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1. Equivalences I

How would you prove that the following equivalences hold?

Commutativity

Associativity
Idempotence
Absorption

Distributivity

¢V Y
¢ NY
O
(pVY)Vx
(dAY) A X
oV

YV
YA
(DR
oV (¢ Vx)
¢ N (1 Ax)
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1.1. Equivalences (II)

Tautology oVT = T
Unsatisfiability oNL = L
Negation oV = T
OoN—p = L
Neutrality PNT = ¢
oVL = ¢
Double Negation ¢ = ¢
De Morgan “(pVY) = —p AN
~(pAY) = —gV
Implication o—Y = =V
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2. Normal Forms

Conjunctive Normal Form (CNF)
conjunction of disjunctions of literals: i (Vi i)

cl‘aruses
E.g., (AV=B)A(BV-=CV-D)

Disjunctive Normal Form (DNF)
disjunction of conjunctions of literals: Vs (NGl g)

te?ms
E.g., (AAB)V(AAN-C)V(AN=D)V(=BA=C)V(=~BA—-D)

Literals are either atoms or negations of an atom.
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2.1. Conversion into CNF

How do we convert a formula into CNF?

1. Elimination of — and < by means of:

e A>B=(A— B)AN(B— A),
e A—-B=-AVB
2. push = inwards by means of
(a) =(AA B)=-AV B (De Morgan)
(b) =(AV B) = =A AN —-B (De Morgan)
(¢) == A = A (double negation)

3. use the distributive law AV (BAC) = (AVB)A(AVC) to effect the conversation
to CNF.
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2.2. Exercise
Convert the following formulas into CNF":

L. (PANQ) < (R— (P — Q)
2. (-PA(—Q — R)) < S)
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2.3. Why Normal Forms?

e We can transform propositional formulas, in particular, we can construct their

CNF and DNF.

e DNF tells us something as to whether a formula is satisfiable. If all disjuncts
contain L or complementary literals, then no model exists. Otherwise, the
formula is satisfiable.

e CNF tells us something as to whether a formula is a tautology. If all clauses (=
conjuncts) contain T or complementary literals, then the formula is a tautology.
Otherwise, the formula is falsifiable.

But:

e the transformation into DNF or CNF is expensive (in time/space)

e it is only possible for finite sets of formulas
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3. Tableau Calculus for PL

Which rules do we need?

)

o NY If a model satisfies a conjunction
0} then it also satisfies each of the
P conjuncts

If a model satisfies a disjunction,
oV Y then it also satisfies one of the dis-
o | juncts. It is a non-deterministic

rule, and it generates two alterna-

tive branches of the tableaux.
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3.1. Negation Normal Form

The given tableau calculus works only if the formula has been translated into Nega-
tion Normal Form, i.e., all the negations have been pushed inside.

Example: Build a tableau for:
—(AV (BA=C))

Build a tableau for its CNF:
(mAN(-BVC(Q))
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4. Equivalences: FOL

(Ve.d) AN = V. (o A) if z not free in ¢
(Vz.¢) Vi = V. (¢ V) if z not free in ¢
(Fz.p) AN = Fx.(p A1) if 2 not free in ¢
(Fz.o) vy = Fz. (¢ V) if x not free in
Ve.p AVa.ip = V. (o A)
dr.oV3Ix.yp = Fr.(pVY)
Vr.¢p = dr.—¢
—dzr.¢p = Vr.-¢
& propositional equivalences
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5. The Prenex Normal Form

Quantifier prefix 4+ (quantifier free) matrix
Vo Voodrs .. Voo

1. Elimination of — and < by means of:

e A—>B=(A— B)AN(B— A),
e (A—- B=-AVB)
2. push — inwards by means of
e (AN B)=-AV-B (De Morgan)
e +(AV B)=-AA-B (De Morgan)
e -—A = A (double negation)
o WrA(x)=3Jx—A(x)
e ~JrA(x) =Vr—A(x)
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3. rename bound variables, if necessary
4. pull quantifiers outwards

5. use the distributive law AV (BAC) = (AVB)A(AVC) to effect the conversation
to CNF.

Renaming of variables. Let ¢[z/t] be the formula ¢ where all occurrences of x have
been replaced by the term t.
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5.1. Exercise
Convert the following formulas into prenex normal forms:
o (3r.A(z)) — (Vo.B(2))
o Va(Vy(Vz(A(z,y,2) A Bly)) — (Vo.C(z, 2))))
o VaVy(A(x,y,z) A JuC(z,u)) — JvC(z,v))
o Jz(S(z) AVy(L(y) — Az, y)))
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5.2. Tableau Calculus: FOL

The completion rules for quantified formulas:

Vr. ¢

{X/t}
Vr. ¢

dx. ¢
¢p{X/a}

If a model satisfies a universal quantified formula, the it also
satisfies the formula where the quantified variable has been
substituted with some term. The prescription is to use all the
terms which appear in the tableaux.

If a model satisfies an existential quantified formula, then it
also satisfies the formula where the quantified variable has
been substituted with a fresh new Skolem term.
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5.3. Example

The above set of completion rules work only if the formula has been translated into
Negation Normal Form, i.e., all the negations have been pushed inside.

Build a tableau for the following formula:

=(Fz. (Vy. (P(z) — Q(y))))

Build a tableau for its prenex normal form:

Vz. (Jy. (P(z) A -Q(y)))
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6. Summary: exercises

Take the result of the conversion of the formulas below and check by means of the
tableau calculus whether they are satisfiable

L (PAQ) = (R— (P = —Q))
2. (<P A (-Q = R)) — )

3. Vavy((A(z, v, 2) A JuC(z,u)) — JC(z,))
4. 3z(S(z) AVy(L(y) — Az, y)))
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7. Key Concepts

e Interpretation, Model, Domain
e Satisfiability, etc..
e Truth tables

e Tableaux
In the mid-term there will be exercises about:

1. Entailment KB |= ¢ in PL to be proved or refuted by means of truth tables.

2. Formalization of a simple argument in PL, and its solution by means of truth
tables or tableaux

3. Evaluation of a given FOL formula in a domain/interpretation.

4. Entailment KB |= ¢ in FOL to be proved by means of tableaux

Send us questions/doubts by the Wednesday 13rd (20:00), we will discuss them in
class on the 15th 08:30-09:30 before the mid-term (09:30-11:30).
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