
Logica e Linguaggio

Raffaella Bernardi

University of Trento

March 22, 2012

Layout

Logical Entailment
Logical Entailment in PL
Logical Entailment in FoL

Sinn und Bedeutung

Formal Semantics
Main questions
Syntactic driven composition
Domains of interpretation

Logic
PL: Propositions can be: atomic (p, q, . . .) or complex (¬P,P ∧ Q,P ∨ Q,P → Q)

I an interpretation I either satisfies a proposition ψ (I |= ψ) or
falsifies it (I 6|= ψ). In the first case it is called a model M of
the formula.

I The interpretation of the whole depends on the interpretation
of the parts and of the logical operators connecting them,
E.g.:

p ¬p p ∨ ¬p

I1: T F T
I2: F T T

p q p → q

I1: T T T
I2: T F F
I3: F T T
I4: F F T

notation: I1 6|= ¬p I2 |= ¬p
p ∨ ¬p is a tautology: it’s true for all interpretations.

Logic
PL: Propositions can be: atomic (p, q, . . .) or complex (¬P,P ∧ Q,P ∨ Q,P → Q)

I an interpretation I either satisfies a proposition ψ (I |= ψ) or
falsifies it (I 6|= ψ). In the first case it is called a model M of
the formula.

I The interpretation of the whole depends on the interpretation
of the parts and of the logical operators connecting them,
E.g.:

p ¬p p ∨ ¬p

I1: T F T
I2: F T T

p q p → q

I1: T T T
I2: T F F
I3: F T T
I4: F F T

notation: I1 6|= ¬p I2 |= ¬p
p ∨ ¬p is a tautology: it’s true for all interpretations.

Logic
Logical Entailment (Validity) vs. Satisfiability

{ψ1, . . . ψn} |= φ

I is satisfiable when there is at least one interpretation for
which the premises and the conclusion are true.

I is falsifiable when there is at least one interpretation for which
the premises are true and the conclusion is false.

I is valid when the set of interpretations for which the premises
are true is included in the set of interpretations for which the
conclusion is true (viz. the set of models of the premises are a
subset of the set of models of the conclusion).

Logic
Logical Entailment (Validity) vs. Satisfiability

{ψ1, . . . ψn} |= φ

I is satisfiable when there is at least one interpretation for
which the premises and the conclusion are true.

I is falsifiable when there is at least one interpretation for which
the premises are true and the conclusion is false.

I is valid when the set of interpretations for which the premises
are true is included in the set of interpretations for which the
conclusion is true (viz. the set of models of the premises are a
subset of the set of models of the conclusion).

Logic
Logical Entailment (Validity) vs. Satisfiability

{ψ1, . . . ψn} |= φ

I is satisfiable when there is at least one interpretation for
which the premises and the conclusion are true.

I is falsifiable when there is at least one interpretation for which
the premises are true and the conclusion is false.

I is valid when the set of interpretations for which the premises
are true is included in the set of interpretations for which the
conclusion is true (viz. the set of models of the premises are a
subset of the set of models of the conclusion).

Logic
Logical Entailment (Validity) vs. Satisfiability

{ψ1, . . . ψn} |= φ

I is satisfiable when there is at least one interpretation for
which the premises and the conclusion are true.

I is falsifiable when there is at least one interpretation for which
the premises are true and the conclusion is false.

I is valid when the set of interpretations for which the premises
are true is included in the set of interpretations for which the
conclusion is true (viz. the set of models of the premises are a
subset of the set of models of the conclusion).

Logic
Examples

p q p → q

I1: T T T
I2: T F F
I3: F T T
I4: F F T

1. {p → q, p} |= q valid: {I1} ⊆ {I1, I3}
2. {p → q, q} 6|= p not valid: {I1, I3} 6⊆ {I1, I2}

it is satisfied by I1 and falsified by I3

Logic
FoL: Richer language

It quantifies over entities and expresses properties of entities, relations
among entities. A formula is true or false in an interpretation I: (D, [[·]]).
The interpretation for which the formula is true are called a model.
Given the domain D = {1, 2, 3, . . .}

[[a]] = 1 [[b]]= 2
[[E]] = {2, 4, 6 . . .}
[[B]] = {(1, 2), (2, 3) . . .}
I |= E(b) since [[b]] ∈ [[E]]
I 6|= B(b,a) since ([[b]], [[a]]) 6∈ [[B]]
I |= ∃x .E(x)
I |= ∀y .∃x .B(y , x)

{ψ1, . . . ψn} |= φ

Again, the entailment is valid, if the set of models of the premises is
included in the set of models of the conclusion. Satisfiable if there is at
least one model of the premises that is also a model of the conclusion.

Logic
FoL: Richer language

It quantifies over entities and expresses properties of entities, relations
among entities. A formula is true or false in an interpretation I: (D, [[·]]).
The interpretation for which the formula is true are called a model.
Given the domain D = {1, 2, 3, . . .}

[[a]] = 1 [[b]]= 2
[[E]] = {2, 4, 6 . . .}
[[B]] = {(1, 2), (2, 3) . . .}
I |= E(b) since [[b]] ∈ [[E]]
I 6|= B(b,a) since ([[b]], [[a]]) 6∈ [[B]]
I |= ∃x .E(x)
I |= ∀y .∃x .B(y , x)

{ψ1, . . . ψn} |= φ

Again, the entailment is valid, if the set of models of the premises is
included in the set of models of the conclusion. Satisfiable if there is at
least one model of the premises that is also a model of the conclusion.

Logic
FoL: logical entailment

An example of logical entailment in FoL is:

∃x .∀y .R(x , y) |= ∀y .∃x .R(x , y)

all models of ∃x .∀y .R(x , y) are models of ∀y .∃x .R(x , y).

Whereas:

∀y .∃x .R(x , y) 6|= ∃x .∀y .R(x , y)

I satisfiable: I1 : D = {a}, [[R]] = {(a, a)}

I1 |= ∀y .∃x .R(x , y) and I1 |= ∃x .∀y .R(x , y)

I falsifiable: I2 : D = {a, b}, [[R]] = {(a, a), (b, b)}

I2 |= ∀y .∃x .R(x , y) and I2 6|= ∃x .∀y .R(x , y)

Logic
FoL: logical entailment

An example of logical entailment in FoL is:

∃x .∀y .R(x , y) |= ∀y .∃x .R(x , y)

all models of ∃x .∀y .R(x , y) are models of ∀y .∃x .R(x , y).

Whereas:

∀y .∃x .R(x , y) 6|= ∃x .∀y .R(x , y)

I satisfiable: I1 : D = {a}, [[R]] = {(a, a)}

I1 |= ∀y .∃x .R(x , y) and I1 |= ∃x .∀y .R(x , y)

I falsifiable: I2 : D = {a, b}, [[R]] = {(a, a), (b, b)}

I2 |= ∀y .∃x .R(x , y) and I2 6|= ∃x .∀y .R(x , y)

Logic
FoL: logical entailment

An example of logical entailment in FoL is:

∃x .∀y .R(x , y) |= ∀y .∃x .R(x , y)

all models of ∃x .∀y .R(x , y) are models of ∀y .∃x .R(x , y).

Whereas:

∀y .∃x .R(x , y) 6|= ∃x .∀y .R(x , y)

I satisfiable: I1 : D = {a}, [[R]] = {(a, a)}

I1 |= ∀y .∃x .R(x , y) and I1 |= ∃x .∀y .R(x , y)

I falsifiable: I2 : D = {a, b}, [[R]] = {(a, a), (b, b)}

I2 |= ∀y .∃x .R(x , y) and I2 6|= ∃x .∀y .R(x , y)

Layout

Logical Entailment
Logical Entailment in PL
Logical Entailment in FoL

Sinn und Bedeutung

Formal Semantics
Main questions
Syntactic driven composition
Domains of interpretation

What’s the meaning of linguistic signs?
Logic view: Reference

There is the star a called “venus”, “morning star”, “evening star”
that are represented in FoL by venus ′,morningst ′, eveningst ′:

[[venus ′]] = a
[[morningst ′]] = a
[[eveningst ′]] = a

a is the meaning (reference) of these linguistic signs.

Checking whether it is true that (i) “the morning star is the
morning star” or that (ii) “the morning star is the evening star”
ends up checking that

(i) [[morningst ′]] = [[morningst ′]] and (ii) [[morningst ′]] = [[eveningst ′]]

Both of which reduce to checking

a = a

What’s the meaning of linguistic signs?
Logic view: Reference

There is the star a called “venus”, “morning star”, “evening star”
that are represented in FoL by venus ′,morningst ′, eveningst ′:

[[venus ′]] = a
[[morningst ′]] = a
[[eveningst ′]] = a

a is the meaning (reference) of these linguistic signs.
Checking whether it is true that (i) “the morning star is the
morning star” or that (ii) “the morning star is the evening star”
ends up checking that

(i) [[morningst ′]] = [[morningst ′]] and (ii) [[morningst ′]] = [[eveningst ′]]

Both of which reduce to checking

a = a

What’s the meaning of linguistic signs?
Bedeutung vs. Sinn

checking whether (i) “the morning star is the morning star” or that
(ii) “the morning star is the evening star” can’t amount to the
same operation since (ii) is cognitively more difficult than (i).

Frege’s answer: A linguistic sign consists of a:

I Bedeutung: the object that the expression refers to

I Sinn: mode of presentation of the referent.

Two schools of thought

I Formal Semantics: meaning based on references.

I Distributional Semantics/Language as use: meaning
based on the words’ context (use).

What’s the meaning of linguistic signs?
Bedeutung vs. Sinn

checking whether (i) “the morning star is the morning star” or that
(ii) “the morning star is the evening star” can’t amount to the
same operation since (ii) is cognitively more difficult than (i).

Frege’s answer: A linguistic sign consists of a:

I Bedeutung: the object that the expression refers to

I Sinn: mode of presentation of the referent.

Two schools of thought

I Formal Semantics: meaning based on references.

I Distributional Semantics/Language as use: meaning
based on the words’ context (use).

What’s the meaning of linguistic signs?
Bedeutung vs. Sinn

checking whether (i) “the morning star is the morning star” or that
(ii) “the morning star is the evening star” can’t amount to the
same operation since (ii) is cognitively more difficult than (i).

Frege’s answer: A linguistic sign consists of a:

I Bedeutung: the object that the expression refers to

I Sinn: mode of presentation of the referent.

Two schools of thought

I Formal Semantics: meaning based on references.

I Distributional Semantics/Language as use: meaning
based on the words’ context (use).

Layout

Logical Entailment
Logical Entailment in PL
Logical Entailment in FoL

Sinn und Bedeutung

Formal Semantics
Main questions
Syntactic driven composition
Domains of interpretation

Formal Semantics
Starting point: meaning based on reference

Starting point: set-theoretical view of meaning and the assumption that
the meaning of a proposition is its truth value.
Eg. take the interpretation I: D = {sara, lori, pim, alex} and :

[[sara′]] = sara; . . .
[[walk′]] = {lori};
[[know′]] = {(lori, alex), (alex,lori), (sara, lori),

(lori, lori), (alex, alex), (sara, sara), (pim, pim)};
[[student′]] = {lori, alex, sara};
[[professor′]] = {};
[[tall′]] = {lori, pim}.

I |= walks ′(lori ′) I |= ∃x .student ′(x) ∧ walk ′(x)
I 6|= walks ′(sara′) I 6|= ∀x .student(x)→ walk ′(x)

FS aim: To obtain these FoL representations compositionaly. Hence,
questions: What is the meaning representation of the lexical words?
Which operation(s) put the lexical meaning representation together.

Formal Semantics
Syntax guides function application

Order of composition Syntax gives the order of composition:

I Lori [knows Alex]

I [A student] [knows Alex]

I [A [student [who [Alex [knows [. . .]]]]]N]DP [studies Logic].

From sets to functions A set X and its characteristic function fX
amount to the same thing. In other words, the assertion y ∈ X and
fX (y) = true are equivalent.

Hence, since the meaning of the word “student” is a set of objects:

[[student′]] = {lori, alex, sara}

it can be represented as a function from entities to truth values

[[λx .student′(x)]] = {x |student′(x) = T}

Frege/Montague Starting from lexical representations we reach FoL by
function application following the syntactic structure.

Formal Semantics
Syntax guides function application

Order of composition Syntax gives the order of composition:

I Lori [knows Alex]

I [A student] [knows Alex]

I [A [student [who [Alex [knows [. . .]]]]]N]DP [studies Logic].

From sets to functions A set X and its characteristic function fX
amount to the same thing. In other words, the assertion y ∈ X and
fX (y) = true are equivalent.
Hence, since the meaning of the word “student” is a set of objects:

[[student′]] = {lori, alex, sara}

it can be represented as a function from entities to truth values

[[λx .student′(x)]] = {x |student′(x) = T}

Frege/Montague Starting from lexical representations we reach FoL by
function application following the syntactic structure.

Formal Semantics
Syntax guides function application

Order of composition Syntax gives the order of composition:

I Lori [knows Alex]

I [A student] [knows Alex]

I [A [student [who [Alex [knows [. . .]]]]]N]DP [studies Logic].

From sets to functions A set X and its characteristic function fX
amount to the same thing. In other words, the assertion y ∈ X and
fX (y) = true are equivalent.
Hence, since the meaning of the word “student” is a set of objects:

[[student′]] = {lori, alex, sara}

it can be represented as a function from entities to truth values

[[λx .student′(x)]] = {x |student′(x) = T}

Frege/Montague Starting from lexical representations we reach FoL by
function application following the syntactic structure.

Formal Semantics
Syntax guides function application

Order of composition Syntax gives the order of composition:

I Lori [knows Alex]

I [A student] [knows Alex]

I [A [student [who [Alex [knows [. . .]]]]]N]DP [studies Logic].

From sets to functions A set X and its characteristic function fX
amount to the same thing. In other words, the assertion y ∈ X and
fX (y) = true are equivalent.
Hence, since the meaning of the word “student” is a set of objects:

[[student′]] = {lori, alex, sara}

it can be represented as a function from entities to truth values

[[λx .student′(x)]] = {x |student′(x) = T}

Frege/Montague Starting from lexical representations we reach FoL by
function application following the syntactic structure.

Formal Semantics
Many domain of denotations

Not only one domain. Now we care of the meaning of
words/phrases. Words/Phrases denote in different domains:

I S (sentences): domain of truth values: Dt

I PN (e.g. Lori): domain of entities: De

I N (e.g. student, tall student, student who Alex knows) and
VP (e.g. walk, knows lori):
domain of sets of entities, ie. domain of functions: De → Dt .

I TV: (e.g. knows): domain of sets of pairs, i.e. domain of
functions: (De × De)→ Dt (= De → (De → Dt))

E.g. “walk” and “knows lori” meaning is a set of entities (those
entities who walks, those entities who know lori). Hence, they

I denote in the domain De → Dt

I are of semantic type (e → t),
I are represented by the terms
λxe .(walk

′(x))t and λxe .(knows
′(x , lori ′))t

Formal Semantics
Many domain of denotations

Not only one domain. Now we care of the meaning of
words/phrases. Words/Phrases denote in different domains:

I S (sentences): domain of truth values: Dt

I PN (e.g. Lori): domain of entities: De

I N (e.g. student, tall student, student who Alex knows) and
VP (e.g. walk, knows lori):
domain of sets of entities, ie. domain of functions: De → Dt .

I TV: (e.g. knows): domain of sets of pairs, i.e. domain of
functions: (De × De)→ Dt (= De → (De → Dt))

E.g. “walk” and “knows lori” meaning is a set of entities (those
entities who walks, those entities who know lori). Hence, they

I denote in the domain De → Dt

I are of semantic type (e → t),
I are represented by the terms
λxe .(walk

′(x))t and λxe .(knows
′(x , lori ′))t

Formal Semantics
Partially ordered domains

Given I (i.e. typed domains and a [[·]]):

I Dt : [[φ]] ≤t [[ψ]] iff I satisfies φ |= ψ.

I D(a→b): [[X]] ≤(a→b) [[Y]] iff ∀[[α]] ∈ Da [[X (α)]] ≤b [[Y (α)]]

Take the set-theoretical view:

I N, VP: inclusion among sets of entities.

I TV: inclusion among sets of pairs

Formal Semantics
Lexical entailment (partially ordered domains)

Given the interpretation: De = {lori, alex, sara},
[[walk’]] = {lori}, [[move’]] = {lori,alex}

[[walk’]] ≤(e→t) [[move’]] iff ∀[[x]] ∈ De , [[walk’(x)]] ≤t [[move’(x)]]

I F ≤t T for [[x]]= alex

I T ≤t T for [[x]]= lori

I F ≤t F for [[x]]= sara

Formal Semantics
Set-theoretical meaning of “some”

What is the set-theoretical meaning of “Some student”

It’s not an object,
it’s not a set of objects, it’s not a set of pairs of objects.
Take the interpretation I: D = {sara, lori, pim, alex} and :

[[sara′]] = sara; . . .
[[walk′]] = {lori};
[[know′]] = {(lori, alex), (alex,lori), (sara, lori),

(lori, lori), (alex, alex), (sara, sara), (pim, pim)};
[[student′]] = {lori, alex, sara};
[[professor′]] = {};
[[tall′]] = {lori, pim}.

In this interpretation, “some student are tall”, “some student walk”.
[[some′ (student′)]] = {[[tall′]], [[walk′]]}

= {Y |[[student′]] ∩ Y 6= ∅}
As a function: D(e→t)→t . λY .∃x .student′(x) ∧ Y (x):

Formal Semantics
Set-theoretical meaning of “some”

What is the set-theoretical meaning of “Some student”It’s not an object,
it’s not a set of objects, it’s not a set of pairs of objects.

Take the interpretation I: D = {sara, lori, pim, alex} and :

[[sara′]] = sara; . . .
[[walk′]] = {lori};
[[know′]] = {(lori, alex), (alex,lori), (sara, lori),

(lori, lori), (alex, alex), (sara, sara), (pim, pim)};
[[student′]] = {lori, alex, sara};
[[professor′]] = {};
[[tall′]] = {lori, pim}.

In this interpretation, “some student are tall”, “some student walk”.
[[some′ (student′)]] = {[[tall′]], [[walk′]]}

= {Y |[[student′]] ∩ Y 6= ∅}
As a function: D(e→t)→t . λY .∃x .student′(x) ∧ Y (x):

Formal Semantics
Set-theoretical meaning of “some”

What is the set-theoretical meaning of “Some student”It’s not an object,
it’s not a set of objects, it’s not a set of pairs of objects.
Take the interpretation I: D = {sara, lori, pim, alex} and :

[[sara′]] = sara; . . .
[[walk′]] = {lori};
[[know′]] = {(lori, alex), (alex,lori), (sara, lori),

(lori, lori), (alex, alex), (sara, sara), (pim, pim)};
[[student′]] = {lori, alex, sara};
[[professor′]] = {};
[[tall′]] = {lori, pim}.

In this interpretation, “some student are tall”, “some student walk”.

[[some′ (student′)]] = {[[tall′]], [[walk′]]}
= {Y |[[student′]] ∩ Y 6= ∅}

As a function: D(e→t)→t . λY .∃x .student′(x) ∧ Y (x):

Formal Semantics
Set-theoretical meaning of “some”

What is the set-theoretical meaning of “Some student”It’s not an object,
it’s not a set of objects, it’s not a set of pairs of objects.
Take the interpretation I: D = {sara, lori, pim, alex} and :

[[sara′]] = sara; . . .
[[walk′]] = {lori};
[[know′]] = {(lori, alex), (alex,lori), (sara, lori),

(lori, lori), (alex, alex), (sara, sara), (pim, pim)};
[[student′]] = {lori, alex, sara};
[[professor′]] = {};
[[tall′]] = {lori, pim}.

In this interpretation, “some student are tall”, “some student walk”.
[[some′ (student′)]] = {[[tall′]], [[walk′]]}

= {Y |[[student′]] ∩ Y 6= ∅}

As a function: D(e→t)→t . λY .∃x .student′(x) ∧ Y (x):

Formal Semantics
Set-theoretical meaning of “some”

What is the set-theoretical meaning of “Some student”It’s not an object,
it’s not a set of objects, it’s not a set of pairs of objects.
Take the interpretation I: D = {sara, lori, pim, alex} and :

[[sara′]] = sara; . . .
[[walk′]] = {lori};
[[know′]] = {(lori, alex), (alex,lori), (sara, lori),

(lori, lori), (alex, alex), (sara, sara), (pim, pim)};
[[student′]] = {lori, alex, sara};
[[professor′]] = {};
[[tall′]] = {lori, pim}.

In this interpretation, “some student are tall”, “some student walk”.
[[some′ (student′)]] = {[[tall′]], [[walk′]]}

= {Y |[[student′]] ∩ Y 6= ∅}
As a function: D(e→t)→t . λY .∃x .student′(x) ∧ Y (x):

Formal Semantics
Set-theoretical meaning of Quantifiers

[[some′(student′)]] = {Y |[[student′]] ∩ Y 6= ∅}
[[no′ (student′)]] = {Y |[[student′]] ∩ Y = ∅}
[[every′ (student′)]] = {Y |[[student′]] ⊆ Y }

All QP denote in the domains D(e→t)→t . They are represented by
the lambda terms below

I λY .∃x .Student ′(x) ∧ Y (x):

I λY .¬∃x .(Student ′(x) ∧ Y (x)):

I λY .∀x .Student ′(x)→ Y (x):

Hence, the quantifiers denote in D(e→t)→((e→t)→t):

I Some: λZ .λY .∃x .Z (x) ∧ Y (x)

I No: λZ .λY .¬∃x .(Z (x) ∧ Y (x))

I Every: λZ .λY .∀x .Z (x)→ Y (x)

Formal Semantics
Set-theoretical meaning of Quantifiers

[[some′(student′)]] = {Y |[[student′]] ∩ Y 6= ∅}
[[no′ (student′)]] = {Y |[[student′]] ∩ Y = ∅}
[[every′ (student′)]] = {Y |[[student′]] ⊆ Y }

All QP denote in the domains D(e→t)→t . They are represented by
the lambda terms below

I λY .∃x .Student ′(x) ∧ Y (x):

I λY .¬∃x .(Student ′(x) ∧ Y (x)):

I λY .∀x .Student ′(x)→ Y (x):

Hence, the quantifiers denote in D(e→t)→((e→t)→t):

I Some: λZ .λY .∃x .Z (x) ∧ Y (x)

I No: λZ .λY .¬∃x .(Z (x) ∧ Y (x))

I Every: λZ .λY .∀x .Z (x)→ Y (x)

Formal Semantics
Relative pronoun

[[lori′]] = lori; . . .
[[λx .student′(x)]] = {lori, alex, sara};
[[λx .λy .know′(y , x)]] = {(lori, alex), (lori, pim), (sara, alex)}
[[λy.know′(y, alex′)]] = {lori, sara}
[[λx .know′(lori′, x)]] = {alex, pim}

The meaning of “student who lori knows” is a set of entities:
{alex}.

“who” creates the intersection between the set of students and the
set of those people who lori knows:

[[N who VP]] = [[N]] ∩ [[VP]]

“who”: λVP.λN.λx .N(x) ∧ VP(x)

Formal Semantics
Relative pronoun

[[lori′]] = lori; . . .
[[λx .student′(x)]] = {lori, alex, sara};
[[λx .λy .know′(y , x)]] = {(lori, alex), (lori, pim), (sara, alex)}
[[λy.know′(y, alex′)]] = {lori, sara}
[[λx .know′(lori′, x)]] = {alex, pim}

The meaning of “student who lori knows” is a set of entities:
{alex}.

“who” creates the intersection between the set of students and the
set of those people who lori knows:

[[N who VP]] = [[N]] ∩ [[VP]]

“who”: λVP.λN.λx .N(x) ∧ VP(x)

Formal Semantics
Abstraction

To build the meaning representation of linguistic structure, besides
function application, we need abstraction:

1. knows z: λy .knows′(y , z)

2. lori [knows z]: knows′(lori′, z)

3. lori knows: λz .knows′(lori′, z)

4. who lori knows: λN.λx .N(x) ∧ knows′(lori, x)

5. student who lori knows: λx .student′(x) ∧ knows′(lori, x)

Abstraction is caused by “who”: λVP.λN.λx .N(x) ∧ VP(x)

Formal Semantics
Abstraction

To build the meaning representation of linguistic structure, besides
function application, we need abstraction:

1. knows z: λy .knows′(y , z)

2. lori [knows z]: knows′(lori′, z)

3. lori knows: λz .knows′(lori′, z)

4. who lori knows: λN.λx .N(x) ∧ knows′(lori, x)

5. student who lori knows: λx .student′(x) ∧ knows′(lori, x)

Abstraction is caused by “who”: λVP.λN.λx .N(x) ∧ VP(x)

Formal Semantics
Abstraction

To build the meaning representation of linguistic structure, besides
function application, we need abstraction:

1. knows z: λy .knows′(y , z)

2. lori [knows z]: knows′(lori′, z)

3. lori knows: λz .knows′(lori′, z)

4. who lori knows: λN.λx .N(x) ∧ knows′(lori, x)

5. student who lori knows: λx .student′(x) ∧ knows′(lori, x)

Abstraction is caused by “who”: λVP.λN.λx .N(x) ∧ VP(x)

	Logical Entailment
	Logical Entailment in PL
	Logical Entailment in FoL

	Sinn und Bedeutung
	Formal Semantics
	Main questions
	Syntactic driven composition
	Domains of interpretation

