
Logic: Propositional Logic
Truth Tables

Raffaella Bernardi
bernardi@inf.unibz.it

P.zza Domenicani 3, Room 2.28

Faculty of Computer Science, Free University of
Bolzano-Bozen

http://www.inf.unibz.it/~bernardi/Courses/Logic06

Contents First Last Prev Next J

http://www.inf.unibz.it/~bernardi/Courses/Logic06


Contents

1 Summary of last lesson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Satisfiability and Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Exercise: Counter-example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.1 Graph Coloring Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7 Classical Satisfiability Problem: Graph Coloring . . . . . . . . . . . . . . . 13
8 Summary: Reasoning Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

8.1 Entailment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.2 Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

9 Other kinds of exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
10 Properties of Entailment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
11 Decision Procedures in Logic: soundness . . . . . . . . . . . . . . . . . . . . . 18
12 Decision Procedures in Logic: completeness . . . . . . . . . . . . . . . . . . . 19
13 Sound and Incomplete Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Contents First Last Prev Next J



14 Good Decision procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
15 An extreme example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
16 Propositional Decision Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

16.1 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
17 Reduction to satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
18 Home work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Contents First Last Prev Next J



1. Summary of last lesson

Last time we said:

• Syntax of PL: atomic vs. complex formulas [exercises]

• Semantics of PL: truth tables [exercises]

• Formalization of an argument [exercises]

• Interpretation function [again next time]

• Domain [again next time]

• Model [again next time]

• Entailment [again next time]

• Satisfiability [again next time]
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2. Satisfiability and Validity

An interpretation I is a model of φ: I |= φ
A formula φ is

• satisfiable,

if there is some I that satisfies φ,

• unsatisfiable,

if φ is not satisfiable,

• falsifiable,

if there is some I that does not satisfy φ,

• valid (i.e., a tautology),

if every I is a model of φ.

Two formulas are logically equivalent

(φ ≡ ψ), if for all I:

I |= φ iff I |= ψ
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3. Exercise

Satisfiable, tautology?

(((a ∧ b) ↔ a) → b)

((¬φ→ ¬ψ) → (ψ → φ))

(a ∨ b ∨ ¬c) ∧ (¬a ∨ ¬b ∨ d) ∧ (¬a ∨ b ∨ ¬d)

Equivalent?

¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ
(φ→ ψ) ≡ (¬ψ → ¬φ)

(φ ∨ (ψ ∧ χ)) ≡ ((φ ∨ ψ) ∧ (ψ ∧ χ))

Try to use truth tables to support your conclusions.
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4. Consequences

Proposition:

• φ is a tautology iff ¬φ is unsatisfiable

• φ is unsatisfiable iff ¬φ is a tautology.

Proposition: φ ≡ ψ iff φ↔ ψ is a tautology.

Theorem: If φ and ψ are equivalent, and χ′ results from replacing φ in χ by ψ,
then χ and χ′ are equivalent.
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5. Exercise: Counter-example

Recall last time exercise:

Check whether the following argument is valid:

If Paul lives in Dublin, he lives in Ireland. Paul lives in Ireland. Therefore
Paul lives in Dublin.

(i) Give the keys of your formalization using PL; (ii) represent the argument for-
mally; and (iii) Apply the truth table method to prove or disprove the validity of
the argument.

Now, iv) Build a counterexample if the argumentation is not valid.

counterexample a model in which the reasoning does not hold. In other words, an
interpretation such that the premises are true and the conclusion is false.
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6. Exercise

Given the graph:

• Italy is connected to Austria

• Austria is connected to Hungary

By means of truth tables, find a coloring function C : V → {black,white} such that
no two adjacent countries have the same color.
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6.1. Graph Coloring Problem

First of all, we have to formalize our general knowledge about graphs and color
assignments. Let 1, 2 . . . n be our vertices, and B (blue), R (red), G (green) . . . be
our colors, and let Bi, Ci,j stand for “i is of color B” and “i is connected to j”.

• Reflexivity of edges: C1,2 ↔ C2,1, . . . (so for the other connected vertices)

• Coloring of vertices: B1 ∨G1 ∨R1 . . . (so for the colors and for the other vertices)

• Uniqueness of colors per veritex: B1 ↔ (¬G1 ∧ ¬R1) . . . (so for the other vertices)

Secondly, we have to add the explicitly given constraints.

For instance, the coloring function has to be such that no two connected vertices
have the same color:

• Explicit Constraint: C1,2 → (B1 → ¬B2) ∧ (R1 → ¬R2) ∧ (G1 → ¬G2) . . .
(so for the other colors and the other vertices)

Contents First Last Prev Next J



6.2. Solution

Vertex axioms: (the dual are redundant) [Uniqueness constraint]
(BI ↔ ¬WI)
(BH ↔ ¬WH)
(BA ↔ ¬WA)

Edge axioms: (the dual are redundant) [Explicit Constraint]
(BI ↔ ¬BA) ∧ (WI ↔ ¬WA)
(BH ↔ ¬BA) ∧ (WH ↔ ¬WA)

By means of an inference procedure we can find the interpretation satisfying the
theory. (The problem is satisfiable.)
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7. Classical Satisfiability Problem: Graph Color-

ing

Let KB (the set of sentences) be a theory consisting of the general knowledge about
colors and graphs, and the constraint that the coloring function has to be such that
no two connected vertices have the same color. We could be faced with the following
kind of problems:

(A) Given a graph and a coloring function, check whether they satisfy KB .

(B) Given a graph, assign colors which satisfy KB .

(C) Find a model (a graph and a color assignment) satisfying the KB.
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8. Summary: Reasoning Problems

8.1. Entailment

You are asked to check the validity of a given reasoning, i.e. whether the given set
of axioms (premises, KB) entails the given sentence (conclusion, α) KB |= α.

If it does not you could be asked to provide a counterexample.

Strategy To solve the problem you have to:

• represent the sentences in a formal language, PL.

• use an inference procedure (e.g. Truth Tables or Tableaux) to answer the ques-
tion.

• prove that the conclusion is true in all cases (for all the interpretations) in
which the premises are (all) true.
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8.2. Satisfiability

(A) You are given a set of sentences and an interpretation (i.e. a domain and an
interpretation function), and are asked to check whether the sentences are all
true in this interpretation.

(B) You are given a set of sentences and a domain, and are asked to find an inter-
pretation for the domain satisfying the given sentences.

(C) You are given a set of sentences and are asked to provide a model (ie. a domain
and an interpretation function satisfying them)

Strategy To solve the problem, you have to:

• represent the axioms in a formal language, PL.

• use an inference procedure (e.g. Truth Tables or Tableaux) to answer the ques-
tion.

• prove that the (found or given) interpretation is such that the set of sentences
are all true simultaneously. (To prove validity you have to prove that this holds
for all the interpretations.)
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9. Other kinds of exercises

• Find an interpretation and a formula such that the formula is true in that
interpretation (or: the interpretation satisfies the formula).

• Find an interpretation and a formula such that the formula is not true in that
interpretation (or: the interpretation does not satisfy the formula).

• Find a formula which can’t be true in any interpretation (or: no interpretation
can satisfy the formula).
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10. Properties of Entailment

• Θ ∪ {φ} |= ψ iff Θ |= φ→ ψ
(Deduction Theorem)

• Θ ∪ {φ} |= ¬ψ iff Θ ∪ {ψ} |= ¬φ
(Contraposition Theorem)

• Θ ∪ {φ} is unsatisfiable iff Θ |= ¬φ
(Contradiction Theorem)

Question: Can we decide whether Θ |= ψ without considering all interpretations?
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11. Decision Procedures in Logic: soundness

A decision procedure solves a problem with yes or no answers. Our problem is
“entailment”.

KB `i α

• Sentence α can be derived from the set of sentences KB by procedure i.

• Soundness: procedure i is sound if
whenever procedure i proves that a sentence α can be derived from a set of
sentences KB (KB `i α), then it is also true that KB entails α (KB |= α).

It guarantees that “IF KB `i α THEN KB |= α”.

– “no wrong inferences are drawn”

– A sound procedure may fail to find the solution in some cases, when there
is actually one; i.e. we could have:

KB 6`i α and KB |= α
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12. Decision Procedures in Logic: completeness

A decision procedure solves a problem with yes or no answers. Our problem is
“entailment”.

KB `i α

• Sentence α can be derived from the set of sentences KB by procedure i.

• Completeness: procedure i is complete if
whenever a set of sentences KB entails a sentence α (KB |= α), then procedure
i proves that α can be derived from KB (KB `i α).

It guarantees that “IF KB |= α THEN KB `i α”.

– “all the correct inferences are drawn”

– A complete procedure may claim to have found a solution in some cases,
when there is actually no solution, i.e. we could have:

KB 6|= α and KB `i α
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13. Sound and Incomplete Algorithms

Sound and incomplete algorithms are very popular:

• they are considered good approximations of problem solving procedures.

• they may have a lower complexity than a sound and complete algorithm.

• they are often used due to the inability of programmers to find sound and com-
plete algorithms or the impossibility of finding sound and complete algorithms
(i.e. when the problem is undecidable)
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14. Good Decision procedures

• If an incomplete reasoning mechanism is provided, we can conclude either that
the semantics of the representation language does not really capture the mean-
ing of the “world” and of “what should follow”, or that the algorithms can not
infer all the things we would expect.

• Having sound and complete reasoning procedures is important!

they guarantee that “KB `i α IFF KB |= α”.
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15. An extreme example

Let’s consider two decision procedures:

• F , which always returns the result no independently from its input

• T , which always returns the result yes independently from its input

Let’s consider the problem of computing entailment between formulas;

Which of the two procedures is sound and which is complete?

• F is a sound algorithm for computing entailment.

• T is a complete algorithm for computing entailment.
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16. Propositional Decision Procedures

• Truth tables provide a sound and complete decision procedure for testing sat-
isfiability, validity, and entailment in propositional logic.

– The proof is based on the observation that truth tables enumerate all
possible models.

• Satisfiability, validity, and entailment in propositional logic are thus decidable
problems.

• For problems involving a large number of atomic propositions the amount of
calculation required by using truth tables may be prohibitive (always 2n, where
n is the number of atomic proposition involved in the formulas).
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16.1. Recall

• A problem is either decidable (there is always an answer) or undecidable.

• A decision procedure is a program that always terminates and gives a yes or
no answer.

• A decision procedure may be sound and/or complete with respect to a given
problem.

• If we have a decision procedure that is sound and complete w.r.t. a given
problem, then the problem is decidable.
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17. Reduction to satisfiability

• A formula φ is satisfiable iff there is some interpretation I (i.e., a truth value
assignment) that satisfies φ (i.e., φ is true under I: I |= φ).

• Validity, equivalence, and entailment can be reduced to satisfiability:

– φ is a valid (i.e., a tautology) iff

¬φ is not satisfiable.

– φ entails ψ (φ |= ψ) iff φ→ ψ is valid (deduction theorem).

∗ φ |= ψ iff
φ ∧ ¬ψ is not satisfiable.

– φ is equivalent to ψ (φ ≡ ψ) iff φ↔ ψ is valid.

∗ φ ≡ ψ iff φ |= ψ and ψ |= φ

• Hence, a sound and complete procedure deciding satisfiability is all we need,
and the tableaux method is a decision procedure which checks the existence of
a model.
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18. Home work

• Bring at the Lab (October 27th) the solutions for the exercises.

• Today key topics:

– Interpretation function [exercises]

– Domain [exercises]

– Model [exercises]

– Entailment [exercises]

– Satisfiability, unsatisfiability, validity [exercises]

– Counter-example [exercises]

• Next time: Tableaux method. (26.10!!)
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