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Abstract

In this study, we investigate the mental representation of non-numerical quantifiers

(“some”, “many”, “all”, etc.) by comparing their use in abstract and in grounded per-

ceptual contexts. Using an approach similar to that used in the number domain, we test

whether (and to what extent) such representation is constrained by the way we perceive

the world through our senses. In two experiments, subjects either judged the similar-

ity of quantifier pairs (presented as written words) or chose among a predetermined list

of quantifiers the one that best described a visual image depicting a variable number

of target and non-target items. The results were rather consistent across experiments,

and indicated that quantifiers are mentally organized on an ordered but non-linear com-

pressed scale where the quantifiers that imply small quantities appear more precisely

di↵erentiated across each other compared to those implying large quantities. This fits

nicely with the idea that we construct our representations of such symbols mainly by

mapping them to the representations of quantities that we derive from perception.
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1. Introduction

One of the common goals of linguists and cognitive scientists is to uncover and for-

mally characterize how linguistic symbols are mentally represented. Here we attack the

issue by focusing on a specific class of words, that of quantifiers (words like “some”,

“many”, “few”, “a lot”, “all”, “none”).5
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Quantifiers have long been considered as a particularly intriguing class of words es-

pecially by linguists, since they display several peculiar properties. First, from a formal

semantic perspective they are conceived as non-referential (Montague, 1973; Barwise &

Cooper, 1981; Westerst̊ahl, 1985; Van Benthem et al., 1986; Keenan & Stavi, 1986; Sz-

abolcsi, 2010): Di↵erently from many other words, quantifiers do not denote objects,10

but instead relations between sets of objects. Second, quantifiers are widely a↵ected by

the linguistic context of use. This particularly holds for some quantifiers, like “few” and

“many”, which have therefore been proposed to be non-extensional (Keenan & Stavi,

1986; Westerst̊ahl, 1985): The two sentences “Many doctors attended the meeting this

year” and “Many lawyers attended the meeting this year” (even assuming that the doc-15

tors and lawyers attending the respective meetings are equal in number) might have

di↵erent truth values depending on the number of doctors and lawyers who used to

attend the meeting. Third, from a pragmatic perspective it has been shown how the

di↵erent degree of information or logical strength of the quantifiers (that “some” is less

informative than “all”) a↵ects the implicit information that people infer from an utter-20

ance (Horn, 1984). For example, listening to the sentence “Some students were satisfied

with the marks” a hearer would infer that “Not all the students were satisifed”. Fourth,

quantifiers cannot be simplistically considered as words that stand for amounts, num-

bers, proportions (Moxey & Sanford, 1993, 2000; Paterson et al., 2009; Nouwen, 2010).

Even when expressing approximately the same quantity (e.g. “few” and “a few”), quan-25

tifiers di↵er from each other with respect to the perspective they give to this quantity,

by bringing the hearer to focus on either the target set (“a few”) or the non-target set

(“few”). For instance, “few of these cars break down” is likely to bring the hearer’s at-

tention to the vast majority of cars that do not break down. “A few of these cars break

down”, instead, is more likely to bring the attention to the cars that do break. This dif-30

ference in the focus influences the hearer’s behavior in a positive/negative way (Moxey

& Sanford, 2000; Paterson et al., 2009). Consequently, quantifiers have been described

in terms of probability distributions over scales (Moxey & Sanford, 1993; Yildirim et al.,

2013; Schöller & Franke, 2017). Finally, the variability of quantifiers across conditions,

together with their rather elusive status with respect to the traditional linguistic classifi-35

cations, have brought some researchers to take the extreme stance that devising a general
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semantics for these expressions might not even be possible (Nouwen, 2010).

Although a long tradition of studies convincingly proved that numerical information,

such as the mechanisms of quantity estimation and comparison, is fundamental in the

comprehension of quantifiers (Heim et al., 2012; Shikhare et al., 2015; Deschamps et al.,40

2015),1 cognitive science has not been successful at characterizing how humans mentally

represent quantifiers. Historically, even if there has been a shared intuitive assumption

that quantifiers might be internally represented on an ordered scale (which some con-

ceived as governed by absolute quantities, e.g. Newstead et al. (1987), and other by

proportions, e.g. Graves & Hodge (1943); Hammerton (1976)), there has been little at-45

tempt at formally trying to capture the features of such scale in a quantitative manner.

One approach has been to investigate the conditions of the external world that trigger

the use of the di↵erent quantifiers: Subjects, presented with sets of a various number of

target and non-target (visual) items, are asked either to pick, among a predetermined

list, the quantifier that best fits the scene or to rate the appropriateness of a list of50

scene-quantifier associations. Studies of this sort are only very few, and they are hard to

compare as they each investigate di↵erent sets of quantifiers, as well as slightly di↵erent

aspects of the stimuli (some analyze the e↵ect of the number of targets, e.g. Newstead

& Coventry (2000), some the number of both targets and non-targets, e.g. Coventry

et al. (2005, 2010), some the proportion of targets in the scene, e.g. Oaksford et al.55

(2002), often taking into account perceptual factors like the size of the items, their spa-

tial arrangements or their category, e.g. Newstead & Coventry (2000); Coventry et al.

(2010)), though without investigating the potential interactions across all the possible

variables. Moreover, the experimental design of all these studies lacks cases where the

various e↵ects can be disentangled, for example visual scenes with a small number of tar-60

gets corresponding to a high proportion (e.g., 3 targets out of 4 total objects). Although

with some inconsistencies, the results of these studies overall suggest that quantifiers are

evaluated by taking into account the number of both targets and non-targets such that,

given a fixed number of non-targets, scenarios with increasing targets are associated with

1This work typically employs a verification task: Given a scene depicting a variable proportion of

target and non-target dots and a sentence embedding a quantified expression, participants are asked to

quickly verify the semantic truth value of the sentence. What these studies showed is that errors and

reaction times are typically a↵ected by perceptual di�culty in observance to Weber’s law.
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quantifiers implying “larger” quantities. A notable exception is that, when the targets65

are very few, the number of non-targets seems not to play a role (Coventry et al., 2005).

This indirectly suggests that quantifiers might be represented on an internal scale based

on proportions which behaves somewhat di↵erently for small sets. What these stud-

ies lack, however, is a quantitative characterization of the laws subtending the relation

between quantifiers and perceptual stimulation and thus a thorough description of the70

internal scale.

Another complementary approach that psychologists have used to infer the structure

of mental representations is that of directly asking subjects to compare words pairwise

and to rate, on a given scale, their semantic similarity in a purely linguistic context (with

no direct relation to concrete objects/sets). This way, the potential confounds due to the75

constraints imposed by perception are eliminated. In this approach, the analysis of the

global pattern of rated distances across words can then be used to reconstruct the internal

geometry of the representational space of those words (using Multi-Dimensional Scaling,

e.g. Arnold (1971); Steyvers et al. (2004)). To our knowledge, this approach has been

applied to the domain of quantifiers only by Holyoak & Glass (1978), who experimented80

with a set of five items. Studies of this sort would be crucial for complementing the

studies that explore quantifiers in grounded conditions. In particular, the comparison

across the grounded and abstract use of quantifiers is useful to approach the question of

to what extent the mental representations of quantifiers (and, more generally, of symbols)

are, or are not, constrained by the way we perceptually elaborate the objects or objects85

features to which the symbols are typically used to refer to.

While the abstract view of semantics predicts that symbols are mainly organized ac-

cording to purely linguistic variables (frequency of use, frequency of association in the

lexicon, antinomy, etc.), the grounded cognition view predicts that symbols are mentally

represented in a way that at least partially reflects (or is isomorphic to) the way we90

perceive the world through our senses. This should be reflected both in how subjects

use quantifiers to describe perceptual scenes, and in purely abstract contexts when they

evaluate quantifiers among each other. This approach has been taken for example in the

number domain, where several pieces of data indicate that the internal representation

of number symbols (words or Arabic digits, denoting cardinals) appears as governed by95
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the same representational constraints that govern the perception of numerosities in con-

crete sets, namely on an internal scale which appears overall logarithmically compressed

(see Piazza & Eger (2016), for a recent review). This is the case both when number

symbols are compared among each other and when they are used to describe perceptual

scenes (e.g. Izard & Dehaene (2008)). The aim of the current paper is to export this100

approach to study the mental space of quantifiers, its main dimensions, and its internal

geometry, and to contrast the predictions from the abstract cognition and the grounded

cognition comparing grounded-perceptual and abstract tasks: Using a common list of

quantifiers and two large groups of subjects, one experiment investigates quantifiers in

grounded conditions, asking subjects to describe visual scenes choosing the most ap-105

propriate quantifier (Experiment 1), and the other investigates quantifiers in a purely

linguistic context, asking subjects to rate the similarity among quantifier word pairs

(Experiment 2).

2. Methods

Two experiments were administered to native-Italian participants and employed the110

same set of 9 Italian quantifiers. The quantifiers used were nessuno (“none”), quasi

nessuno (“almost none”), la minor parte (“the smaller part”), pochi (“few”), alcuni

(“some”), molti (“many”), la maggior parte (“most”), quasi tutti (“almost all”), tutti

(“all”). For sake of clarity, English translations will be used from now on throughout

the paper. The selection of the quantifiers was aimed at experimenting with a fairly115

comprehensive set, including logical-Aristotelian (“none”, “some”, “all”), proportional

(“the smaller part”, “most”), and a range of other common quantifiers (“few”, “many”,

“almost none”, “almost all”). Moreover, an equal number of low-magnitude (“none”, “al-

most none”, “few”, “the smaller part”) and high-magnitude quantifiers (“many”, “most”,

“almost all”, “all”) was ensured. Note that we did not consider “some” as belonging a120

priori to one or the other group.

2.1. Grounded task: Quantifiers used in perception

Thirty native-Italian participants (21 females, 9 males) with normal or corrected-to-

normal vision carried out the task of evaluating 340 synthetic visual scenes containing
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Figure 1: Schematic representation of the experiment. After a fixation cross of 500ms, a trial is presented

for 1, 000ms. Then the participant is asked to click on the quantifier that better describes the scene.

two categories of objects: Animals and artifacts. The total number of objects in the scene125

ranged from 3 to 20 (see section 2.1.1 for a detailed description of the visual stimuli), and

the number of items in each of the two categories varied from 0 to 20. The experiment was

implemented in Matlab using the Psychtoolbox-3 package. All participants performed

the experiment in a quiet, dimly lit room at the CIMeC Psychophysic lab (Rovereto,

Italy) using the same desktop computer, same monitor (size 23.6”, resolution 1920x1080130

pixels), and same mouse, and sitting at a distance of approximately 50cm from the screen.

Eighteen participants requested and obtained university credits for their participation.

Before starting, two instruction pages describing the task were displayed. Participants

were asked to be as accurate and fast as possible. The task consisted of attending the

visual scene and to select the quantifier which better answered the question: “How many135

of the objects are animals?”. Particular focus was put on the fact that the quantifier

had to be chosen always with respect to the set of animals (target set). This choice
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was aimed at diminishing the chance of errors merely due to wrong associations between

the question and the target set. By fixing the set of animals as the target set, in fact,

participants should be more focused on the quantification task per se. Importantly, the140

9 quantifiers were never presented in any kind of order during the instructions.

After reading the instructions and having clarified any possible doubt with the ex-

perimenter, a training session was provided to get familiar with the task. The training

session comprised of 5 trials which were not included in the 340 test stimuli. The pro-

cedure was the same as the test session (see Figure 1 for a schematic representation of145

the experiment): A white fixation cross was presented for 500ms in the center of a grey

background screen; afterwards, a visual scene was displayed for 1, 000ms followed by the

9 quantifiers presented in a 3*3-cell grid centered in the middle of the screen. The cells

were well-spaced to prevent unwanted clicks, and highlighted by a darker shade of grey.

Importantly, quantifiers were presented at each trial in a randomized position to avoid150

any familiarization e↵ects. The task was to click on the chosen quantifier in the shortest

possible time. After the response, a fixation cross appeared for 500ms followed by the

next stimulus. After the first 5 training trials, a display was presented o↵ering the pos-

sibility to train for extra 5 trials, di↵erent from the previous ones and also not included

in the test set. Participants were asked to choose between training more or moving to155

the test session.

Before starting the test session, an instruction page was presented to specify that the

experiment comprised of 10 blocks of 34 stimuli each. Subjects were reminded of the task.

After left-clicking the mouse, participants started the first block of the experiment. At

the end of each block, participants were allowed to take a self-paced pause. On each trial160

we recorded the chosen quantifier, its position on the grid, and the time taken to give the

response. For each trial we also recorded a number of perceptual features describing the

visual scene, such as the cardinality of animals and artifacts, their size (small, medium,

large), and the ratio between animals and artifacts.

Responses by all participants were retained. 15 participants were in the age range165

18-23, 11 in the range 24-29, 4 in the range 30-36. Seventeen requested and obtained

university credits for their participation.
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Figure 2: One visual scene used in the experiment, representing a targets:non-targets ratio of 1:3 (i.e.

25% of total items are targets).

2.1.1. Materials

The visual scenes used in the experiment consisted in multiple colored pictures of

animals (hence, targets) and artifacts (hence, non-targets) displayed on the top of a grey170

background (see Figure 2). Scenes di↵ered on the total number of items displayed, that

could vary from 3 to 20. Across scenes, the number of targets and non-targets varied

such that di↵erent targets:non-targets ratios were equally represented. Crucially, each

ratio corresponded to a fixed proportion of targets with respect to the total number of

objects (i.e., targets+non-targets) in the scene. For example, ratio 1:3 corresponded to175

25% of targets (see Figure 2). We used 17 ratios, each presented 20 times during the

experiment, out of which 8 were “positive” (targets > 50%), 8 “negative” (targets <

50%) and 1 “parity” (targets = 50%). Because each ratio could be generated by di↵erent

combinations of cardinalities (e.g., ratio 1:4 could result from the combination of 1 target

and 4 non-targets, as well as 2 targets and 8 non-targets, etc.), for each ratio we presented180

all possible combinations of cardinalities. For any possible combination, a fixed number

of visual scenes was built.

Visual scenes were generated with an inhouse Matlab script using the following

pipeline: Two pictures, one depicting a target (e.g. an instance of a hedgehog) and
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one depicting a non-target (e.g. an istance of a basketball) were randomly chosen from185

a sample of the database by Kiani et al. (2007) including 100 instances of targets and

145 instances of non-targets. The sample was previously obtained by manually selecting

pictures depicting whole items (not just parts) and whose color, orientation, and shape

were not deceptive (for example, we discarded pictures depicting butterfly-shaped pasta

as their target/non-target categorization could have been problematic). The target and190

the non-target pictures were randomly inserted by the script onto a 5*5-cell virtual grid.

In order to inject some variability, each picture was randomly assigned to one orientation

on the vertical axis (right or left) and one size (large, medium, small size, corresponding

to approximately 5.3�, 3.4�, and 2.3� of visual angle). None of the scenes contained

objects that were all the same size. As for the orientation, its e↵ect is less measurable195

since it depends on the visual properties of the object (see, e.g., the di↵erent e↵ects on

the hedgehog and the basketball in Figure 2). However, this is not an issue since we are

not interested in formally investigating the role of object orientation in the task. In total,

340 visual scenes were included in the experiment, together with additional 10 trials for

training.200

2.2. Abstract task: Semantic similarity judgements

Thirty-three native-Italian participants (10 males, 22 females, 1 n.d.) completed this

task. In an online survey powered by Google Forms, they were presented with pairs of

quantifiers (e.g., “almost none” and “none”), and asked to rate their semantic similarity

using a 7-point Likert-like scale, where 1 meant “highly dissimilar” and 7 “highly similar”.205

Before starting the task, participants were presented with an instruction page where the

terminology was briefly explained and the task exemplified. They were instructed that, in

cases of di�culties in assessing the degree of semantic similarity between two quantifiers,

they could adopt the strategy of mentally placing them into a default sentence (e.g.,

“Few/Many students have had high marks”), and judging the semantic similarity of the210

two resulting sentences. In order not to bias participants, only two trivial examples were

provided in the instructions, namely “all-none”=1, and “some-some”=7. Moreover, given

the constrained number of combinations, i.e. 9*9=81, no trial items were included. Each

participant was asked to judge all 81 possible combinations in a randomized order of

presentation. Each quantifier pair was rated twice by each participant, once in one order215
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(i.e. “all-none”) and once in the opposite order (i.e. “none-all”). To avoid any priming

or repetition bias, we ensured that the two versions of the same pair never occurred in

a row. Even though no time limits were set, participants were asked to provide their

judgements as accurately as possible in the shortest possible time.

One participant’s responses were discarded due to the repeated choice of the judge-220

ment 1 (i.e. “highly dissimilar”) in 55 out of 81 cases (68%). Responses by thirty-two

participants (9 males, 22 females, 1 n.d.) were retained. 13 participants were in the age

range 18-23, 14 in the range 24-29, 3 in the range 30-36, 2 in the range 37-42. Fifteen

requested and obtained university credits for their participation.

3. Analysis and results225

3.1. Grounded task: Quantifiers used in perception

All 30 participants successfully completed the experiment and provided each 340

responses. In total, 10, 200 datapoints were collected. To ensure the quality of the

responses, we removed those datapoints for which the reaction times exceeded the average

of 2.5 SD. We did not perform any other filtering of the data. In total, 257 responses230

were discarded, equal to 2.52% of total. All statistical analyses were performed in the

R environment on the resulting sample. For each quantifier, in Table 1 we report the

following descriptive statistics: (a) The total number of responses assigned, (b) the

average proportion of targets out of total number of items, (c) the average number of

targets, (d) the average number of non-targets, (e) the average total number of items.235

Note that quantifiers are sorted according to ascending (b), which also corresponds to

ascending (c).

As can be seen in the table, “most” is the most used quantifier with 2, 110 responses.

Low-magnitude quantifiers (“none”, “almost none”, “few”, “the smaller part”) are used

3, 841 times (38.6%), high-magnitude quantifiers (“all”, “almost all”, “many”, “most”)240

4, 706 times (47.3%). As far as both the proportion and the cardinality of targets are

concerned, the quantifiers turn out to be ordered on the following scale: “none”, “almost

none”, “few”, “the smaller part”, “some”, “many”, “most”, “almost all”, “all”. By

looking at the proportions defining each quantifier, an almost perfect mirroring can be

observed between “none-all” (⇠ 0%-100%), “almost none-almost all” (⇠ 20%-80%), “the245
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quantifier (a) resp (b) % targ (c) n targ (d) n non-targ (e) n total

none 604 0.01 (0.09) 0.13 (1.01) 11.35 (5.04) 11.48 (4.93)

almost none 861 0.19 (0.13) 1.69 (1.95) 7.81 (4.67) 9.45 (5.12)

few 1241 0.26 (0.13) 2.92 (1.58) 9.63 (4.96) 12.55 (5.40)

the smaller part 1135 0.32 (0.13) 3.79 (2.01) 8.99 (4.56) 12.78 (5.26)

some 1396 0.44 (0.13) 4.97 (2.30) 6.82 (3.66) 11.79 (4.79)

many 770 0.64 (0.14) 8.75 (3.76) 4.89 (2.66) 13.65 (4.53)

most 2110 0.69 (0.13) 8.82 (4.21) 3.90 (2.30) 12.72 (5.03)

almost all 1222 0.80 (0.12) 9.38 (5.08) 2.24 (2.00) 11.62 (5.68)

all 604 0.99 (0.09) 11.31 (5.04) 0.15 (1.13) 11.47 (4.99)

Table 1: Descriptive statistics. Columns are sorted with respect to ascending proportion of targets (b),

which also corresponds to ascending cardinality of targets (c). Values in brackets refer to SD.

smaller part-most“ (⇠ 30%-70%). Such a pattern can be better observed in Figure 3,

which shows the frequency distribution of responses across proportions of targets. As can

be seen, the quantifiers involved in these pairs have similar “peaks” and distributions,

though di↵erent frequencies.

In order to explore the role of cardinality of the target items in the scene, we separated250

the trials where the target items fell within the range of extremely well enumerable

cardinalities (i.e. the so called “subitizing” range, corresponding to scenes containing up

to 3 animals) from those containing more than 3 items. The distribution of responses

can be observed in Figure 4, which reports quantifiers frequency for scenes within the

subitizing range (leftmost panel) and exceeding the subitizing range (rightmost panel).255

It should be noted that while in the former the whole range of quantifiers is used (though

“many” has an extremely low frequency), in the latter both “none” and “almost none”

disappear, with an increasing use of quantifiers like “most” and “many”. It is worth

mentioning that the choice of setting the subitizing threshold to 3 was aimed at making

our results directly comparable to those reported by Coventry et al. (2005, 2010), who260

experimented with such setting.

To more formally investigate which factors contribute in determining quantifiers

meaning in grounded contexts, we performed statistical analyses on the collected data.

Because our variables of interest are naturally highly correlated (crucially, proportion of
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Figure 3: Density plot reporting the frequency distribution of responses for the 9 quantifiers (y-axis)

against the proportion of targets in the scene (x-axis).

Figure 4: Density plots reporting frequency distribution of responses against proportion of targets for

scenes whose number of targets is within the subitizing range (left) and exceeding it (right).
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targets and cardinality of both targets and non-targets), it was not possible to disentan-265

gle between the relative contribution of the two (or more) factors within the same logistic

regression model. We thus employed the “one model, one predictor” strategy, according

to which a number of separate models including only one predictor of interest (along

with random factors) was performed for each quantifier. This way, the predictive power

of each variable could be tested separately, and we could further evaluate the quality270

of each model relative to all other candidate models. Model selection was performed

using Akaike Information Criterion (AIC), a measure based on information theory which

allowed us to select the best model for a given set of data (Akaike, 1973). In particular,

the lowest the AIC, the lowest the information loss compared with the “true” model,

namely the process that generated the data. We considered both raw AIC scores and275

AIC weights (Wagenmakers & Farrell, 2004).

Seven variables were used as predictors: (a) proportion of targets, (b) cardinality of

targets, (c) cardinality of non-targets, (d) subitizing/non-subitizing range (dichotomic

dummy variable), (e) average size of targets, (f) average size of non-targets2. In total,

52 models were tested. All models were mixed-e↵ect logistic regressions (Baayen et al.,280

2008) with one fixed predictor (see above) and 3 random factorial variables, namely (1)

participant, (2) experimental block, and (3) position of the quantifier in the response

grid. By including these random variables in the models, we ensured that significant

e↵ects were estimated for the whole set and not just for a sample of stimuli. That is,

we ensured that the e↵ects were not due to the variability among participants, blocks of285

stimuli, position of the quantifier word in the response grid. To better fit the data, all

the models except (d) treated the predictor as a second-order polynomial variable. Logit

models were performed using the function lmer() implemented in the package lme4.

To compare di↵erent models, raw AIC scores and AIC weights were used. Since, in

all cases, AIC weights for the lowest-AIC model approximated 1 (i.e. the total weight290

of the models considered), Table 2 reports only AIC scores for all models. As can be

seen, for 8 quantifiers out of 9, the best model (i.e. the one with the lowest information

2The average size of the targets was obtained by dividing their weigthed sum (each large target was

multiplied by 1, medium ones by 0.75, small ones by 0.5) by the number of targets in the scene. The

same criteria and procedure were used for non-targets. For intuitive reasons, scenes containing either 0

targets or 0 non-targets were excluded from this analysis.
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quantifier AIC scores

(a) % targ (b) n targ (c) n non-targ (d) sub/non-sub (e) targ size (f) non-targ size

none 613.03 756.31 3474.44 3113.78 – 3913.39

almost none 4353.51 4230.42 5591.74 4292.00 4686.18 5633.89

few 5492.00 6015.22 6486.62 6428.88 6987.15 7018.23

the smaller part 5241.33 5938.05 6109.82 6605.17 6540.34 6451.78

some 5811.28 6864.85 7342.64 7792.71 7608.18 7461.32

many 4273.67 4520.02 4834.66 4600.70 4909.47 5062.78

most 6755.09 8402.49 8741.28 8748.20 9330.23 9604.31

almost all 5079.70 6355.7 5692.78 6545.65 6762.34 6075.14

all 482.37 3323.29 732.50 3672.75 3568.47 –

Table 2: AIC scores for each of the models. Bold values (lowest) correspond to best models. Empty

cells indicate cases for which the number of datapoints was too low to perform statistical analyses.

loss) turned out to be the one using proportion of targets (% targ). In one case, namely

“almost none”, the best model was instead the one using cardinality of targets (n targ)

as the predictor. The models based on all other predictors (cardinality of non-targets,295

subitizing/non-subitizing range, and either targets or non-targets average size) never

emerged as the best ones for any quantifier.

It is worth stressing that AIC scores do not say anything about the absolute quality

of the model, i.e. the testing of the null hypothesis. Once established the best models

based on the AIC score, we could inspect them using the traditional null-hypothesis300

testing. For all best models, both the linear and the quadratic term of the polynomial

variable turned out to be highly significant (p< .0001), meaning that each quantifier can

be reliably predicted against the other quantifiers by means of the polynomial form of

the given predictor. In Table 3, we report Estimate, z-value and p-value of the quadratic

term (2nd order term) for each of the selected models.305

Based on the well-reported e↵ects due to subitizing, we analyzed separately the dat-

apoints within the subitizing range, i.e. cardinality of targets up to 3 included. The

intuition behind that is that when the target items are very easily enumerable (in the

subitizing range), their absolute number might be a better predictor of the quantifier

used by subjects than the proportion. To test this hypothesis, the same kind of analysis310

as above was performed on the split data (3, 771 datapoints). For all quantifiers except

“almost all”, the best models turned out to be the polynomial ones, whereas for “almost

all” the best model was the linear one. Table 4 reports AIC score, Estimate, z-value,

and p-value of the quadratic term (linear term for “almost all”) for the best models in
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the subitizing range. As can be noticed, in the subitizing range the low-magnitude quan-315

tifiers “none”, “almost none”, and “few” are better modeled by the absolute number

of animals rather than by the proportion of targets. This suggests that the choice of

these quantifiers in this range relies more on evaluating the set of targets on its own than

comparing it against the set of non-targets.

Finally, we investigated whether the frequency of use of quantifiers in language is320

reflected in the distribution of responses observed in the experiment. The rationale is

that, when choosing a quantifier from the various options, participants might be biased

towards the most frequent words, irrespectively of the perceptual features of the visual

stimulus. We extracted raw frequency values for each of the 9 Italian quantifiers at

the lemma level from CORIS (Favretti et al., 2002) and we computed the Pearson’s325

correlation (r) with the quantifier frequencies observed in the experiment. All the values

were previously log-transformed. The correlation turned out to be very weak and not

significant in the full dataset (r(7) = �0.25, p=0.52), in the subitizing range subset (r(7)

= �0.41, p=0.27), and in the non-subitizing range subset (r(7) = �0.04, p=0.92). That

is, participants are not a↵ected by the linguistic frequency of the quantifier when picking330

it up from the list.

quantifier predictor Estimate z-value p-value

none proportion 424.78 19.36 .0001

almost none n targets 82.86 9.66 .0001

few proportion -215.02 -22.41 .0001

the smaller part proportion -235.73 -25.98 .0001

some proportion -279.16 -35.69 .0001

many proportion -210.73 -6.31 .0001

most proportion -288.99 -29.79 .0001

almost all proportion -147.51 -13.67 .0001

all proportion 462.95 18.66 .0001

Table 3: Estimate, z-value and p-value of the quadratic term for each of the best models.
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quantifier predictor AIC score Estimate z-value p-value

none n targets 328.2 158.15 11.41 .0001

almost none n targets 2572.3 -136.47 -20.35 .0001

few n targets 3541.3 -69.75 -13.84 .0001

the smaller part proportion 2662.3 -110.61 -13.40 .0001

some proportion 2057.6 -88.07 -12.69 .0001

many proportion 256.9 -195.17 -4.38 .0001

most proportion 733.8 -57.04 -4.74 .0001

almost all proportion 629.2 8.97 13.81 .0001

all proportion 57.8 247.04 2.72 .0064

Table 4: AIC score, estimate, z-value and p-value of the quadratic term (linear term for “almost all”)

for each of the best models in the subitizing range.

3.2. Abstract task: semantic similarity judgements

The pattern of estimated similarities across quantifiers indicated that quantifiers are

represented on an ordered but highly non-linear scale. A visualization of that can be ob-

served in Figure 5, where a heatmap depicting the average semantic similarity between335

quantifier pairs is reported. Three interesting features can be appreciated: First, the

ordered aspect of the internal scale can be seen by observing a roughly graded decrease

in similarity as pairs move away from the diagonal. This indicates a rough “distance

e↵ect”, indexing an internal ordered scale. This distance e↵ect appears stronger for

low-magnitude quantifiers compared to high-magnitude ones. This can be appreciated340

qualitatively by inspecting Figure 6, where the bell functions peaking around the low-

magnitude quantifiers (“few”, “the smaller part”, “almost none”, “none”) appear sharper

compared to those characterizing the high-magnitude quantifiers (“many”, “most”, “al-

most all”, “all”).

Second, it appears that this graded e↵ect is mostly confined in quantifiers that refer345

to similar magnitudes, and disappears for very distant quantifiers. Indeed, there seems

to be a clear-cut distinction between low-magnitude and high-magnitude quantifiers.

In this respect, “some” turns out to be a “hinge” between low- and high-magnitude

quantifiers. It should be observed that none of the items are judged to be as extremely

similar/dissimilar to it, with the lowest average similarity being equal to 3.08 (“all-350
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Figure 5: Heatmap reporting the average semantic similarity between quantifiers pairs. The lighter the

blue, the more similar the pair.

Figure 6: Line plot reporting the average semantic similarity between quantifiers.
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some”), and the highest being equal to 4.8 (“few-some”). Though halfway between

low- and high-magnitude quantifiers, however, “some” results to be closer to the former

than to the latter group. Finally, we observe a rather small but systematic linguistic

“antinomy e↵ect”: For each quantifier (with the exception of “some”) the most dissimilar

item is represented not by the extreme on the other side of the scale, but by its linguistic355

antonym: The lowest similarity ratings are those among “none-all”, “almost none-almost

all”, “the smaller part-most”, “few-many” (this can be appreciated by the presence of

an orthogonal diagonal to the main one in the similarity matrix).

To pool together the pattern of judgements and reconstruct the shape of the inter-

nal representation, we performed a metric Multi-Dimensional Scaling (MDS) analysis.360

Figure 7 shows the results of the analysis when taking into account two dimensions. By

performing a goodness-of-fit analysis, it turned out that the first dimension only, de-

picted along the x-axis in the plot, accounts for 98.66% of the variance of the original

data (R2=0.9866, F(1, 34)=2496.81, p< .0001). As shown in Figure 7, such dimen-

sion clearly separates low-magnitude quantifiers from high-magnitude quantifiers, with365

“some” somehow in between, though closer to the former block. By including the second

dimension, the variance accounted for by the model increases to 98.80% (R2=0.9880,

F(1, 34)=2803.18, p< .0001), which is almost a perfect fit. Such dimension neatly repre-

sents magnitude: From low to high, along the y-axis. This analysis further confirms that

low-magnitude quantifiers are better separated among them, indicating that they corre-370

spond to sharper representations. This allows their ordering on a scale to emerge very

clearly, with “none” being followed by “almost none” that, in turn, is followed by “few”

and “the smaller part” (which are not well separated among each other), and eventually

by “some”. On the contrary, high-magnitude quantifiers, while still being ordered along

a scale, are extremely close to each other, indicating that their representations overlap375

greatly.

4. Discussion

4.1. Visually-grounded representation: Proportion, cardinality and object size

In this paper, we explored the use of quantifiers in both their visually-grounded

and abstract representation. By asking participants to choose the quantifier that best380
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Figure 7: Plot reporting the absolute distance of quantifiers as resulting from a two-dimension metric

MDS analysis.

represented the quantity of animals in a number of visual scenes, Experiment 1 was

aimed at investigating the factors which contribute in determining the visually-grounded

representation of such linguistic expressions. We showed that the proportion of targets

is the best predictor for 8 quantifiers out of 9, with “almost none” being better described

by the cardinality of the target set. When zooming into the subitizing range, with385

cardinality of animals up to 3, the absolute number of targets turned out to be the

best predictor for “none” and “few” besides “almost none”, thus suggesting that when

the information about precise number is available it becomes crucial for discriminating

among low-magnitude quantifiers.

These findings are generally in line with previous studies investigating the appropri-390

ateness of quantifiers evaluated against visual scenes (Coventry et al., 2005, 2010). Using

a di↵erent experimental design (evaluating the appropriateness of a number of quantifier-

embedding sentences against a given visual scene), a di↵erent set of quantifiers (“a few”,

“few”, “several”, “many”, “lots of”), and without constraining the exposure time to the

scene, these works showed that the number of both targets and non-targets is predictive395

of the quantifier appropriateness. With cardinality of targets equal to 3 (their subitizing

case), however, the use of quantifiers was no longer a↵ected by the cardinality of the

non-target objects. An exception was represented by “few”, which was a↵ected by both
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(Coventry et al., 2010). On the one hand, our finding that proportion is overall the best

predictor is not in contradiction with the e↵ect of both number of targets and number of400

non-targets. Rather, we believe ours to be just a better measure to assess the contribution

of both sets in determining quantifiers’ use. On the other hand, the results we obtained in

the subitizing range reinforce and better prove the increasingly important role of precise

number in discriminating between low-magnitude quantifiers. In our study, interestingly,

the only low-magnitude quantifier whose interpretation turned out to be best predicted405

by the proportion of targets also in the subitizing range was “the smaller part”, whose

reading is intuitively more proportional compared to the others. Finally, it is worth

stressing that our 340 visual scenes were balanced with respect to ratios, whereas the 36

used by Coventry et al. (2005, 2010) were balanced for target cardinality. Moreover, in

the present work each ratio was represented by all possible combinations of cardinalities,410

whereas Coventry and colleagues experimented with ratios that were mostly depicted by

just one combination. Finally, our subitizing range included four cardinalities, namely 0,

1, 2, and 3 – not just the number 3.

As far as the e↵ect of object size is concerned, we found this factor not to be among

the most predictive ones. This finding is in partial contrast with the results reported415

by Newstead & Coventry (2000), who showed a role of size in the task of evaluating

quantifiers over scenes depicting dots placed in a container. In that study, both the dots

and the container size were found to play a role: Low-magnitude quantifiers were found

to be more appropriate when the dots were small and when the container was big. In our

task, we solely investigated the size of the items, and found that this parameter was not420

among the best predictors of quantifiers’ use. This di↵erence might be due to the di↵erent

experimental settings: First, our scenes contain both target and non-target objects – not

only targets. Second, we vary the size of the objects in a way that there are no scenes

depicting, e.g., only small or large objects. Third, we employ a larger set of quantifiers,

thus participants have more alternatives compared to the previous study. Moreover,425

contrary to us, Newstead & Coventry (2000) allowed subjects to explore the scenes for

an infinite time, such that they might have used a di↵erent visuo-spatial strategy (namely,

exact counting), and that might have influenced the enumeration process.
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4.2. Abstract representation

By asking participants to rate the degree of semantic similarity between quantifier430

pairs, Experiment 2 was aimed at testing whether these expressions are mentally ordered

and, if so, which are the features of the resulting scale. We showed that, even without

relying on any quantitative or contextual information, quantifiers do lie on an ordered

scale, as resulting from a Multi-Dimensional Scaling Analysis (Kruskal & Wish, 1978). In

particular, low-magnitude quantifiers (“none”, “almost none”, “few”, “the smaller part”)435

turned out to be perceived as being fairly distant from each other, thus suggesting that

their abstract semantic representation is well defined and nicely ordered on a scale. In

contrast, high-magnitude quantifiers (“many”, “most”, “almost all”, “all”) turned out

to greatly overlap, though always along an ordered scale. Overall, these results suggest

that the mental representation of quantifiers is ordered and highly non-linear, with small440

quantifiers better represented compared to large ones. This is highly reminiscent to

the well-reported logarithmic scale inferred both from comparative judgements across

numerical symbols and from the use of numerical symbols in perceptual quantification

(Nieder & Miller, 2003; Dehaene, 2003; Dehaene et al., 2008).

It is worth stressing that, in doing this task, neither quantitative (numbers, pro-445

portions, etc.) nor explicit contextual (semantic) information was provided. That is,

quantifiers were judged in isolation, solely on the basis of their bare semantic similarity,

while in Holyoak & Glass (1978) participants were asked to rate dissimilarities between

pair of sentences embedding di↵erent quantifiers. Another interesting finding was the ten-

dency to assign the lowest rating (i.e. lowest semantic similarity) to the direct antonym.450

For example, the most dissimilar word from “few” was “many”, and not “none”. While

straightforward for the pair “none-all”, which also represent the two extreme endpoints

of the scale, this finding is in principle not trivial in all the other cases. This finding falls

o↵ the prediction that quantifiers should solely lie on a quantitative scale (e.g. numerical

or proportional) and suggests that, when asked to judge the semantic similarity of a455

word pair, speakers also take into account lexico-semantic features, such as information

regarding the direct antonym (Miller & Fellbaum, 1991), as also reported by Hill et al.

(2016).
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4.3. Mental order

Finally, it should be mentioned that previous work has investigated the scalar nature460

of quantifiers from very di↵erent perspectives. With a set of 5 quantifiers and a task

which was similar to ours, for example, Holyoak & Glass (1978) claimed that quantifiers

can be described in terms of an unidimensional scale, essentially representing analog

quantities. The authors, however, did not overtly exclude that information regarding

other non-quantitative related semantic features might still be included in the memory465

representation of quantifiers. In contrast with the unidimensional nature of the quantifier

scale was Routh (1994), whose results on a freesort task with 20 quantifiers suggested

that several other components are in place beyond the quantity scale. Another study

(Montalto et al., 2010) also adopted a similar paradigm where a number of Italian quan-

tifiers (yet di↵erent from the list of quantifiers investigated in our study) were compared470

to each other on a magnitude scale: Given pairs of quantifiers subjects had to indicate

if and which of the two indicated the largest amount. Di↵erently from our experiment,

however, subjects were given the possibility to indicate that the two quantifiers did not

di↵er in the implicated amount. Results suggested that subjects lump quantifiers in two

blocks, one comprising low and the other high-magnitude ones, with no hint of a con-475

tinuous scale. However, there is the serious possibility that these results do not directly

reflect the true mental scale but rather the degree of certainty, such that when prompted

with uncertain decisions subjects indicated an absence of di↵erentiation.

4.4. Impact of our results on foundational theories

As for the theoretical implications of our work, our results provide evidence in sup-480

port of some well-established assumptions on quantifiers. First, our findings show that

quantifiers neither correspond to an exact number of entities nor to a fixed proportion.

This can be taken as an evidence in favor of their non-referential status, even in the new

light shed by the integration of perception and quantifiers.

Second, our results do not shed new light on the proposal that “few” and “many” are485

not-extensional since, in our experiments, contextual factors were deliberately avoided.

However, it is worth noticing that in Experiment 1 the meaning of “few” is found to be

ambiguous: It mostly depends on the number of targets in the subitizing range, on the
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proportion of targets in the whole data. This might be seen as an e↵ect of a perceptual

“contextual” factor: “Few” is more dependent on the perceptual context than are other490

quantifiers. However, the same e↵ect was not observed for “many”.

Third, our results are consistent with the literature on scalar implicatures (Grice,

1975) in the pragmatic use of quantifiers. In particular, both the ordering of quanti-

fiers (from low- to high- magnitudes) and their narrow range of application observed

in Experiment 1 suggest that, to some extent, speakers interpret such expressions as495

having an upper boundary which excludes the use of more informative options when

these options are not true or uncertain (Horn, 1984). That is, participants choose the

most informative quantifier “all” (and not e.g. “some”, which would be logically true)

when they are certain about its applicability. Similar implications can be drawn from

Experiment 2, where the characteristics of the abstract representation might indicate500

that speakers have an internal representation of quantifier informative strength. Based

on our findings, one possibility is that scalar implicatures are stronger for low-magnitude

quantifiers (which turn out to be extremely well-defined and distinct from each other)

than for high-magnitude ones (which are perceived to be very similar). We leave this

issue for future research and refer the reader to Oaksford et al. (2002) for interesting505

results on the use of quantifiers as referring to di↵erent ranges of numerosities and their

e↵ect on informativeness.

Fourth, the results of Experiment 2 are in line with the position that the meaning

of quantifiers is not only about amounts, numbers, or proportions. Indeed, similarity

judgments provided by participants turned out to be dependent on lexico-semantic factors510

(e.g. antonymy) besides magnitude. This evidence is also in line with previous findings

showing an interplay between numerical and semantic information in the comprehension

of quantifiers (Heim et al., 2012).

Fifth, our results overall suggest that the meanings of quantifiers are at least partially

tied to the representation of quantities. Though this is probably not enough to devise a515

general semantics for such expressions, we believe quantitative aspects to constitute the

basis of quantifier meanings.
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4.5. Final remarks

In sum, our results indicate that quantifiers primarily represent proportions and not

absolute cardinalities, apart from when they refer to sets with less than four objects.520

They also show that quantifiers are mentally represented on a quantity scale which is

well ordered and highly non-linear, bearing interesting similarities to the mental repre-

sentation of both numerical quantities and continuous magnitudes. While our results

cannot endorse one possibility over the other, they firmly support the view that quan-

tifiers are mentally represented in a way that partially reflects the way we perceive525

quantities through our senses.
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