users
would use plurals rather that an explicit universal quantifier. Hence, it would be
interesting to check how the proposed method could be extended to properly cap-
ture their meaning. The work described in [17] could be taken as the starting point.

The output of the parser suggests an improvement to the application of the
query answering tool to better meet the user expectations, viz. treat differently
the presupposed knowledge in the question representation from the one in the
body of the question. In the example considered in Section 4, “Who may use
the Interlibrary Loan service?” the existence of an “interlibrary loan service”
is presupposed. The system could verify the presupposition before answering
the actual questions and give feedback to the user in case the presupposition is
actually falsified. Evaluations of the proposed approach should be carried out.

Our work shows that the syntactic constructs present in user questions might
in general not constitute a problem, and presents techniques to handle the more
problematic cases. However, an important aspect that is largely left open in the
present paper, while being addressed in other systems, e.g., Aqualog [16], is the
problem of bridging the gap between the terminology of the user and the ontology
terms and structure. To address this problem, on the one hand, lexical resources
can be used to overcome differences in the terminology, by substituting user terms
with appropriate synonyms present in the ontology. Notice also that QuOnto

itself may expand a CQ into an UCQ by substituting a term with a collection of
terms related to the first one through a (generalization) hierarchy. On the other
hand, we are working on enriching our framework with mappings (in the style of
local-as-view mappings used in data integration [13]) from the ontology structures
to suitable meaning representations, corresponding to the various ways in which
users may query the ontology structures. We aim at constructing the mappings
semi-automatically, by exploiting verbalizations of the ontology structures.

English Querying over Ontologies: E-QuOnto 181

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ.
Co., London (1995)

2. Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri,
M., Rosati, R.: QuOnto: Querying ontologies. In: Proc. of AAAI 2005 (2005)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

4. Batini, C., Ceri, S., Navathe, S.B.: Conceptual Database Design, an Entity-
Relationship Approach. Benjamin and Cummings Publ. Co. (1992)

5. Bernardi, R., Calvanese, D., Thorne, C.: Expressing DL-Lite ontologies with con-
trolled english. In: Proc. of DL 2007 (2007)

6. Bernardi, R., Calvanese, D., Thorne, C.: Lite natural language. In: IWCS-7. Proc.
of the 7th Int. Workshop on Computational Semantics (2007)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati,
R.: Linking data to ontologies: The description logic DL-LiteA. In: Proc. of
OWLED 2006 (2006)

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: Proc. of KR 2006 (2006)

9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: Proc. of AAAI 2005 (2005)

10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite:
Effective first-order query processing in description logics. In: Proc. of IJCAI 2007
(2007)

11. Curran, J.R., Clark, S., Bos, J.: Linguistically motivated large-scale NLP with
C&C and Boxer. In: ACL 2007. Proc. of the Demonstrations Session of the 45th
Annual Meeting of the Association for Computational Linguistics (2007)

12. Guarino, N.: Formal ontology in information systems. In: FOIS’98. Proc. of the Int.
Conf. on Formal Ontology in Information Systems, IOS Press, Amsterdam (1998)

13. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of PODS 2002
(2002)

14. Levesque, H.J.: Foundations of a functional approach to knowledge representation.
Artificial Intelligence 23 (1984)

15. Levesque, H.J., Lakemeyer, G.: The Logic of Knowledge Bases. The MIT Press,
Cambridge (2001)

16. Lopez, V., Pasin, M., Motta, E.: AquaLog: An ontology-portable question answer-
ing system for the Semantic Web. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC
2005. LNCS, vol. 3532, Springer, Heidelberg (2005)

17. Schwertel, U.: Plural Semantics for Natural Language Understanding – A Compu-
tational Proof-Theoretic Approach. PhD thesis, University of Zurich (2004)

	Introduction
	Preliminaries
	Analysis of Questions Asked by Users
	Answering Natural Language Questions over Ontologies
	Translation
	Semantic Weakening

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

