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1. Lambda Calculus
FOL augmented with Lambda calculus can capture the “how” and accomplish tasks 2 and
3.

• It has a variable binding operators λ. Occurrences of variables bound by λ should
be thought of as place-holders for missing information: they explicitly mark where
we should substitute the various bits and pieces obtained in the course of semantic
construction.

• An operation called β-conversion performs the required substitutions.
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1.1. Lambda-terms: Examples

Here is an example of lambda terms:

λx.left(x)

The prefix λx. binds the occurrence of x in student(x). We say it abstracts over the variable x.
The purpose of abstracting over variables is to mark the slots where we want the substitutions to
be made.

To glue vincent with “left” we need to apply the lambda-term representing “left” to the one
representing “Vincent”:

λx.left(x)(vincent)

Such expressions are called functional applications, the left-hand expression is called the functor
and the right-hand expression is called the argument. The functor is applied to the argument.
Intuitively it says: fill all the placeholders in the functor by occurrences of the term vincent.

The substitution is performed by means of β-conversion, obtaining left(vincent).

Contents First Last Prev Next J



1.2. Functional Application

Summing up:

• FA has the form: Functor(Argument). E.g. (λx.love(x,mary))( john)

• FA triggers a very simple operation: Replace the λ-bound variable by the argument.
E.g. (λx.love(x,mary))( john)⇒ love( john,mary)
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1.3. β-conversion

Summing up:

1. Strip off the λ-prefix,

2. Remove the argument,

3. Replace all occurences of the λ-bound variable by the argument.

For instance,

1. (λx.love(x,mary))( john)

2. love(x,mary)( john)

3. love(x,mary)

4. love( john,mary)
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1.4. Exercise

Give the lambda term representing a transitive verb.

(a) Build the meaning representation of “John saw Mary” starting from:

• John: j

• Mary: m

• saw: λx.λy.saw(y,x)

(b) Build the parse tree of the sentence.

(c) Compare what you have done to assembly the meaning representation with the way
you have built the tree.
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1.5. α-conversion

Warning: Accidental bounds, e.g. λx.λy.Love(y,x)(y) gives λy.Love(y,y). We need to
rename variables before performing β-conversion.

α-conversion is the process used in the λ-calculus to rename bound variables. For in-
stance, we obtain

λx.λy.Love(y,x) from λz.λy.Love(y,z).

When working with lambda calculus we always α-covert before carrying out β-conversion.
In particular, we always rename all the bound variables in the functor so they are distinct
from all the variables in the argument. This prevents accidental binding.
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2. Lambda-Terms Interpretations
In the first part of the course you’ve seen that a Model is a pair consisting of a domain
(D) and an interpretation function (I ).

• In the case of FOL we had only one domain, namely the one of the objects/entities
we were reasoning about. Similarly, we only had one type of variables. Moreover,
we were only able to speak of propositions/clauses.

• λ-terms speak of functions and we’ve used also variables standing for functions.
Therefore, we need a more complex concept of interpretation, or better a more com-
plex concept of domain to provide the fine-grained distinction among the objects we
are interested in: truth values, entities and functions.

• For this reason, the λ-calculus is of Higher Order.
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2.1. Models, Domains, Interpretation

In order to interpret meaning representations expressed in FOL augmented with λ, the
following facts are essential:

• Sentences: Sentences can be thought of as referring to their truth value, hence they denote
in the the domain Dt = {1,0}.

• Entities: Entities can be represented as constants denoting in the domain De, e.g. De =
{john,vincent,mary}

• Functions: The other natural language expressions can be seen as incomplete sentences and
can be interpreted as boolean functions (i.e. functions yielding a truth value). They denote
on functional domains DDa

b and are represented by functional terms of type (a→ b).

For instance “walks” misses the subject (of type e) to yield a sentence (t).

– denotes in DDe
t

– is of type (e→ t),

– is represented by the term λxe(walk(x))t
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2.2. Lambda-calculus: some remarks

The pure lambda calculus is a theory of functions as rules invented around 1930 by
Church. It has more recently been applied in Computer Science for instance in “Se-
mantics of Programming Languages”.

In Formal Linguistics we are mostly interested in lambda conversion and abstraction.
Moreover, we work only with typed-lambda calculus and even more, only with a fragment
of it.

The types are the ones we have seen above labeling the domains, namely:

• e and t are types.

• If a and b are types, then (a→ b) is a type.
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3. Determiners
Which is the lambda term representing quantifiers like “nobody”, “everybody”, “a man”or “every
student” or a determiners like “a”, “every” or “no” ?

We know how to represent in FOL the following sentences

• “Nobody left”
¬∃x.left(x)

• “Everybody left”
∀x.left(x)

• “Every student left”
∀x.Student(x)→ left(x)

• “A student left”
∃x.Student(x)∧left(x)

• “No student left”
¬∃x.Student(x)∧left(x)

But how do we reach these meaning representations starting from the lexicon?
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3.1. Determiners (cont’d)

Let’s start representing “a man” as ∃x.man(x). Applying the rules we have seen so far,
we obtain that the representation of “A man loves Mary” is:

love(∃x.man(x),mary)

which is clearly wrong.

Notice that ∃x.man(x) just isn’t the meaning of “a man”. If anything, it translates the
complete sentence “There is a man”.

We will look at this next time.
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4. The Three Tasks Revised
Task 1 Specify a reasonable syntax for the natural language fragment of interest. We can

do this using CG.

Task 2 Specify semantic representations for the lexical items. We know what this involves

Task 3 Specify the translation of an item R whose parts are F and A with the help of
functional application. That is, we need to specify which part is to be thought of as
functor (here it’s F ), which as argument (here it’s A) and then let the resultant trans-
lation R ′ be F ′(A ′). We know that β-conversion (with the help of α-conversion),
gives us the tools needed to actually construct the representation built by this pro-
cess.
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5. Summing up: Constituents and Assembly
Let’s go back to the points where FOL fails, i.e. constituent representation and assembly.
The λ-calculus succeeds in both:

Constituents: each constituent is represented by a lambda term.

John: j knows: λxy.(know(x))(y) read john: λy.know(y,j)

Assembly: function application (α(β)) and abstraction (λx.α[x]) capture composition and
decomposition of meaning representations.
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